//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/SymbolTable.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" using namespace mlir; /// Return true if the given operation is unknown and may potentially define a /// symbol table. static bool isPotentiallyUnknownSymbolTable(Operation *op) { return !op->getDialect() && op->getNumRegions() == 1; } /// Returns the nearest symbol table from a given operation `from`. Returns /// nullptr if no valid parent symbol table could be found. static Operation *getNearestSymbolTable(Operation *from) { assert(from && "expected valid operation"); if (isPotentiallyUnknownSymbolTable(from)) return nullptr; while (!from->hasTrait()) { from = from->getParentOp(); // Check that this is a valid op and isn't an unknown symbol table. if (!from || isPotentiallyUnknownSymbolTable(from)) return nullptr; } return from; } /// Returns the string name of the given symbol, or None if this is not a /// symbol. static Optional getNameIfSymbol(Operation *symbol) { auto nameAttr = symbol->getAttrOfType(SymbolTable::getSymbolAttrName()); return nameAttr ? nameAttr.getValue() : Optional(); } /// Computes the nested symbol reference attribute for the symbol 'symbolName' /// that are usable within the symbol table operations from 'symbol' as far up /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. /// Returns success if all references up to 'within' could be computed. static LogicalResult collectValidReferencesFor(Operation *symbol, StringRef symbolName, Operation *within, SmallVectorImpl &results) { assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); MLIRContext *ctx = symbol->getContext(); auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx); results.push_back(leafRef); // Early exit for when 'within' is the parent of 'symbol'. Operation *symbolTableOp = symbol->getParentOp(); if (within == symbolTableOp) return success(); // Collect references until 'symbolTableOp' reaches 'within'. SmallVector nestedRefs(1, leafRef); do { // Each parent of 'symbol' should define a symbol table. if (!symbolTableOp->hasTrait()) return failure(); // Each parent of 'symbol' should also be a symbol. Optional symbolTableName = getNameIfSymbol(symbolTableOp); if (!symbolTableName) return failure(); results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx)); symbolTableOp = symbolTableOp->getParentOp(); if (symbolTableOp == within) break; nestedRefs.insert(nestedRefs.begin(), FlatSymbolRefAttr::get(*symbolTableName, ctx)); } while (true); return success(); } //===----------------------------------------------------------------------===// // SymbolTable //===----------------------------------------------------------------------===// /// Build a symbol table with the symbols within the given operation. SymbolTable::SymbolTable(Operation *symbolTableOp) : symbolTableOp(symbolTableOp) { assert(symbolTableOp->hasTrait() && "expected operation to have SymbolTable trait"); assert(symbolTableOp->getNumRegions() == 1 && "expected operation to have a single region"); assert(has_single_element(symbolTableOp->getRegion(0)) && "expected operation to have a single block"); for (auto &op : symbolTableOp->getRegion(0).front()) { Optional name = getNameIfSymbol(&op); if (!name) continue; auto inserted = symbolTable.insert({*name, &op}); (void)inserted; assert(inserted.second && "expected region to contain uniquely named symbol operations"); } } /// Look up a symbol with the specified name, returning null if no such name /// exists. Names never include the @ on them. Operation *SymbolTable::lookup(StringRef name) const { return symbolTable.lookup(name); } /// Erase the given symbol from the table. void SymbolTable::erase(Operation *symbol) { Optional name = getNameIfSymbol(symbol); assert(name && "expected valid 'name' attribute"); assert(symbol->getParentOp() == symbolTableOp && "expected this operation to be inside of the operation with this " "SymbolTable"); auto it = symbolTable.find(*name); if (it != symbolTable.end() && it->second == symbol) { symbolTable.erase(it); symbol->erase(); } } /// Insert a new symbol into the table and associated operation, and rename it /// as necessary to avoid collisions. void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { auto &body = symbolTableOp->getRegion(0).front(); if (insertPt == Block::iterator() || insertPt == body.end()) insertPt = Block::iterator(body.getTerminator()); assert(insertPt->getParentOp() == symbolTableOp && "expected insertPt to be in the associated module operation"); body.getOperations().insert(insertPt, symbol); // Add this symbol to the symbol table, uniquing the name if a conflict is // detected. StringRef name = getSymbolName(symbol); if (symbolTable.insert({name, symbol}).second) return; // If a conflict was detected, then the symbol will not have been added to // the symbol table. Try suffixes until we get to a unique name that works. SmallString<128> nameBuffer(name); unsigned originalLength = nameBuffer.size(); // Iteratively try suffixes until we find one that isn't used. do { nameBuffer.resize(originalLength); nameBuffer += '_'; nameBuffer += std::to_string(uniquingCounter++); } while (!symbolTable.insert({nameBuffer, symbol}).second); setSymbolName(symbol, nameBuffer); } /// Returns true if the given operation defines a symbol. bool SymbolTable::isSymbol(Operation *op) { return op->hasTrait() || getNameIfSymbol(op).hasValue(); } /// Returns the name of the given symbol operation. StringRef SymbolTable::getSymbolName(Operation *symbol) { Optional name = getNameIfSymbol(symbol); assert(name && "expected valid symbol name"); return *name; } /// Sets the name of the given symbol operation. void SymbolTable::setSymbolName(Operation *symbol, StringRef name) { symbol->setAttr(getSymbolAttrName(), StringAttr::get(name, symbol->getContext())); } /// Returns the visibility of the given symbol operation. SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { // If the attribute doesn't exist, assume public. StringAttr vis = symbol->getAttrOfType(getVisibilityAttrName()); if (!vis) return Visibility::Public; // Otherwise, switch on the string value. return llvm::StringSwitch(vis.getValue()) .Case("private", Visibility::Private) .Case("nested", Visibility::Nested) .Case("public", Visibility::Public); } /// Sets the visibility of the given symbol operation. void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { MLIRContext *ctx = symbol->getContext(); // If the visibility is public, just drop the attribute as this is the // default. if (vis == Visibility::Public) { symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx)); return; } // Otherwise, update the attribute. assert((vis == Visibility::Private || vis == Visibility::Nested) && "unknown symbol visibility kind"); StringRef visName = vis == Visibility::Private ? "private" : "nested"; symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx)); } /// Returns the operation registered with the given symbol name with the /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol /// was found. Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, StringRef symbol) { assert(symbolTableOp->hasTrait()); // Look for a symbol with the given name. for (auto &block : symbolTableOp->getRegion(0)) { for (auto &op : block) if (getNameIfSymbol(&op) == symbol) return &op; } return nullptr; } Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol) { assert(symbolTableOp->hasTrait()); // Lookup the root reference for this symbol. symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference()); if (!symbolTableOp) return nullptr; // If there are no nested references, just return the root symbol directly. ArrayRef nestedRefs = symbol.getNestedReferences(); if (nestedRefs.empty()) return symbolTableOp; // Verify that the root is also a symbol table. if (!symbolTableOp->hasTrait()) return nullptr; // Otherwise, lookup each of the nested non-leaf references and ensure that // each corresponds to a valid symbol table. for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue()); if (!symbolTableOp || !symbolTableOp->hasTrait()) return nullptr; } return lookupSymbolIn(symbolTableOp, symbol.getLeafReference()); } /// Returns the operation registered with the given symbol name within the /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns /// nullptr if no valid symbol was found. Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, StringRef symbol) { Operation *symbolTableOp = getNearestSymbolTable(from); return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; } Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, SymbolRefAttr symbol) { Operation *symbolTableOp = getNearestSymbolTable(from); return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; } //===----------------------------------------------------------------------===// // SymbolTable Trait Types //===----------------------------------------------------------------------===// LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) { if (op->getNumRegions() != 1) return op->emitOpError() << "Operations with a 'SymbolTable' must have exactly one region"; if (!has_single_element(op->getRegion(0))) return op->emitOpError() << "Operations with a 'SymbolTable' must have exactly one block"; // Check that all symbols are uniquely named within child regions. DenseMap nameToOrigLoc; for (auto &block : op->getRegion(0)) { for (auto &op : block) { // Check for a symbol name attribute. auto nameAttr = op.getAttrOfType(mlir::SymbolTable::getSymbolAttrName()); if (!nameAttr) continue; // Try to insert this symbol into the table. auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); if (!it.second) return op.emitError() .append("redefinition of symbol named '", nameAttr.getValue(), "'") .attachNote(it.first->second) .append("see existing symbol definition here"); } } return success(); } LogicalResult OpTrait::impl::verifySymbol(Operation *op) { // Verify the name attribute. if (!op->getAttrOfType(mlir::SymbolTable::getSymbolAttrName())) return op->emitOpError() << "requires string attribute '" << mlir::SymbolTable::getSymbolAttrName() << "'"; // Verify the visibility attribute. if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { StringAttr visStrAttr = vis.dyn_cast(); if (!visStrAttr) return op->emitOpError() << "requires visibility attribute '" << mlir::SymbolTable::getVisibilityAttrName() << "' to be a string attribute, but got " << vis; if (!llvm::is_contained(ArrayRef{"public", "private", "nested"}, visStrAttr.getValue())) return op->emitOpError() << "visibility expected to be one of [\"public\", \"private\", " "\"nested\"], but got " << visStrAttr; } return success(); } //===----------------------------------------------------------------------===// // Symbol Use Lists //===----------------------------------------------------------------------===// /// Walk all of the symbol references within the given operation, invoking the /// provided callback for each found use. The callbacks takes as arguments: the /// use of the symbol, and the nested access chain to the attribute within the /// operation dictionary. An access chain is a set of indices into nested /// container attributes. For example, a symbol use in an attribute dictionary /// that looks like the following: /// /// {use = [{other_attr, @symbol}]} /// /// May have the following access chain: /// /// [0, 0, 1] /// static WalkResult walkSymbolRefs( Operation *op, function_ref)> callback) { // Check to see if the operation has any attributes. DictionaryAttr attrDict = op->getAttrList().getDictionary(); if (!attrDict) return WalkResult::advance(); // A worklist of a container attribute and the current index into the held // attribute list. SmallVector attrWorklist(1, attrDict); SmallVector curAccessChain(1, /*Value=*/-1); // Process the symbol references within the given nested attribute range. auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { for (Attribute attr : llvm::drop_begin(attrRange, index)) { /// Check for a nested container attribute, these will also need to be /// walked. if (attr.isa() || attr.isa()) { attrWorklist.push_back(attr); curAccessChain.push_back(-1); return WalkResult::advance(); } // Invoke the provided callback if we find a symbol use and check for a // requested interrupt. if (auto symbolRef = attr.dyn_cast()) if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) return WalkResult::interrupt(); // Make sure to keep the index counter in sync. ++index; } // Pop this container attribute from the worklist. attrWorklist.pop_back(); curAccessChain.pop_back(); return WalkResult::advance(); }; WalkResult result = WalkResult::advance(); do { Attribute attr = attrWorklist.back(); int &index = curAccessChain.back(); ++index; // Process the given attribute, which is guaranteed to be a container. if (auto dict = attr.dyn_cast()) result = processAttrs(index, make_second_range(dict.getValue())); else result = processAttrs(index, attr.cast().getValue()); } while (!attrWorklist.empty() && !result.wasInterrupted()); return result; } /// Walk all of the uses, for any symbol, that are nested within the given /// operation 'from', invoking the provided callback for each. This does not /// traverse into any nested symbol tables, and will also only return uses on /// 'from' if it does not also define a symbol table. static Optional walkSymbolUses( Operation *from, function_ref)> callback) { // If from is not a symbol table, check for uses. A symbol table defines a new // scope, so we can't walk the attributes from the symbol table op. if (!from->hasTrait()) { if (walkSymbolRefs(from, callback).wasInterrupted()) return WalkResult::interrupt(); } SmallVector worklist; worklist.reserve(from->getNumRegions()); for (Region ®ion : from->getRegions()) worklist.push_back(®ion); while (!worklist.empty()) { Region *region = worklist.pop_back_val(); for (Block &block : *region) { for (Operation &op : block) { if (walkSymbolRefs(&op, callback).wasInterrupted()) return WalkResult::interrupt(); // If this operation has regions, and it as well as its dialect aren't // registered then conservatively fail. The operation may define a // symbol table, so we can't opaquely know if we should traverse to find // nested uses. if (isPotentiallyUnknownSymbolTable(&op)) return llvm::None; // If this op defines a new symbol table scope, we can't traverse. Any // symbol references nested within 'op' are different semantically. if (!op.hasTrait()) { for (Region ®ion : op.getRegions()) worklist.push_back(®ion); } } } } return WalkResult::advance(); } /// Walks all of the symbol scopes from 'symbol' to (inclusive) 'limit' invoking /// the provided callback at each one with a properly scoped reference to /// 'symbol'. The callback takes as parameters the symbol reference at the /// current scope as well as the top-level operation representing the top of /// that scope. static Optional walkSymbolScopes( Operation *symbol, Operation *limit, function_ref(SymbolRefAttr, Operation *)> callback) { StringRef symbolName = SymbolTable::getSymbolName(symbol); assert(!symbol->hasTrait() || symbol != limit); // Compute the ancestors of 'limit'. llvm::SetVector, SmallPtrSet> limitAncestors; Operation *limitAncestor = limit; do { // Check to see if 'symbol' is an ancestor of 'limit'. if (limitAncestor == symbol) { // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr // doesn't support parent references. if (getNearestSymbolTable(limit) != symbol->getParentOp()) return WalkResult::advance(); return callback(SymbolRefAttr::get(symbolName, symbol->getContext()), limit); } limitAncestors.insert(limitAncestor); } while ((limitAncestor = limitAncestor->getParentOp())); // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. Operation *commonAncestor = symbol->getParentOp(); do { if (limitAncestors.count(commonAncestor)) break; } while ((commonAncestor = commonAncestor->getParentOp())); assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); // Compute the set of valid nested references for 'symbol' as far up to the // common ancestor as possible. SmallVector references; bool collectedAllReferences = succeeded(collectValidReferencesFor( symbol, symbolName, commonAncestor, references)); // Handle the case where the common ancestor is 'limit'. if (commonAncestor == limit) { // Walk each of the ancestors of 'symbol', calling the compute function for // each one. Operation *limitIt = symbol->getParentOp(); for (size_t i = 0, e = references.size(); i != e; ++i, limitIt = limitIt->getParentOp()) { Optional callbackResult = callback(references[i], limitIt); if (callbackResult != WalkResult::advance()) return callbackResult; } return WalkResult::advance(); } // Otherwise, we just need the symbol reference for 'symbol' that will be // used within 'limit'. This is the last reference in the list we computed // above if we were able to collect all references. if (!collectedAllReferences) return WalkResult::advance(); return callback(references.back(), limit); } /// Walk the symbol scopes defined by 'limit' invoking the provided callback. static Optional walkSymbolScopes( StringRef symbol, Operation *limit, function_ref(SymbolRefAttr, Operation *)> callback) { return callback(SymbolRefAttr::get(symbol, limit->getContext()), limit); } /// Returns true if the given reference 'SubRef' is a sub reference of the /// reference 'ref', i.e. 'ref' is a further qualified reference. static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { if (ref == subRef) return true; // If the references are not pointer equal, check to see if `subRef` is a // prefix of `ref`. if (ref.isa() || ref.getRootReference() != subRef.getRootReference()) return false; auto refLeafs = ref.getNestedReferences(); auto subRefLeafs = subRef.getNestedReferences(); return subRefLeafs.size() < refLeafs.size() && subRefLeafs == refLeafs.take_front(subRefLeafs.size()); } //===----------------------------------------------------------------------===// // SymbolTable::getSymbolUses /// Get an iterator range for all of the uses, for any symbol, that are nested /// within the given operation 'from'. This does not traverse into any nested /// symbol tables, and will also only return uses on 'from' if it does not /// also define a symbol table. This is because we treat the region as the /// boundary of the symbol table, and not the op itself. This function returns /// None if there are any unknown operations that may potentially be symbol /// tables. auto SymbolTable::getSymbolUses(Operation *from) -> Optional { std::vector uses; auto walkFn = [&](SymbolUse symbolUse, ArrayRef) { uses.push_back(symbolUse); return WalkResult::advance(); }; auto result = walkSymbolUses(from, walkFn); return result ? Optional(std::move(uses)) : Optional(); } //===----------------------------------------------------------------------===// // SymbolTable::getSymbolUses /// The implementation of SymbolTable::getSymbolUses below. template static Optional getSymbolUsesImpl(SymbolT symbol, Operation *limit) { std::vector uses; auto walkFn = [&](SymbolRefAttr symbolRefAttr, Operation *from) { return walkSymbolUses( from, [&](SymbolTable::SymbolUse symbolUse, ArrayRef) { if (isReferencePrefixOf(symbolRefAttr, symbolUse.getSymbolRef())) uses.push_back(symbolUse); return WalkResult::advance(); }); }; if (walkSymbolScopes(symbol, limit, walkFn)) return SymbolTable::UseRange(std::move(uses)); return llvm::None; } /// Get all of the uses of the given symbol that are nested within the given /// operation 'from', invoking the provided callback for each. This does not /// traverse into any nested symbol tables, and will also only return uses on /// 'from' if it does not also define a symbol table. This is because we treat /// the region as the boundary of the symbol table, and not the op itself. This /// function returns None if there are any unknown operations that may /// potentially be symbol tables. auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) -> Optional { return getSymbolUsesImpl(symbol, from); } auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) -> Optional { return getSymbolUsesImpl(symbol, from); } //===----------------------------------------------------------------------===// // SymbolTable::symbolKnownUseEmpty /// The implementation of SymbolTable::symbolKnownUseEmpty below. template static bool symbolKnownUseEmptyImpl(SymbolT symbol, Operation *limit) { // Walk all of the symbol uses looking for a reference to 'symbol'. auto walkFn = [&](SymbolRefAttr symbolRefAttr, Operation *from) { return walkSymbolUses( from, [&](SymbolTable::SymbolUse symbolUse, ArrayRef) { return isReferencePrefixOf(symbolRefAttr, symbolUse.getSymbolRef()) ? WalkResult::interrupt() : WalkResult::advance(); }); }; return walkSymbolScopes(symbol, limit, walkFn) == WalkResult::advance(); } /// Return if the given symbol is known to have no uses that are nested within /// the given operation 'from'. This does not traverse into any nested symbol /// tables, and will also only count uses on 'from' if it does not also define /// a symbol table. This is because we treat the region as the boundary of the /// symbol table, and not the op itself. This function will also return false if /// there are any unknown operations that may potentially be symbol tables. bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { return symbolKnownUseEmptyImpl(symbol, from); } bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { return symbolKnownUseEmptyImpl(symbol, from); } //===----------------------------------------------------------------------===// // SymbolTable::replaceAllSymbolUses /// Rebuild the given attribute container after replacing all references to a /// symbol with the updated attribute in 'accesses'. static Attribute rebuildAttrAfterRAUW( Attribute container, ArrayRef, SymbolRefAttr>> accesses, unsigned depth) { // Given a range of Attributes, update the ones referred to by the given // access chains to point to the new symbol attribute. auto updateAttrs = [&](auto &&attrRange) { auto attrBegin = std::begin(attrRange); for (unsigned i = 0, e = accesses.size(); i != e;) { ArrayRef access = accesses[i].first; Attribute &attr = *std::next(attrBegin, access[depth]); // Check to see if this is a leaf access, i.e. a SymbolRef. if (access.size() == depth + 1) { attr = accesses[i].second; ++i; continue; } // Otherwise, this is a container. Collect all of the accesses for this // index and recurse. The recursion here is bounded by the size of the // largest access array. auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { ArrayRef nextAccess = it.first; return nextAccess.size() > depth + 1 && nextAccess[depth] == access[depth]; }); attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1); // Skip over all of the accesses that refer to the nested container. i += nestedAccesses.size(); } }; if (auto dictAttr = container.dyn_cast()) { auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); updateAttrs(make_second_range(newAttrs)); return DictionaryAttr::get(newAttrs, dictAttr.getContext()); } auto newAttrs = llvm::to_vector<4>(container.cast().getValue()); updateAttrs(newAttrs); return ArrayAttr::get(newAttrs, container.getContext()); } /// Generates a new symbol reference attribute with a new leaf reference. static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, FlatSymbolRefAttr newLeafAttr) { if (oldAttr.isa()) return newLeafAttr; auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); nestedRefs.back() = newLeafAttr; return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs, oldAttr.getContext()); } /// The implementation of SymbolTable::replaceAllSymbolUses below. template static LogicalResult replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, Operation *limit) { // A collection of operations along with their new attribute dictionary. std::vector> updatedAttrDicts; // The current operation being processed. Operation *curOp = nullptr; // The set of access chains into the attribute dictionary of the current // operation, as well as the replacement attribute to use. SmallVector, SymbolRefAttr>, 1> accessChains; // Generate a new attribute dictionary for the current operation by replacing // references to the old symbol. auto generateNewAttrDict = [&] { auto oldDict = curOp->getAttrList().getDictionary(); auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); return newDict.cast(); }; // Generate a new attribute to replace the given attribute. MLIRContext *ctx = limit->getContext(); FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx); auto scopeWalkFn = [&](SymbolRefAttr oldAttr, Operation *from) -> Optional { SymbolRefAttr newAttr = generateNewRefAttr(oldAttr, newLeafAttr); auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef accessChain) { SymbolRefAttr useRef = symbolUse.getSymbolRef(); if (!isReferencePrefixOf(oldAttr, useRef)) return WalkResult::advance(); // If we have a valid match, check to see if this is a proper // subreference. If it is, then we will need to generate a different new // attribute specifically for this use. SymbolRefAttr replacementRef = newAttr; if (useRef != oldAttr) { if (oldAttr.isa()) { replacementRef = SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx); } else { auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); nestedRefs[oldAttr.getNestedReferences().size() - 1] = newLeafAttr; replacementRef = SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx); } } // If there was a previous operation, generate a new attribute dict // for it. This means that we've finished processing the current // operation, so generate a new dictionary for it. if (curOp && symbolUse.getUser() != curOp) { updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); accessChains.clear(); } // Record this access. curOp = symbolUse.getUser(); accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); return WalkResult::advance(); }; if (!walkSymbolUses(from, walkFn)) return llvm::None; // Check to see if we have a dangling op that needs to be processed. if (curOp) { updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); curOp = nullptr; } return WalkResult::advance(); }; if (!walkSymbolScopes(symbol, limit, scopeWalkFn)) return failure(); // Update the attribute dictionaries as necessary. for (auto &it : updatedAttrDicts) it.first->setAttrs(it.second); return success(); } /// Attempt to replace all uses of the given symbol 'oldSymbol' with the /// provided symbol 'newSymbol' that are nested within the given operation /// 'from'. This does not traverse into any nested symbol tables, and will /// also only replace uses on 'from' if it does not also define a symbol /// table. This is because we treat the region as the boundary of the symbol /// table, and not the op itself. If there are any unknown operations that may /// potentially be symbol tables, no uses are replaced and failure is returned. LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, StringRef newSymbol, Operation *from) { return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); } LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, StringRef newSymbol, Operation *from) { return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); }