//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file This file implements the LegalizerHelper class to legalize /// individual instructions and the LegalizeMachineIR wrapper pass for the /// primary legalization. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "legalizer" using namespace llvm; using namespace LegalizeActions; LegalizerHelper::LegalizerHelper(MachineFunction &MF, GISelChangeObserver &Observer) : MRI(MF.getRegInfo()), LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { MIRBuilder.setMF(MF); MIRBuilder.setChangeObserver(Observer); } LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, GISelChangeObserver &Observer) : MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { MIRBuilder.setMF(MF); MIRBuilder.setChangeObserver(Observer); } LegalizerHelper::LegalizeResult LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); auto Step = LI.getAction(MI, MRI); switch (Step.Action) { case Legal: LLVM_DEBUG(dbgs() << ".. Already legal\n"); return AlreadyLegal; case Libcall: LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); return libcall(MI); case NarrowScalar: LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); return narrowScalar(MI, Step.TypeIdx, Step.NewType); case WidenScalar: LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); return widenScalar(MI, Step.TypeIdx, Step.NewType); case Lower: LLVM_DEBUG(dbgs() << ".. Lower\n"); return lower(MI, Step.TypeIdx, Step.NewType); case FewerElements: LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); case Custom: LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized : UnableToLegalize; default: LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); return UnableToLegalize; } } void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, SmallVectorImpl &VRegs) { for (int i = 0; i < NumParts; ++i) VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); MIRBuilder.buildUnmerge(VRegs, Reg); } static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { switch (Opcode) { case TargetOpcode::G_SDIV: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; case TargetOpcode::G_UDIV: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; case TargetOpcode::G_SREM: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; case TargetOpcode::G_UREM: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; case TargetOpcode::G_CTLZ_ZERO_UNDEF: assert(Size == 32 && "Unsupported size"); return RTLIB::CTLZ_I32; case TargetOpcode::G_FADD: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; case TargetOpcode::G_FSUB: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; case TargetOpcode::G_FMUL: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; case TargetOpcode::G_FDIV: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; case TargetOpcode::G_FREM: return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; case TargetOpcode::G_FPOW: return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; case TargetOpcode::G_FMA: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; } llvm_unreachable("Unknown libcall function"); } LegalizerHelper::LegalizeResult llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, const CallLowering::ArgInfo &Result, ArrayRef Args) { auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); const char *Name = TLI.getLibcallName(Libcall); MIRBuilder.getMF().getFrameInfo().setHasCalls(true); if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), MachineOperand::CreateES(Name), Result, Args)) return LegalizerHelper::UnableToLegalize; return LegalizerHelper::Legalized; } // Useful for libcalls where all operands have the same type. static LegalizerHelper::LegalizeResult simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, Type *OpType) { auto Libcall = getRTLibDesc(MI.getOpcode(), Size); SmallVector Args; for (unsigned i = 1; i < MI.getNumOperands(); i++) Args.push_back({MI.getOperand(i).getReg(), OpType}); return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, Args); } static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, Type *FromType) { auto ToMVT = MVT::getVT(ToType); auto FromMVT = MVT::getVT(FromType); switch (Opcode) { case TargetOpcode::G_FPEXT: return RTLIB::getFPEXT(FromMVT, ToMVT); case TargetOpcode::G_FPTRUNC: return RTLIB::getFPROUND(FromMVT, ToMVT); case TargetOpcode::G_FPTOSI: return RTLIB::getFPTOSINT(FromMVT, ToMVT); case TargetOpcode::G_FPTOUI: return RTLIB::getFPTOUINT(FromMVT, ToMVT); case TargetOpcode::G_SITOFP: return RTLIB::getSINTTOFP(FromMVT, ToMVT); case TargetOpcode::G_UITOFP: return RTLIB::getUINTTOFP(FromMVT, ToMVT); } llvm_unreachable("Unsupported libcall function"); } static LegalizerHelper::LegalizeResult conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, Type *FromType) { RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, {{MI.getOperand(1).getReg(), FromType}}); } LegalizerHelper::LegalizeResult LegalizerHelper::libcall(MachineInstr &MI) { LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); unsigned Size = LLTy.getSizeInBits(); auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_SDIV: case TargetOpcode::G_UDIV: case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: case TargetOpcode::G_CTLZ_ZERO_UNDEF: { Type *HLTy = IntegerType::get(Ctx, Size); auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FADD: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMUL: case TargetOpcode::G_FDIV: case TargetOpcode::G_FMA: case TargetOpcode::G_FPOW: case TargetOpcode::G_FREM: { Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPEXT: { // FIXME: Support other floating point types (half, fp128 etc) unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if (ToSize != 64 || FromSize != 32) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPTRUNC: { // FIXME: Support other floating point types (half, fp128 etc) unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if (ToSize != 32 || FromSize != 64) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: { // FIXME: Support other types unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, Type::getInt32Ty(Ctx), FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_SITOFP: case TargetOpcode::G_UITOFP: { // FIXME: Support other types unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)); if (Status != Legalized) return Status; break; } } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0 && MI.getOpcode() != TargetOpcode::G_EXTRACT) return UnableToLegalize; MIRBuilder.setInstr(MI); uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); uint64_t NarrowSize = NarrowTy.getSizeInBits(); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_IMPLICIT_DEF: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; SmallVector DstRegs; for (int i = 0; i < NumParts; ++i) DstRegs.push_back( MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_ADD: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; // Expand in terms of carry-setting/consuming G_ADDE instructions. int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); SmallVector Src1Regs, Src2Regs, DstRegs; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildConstant(CarryIn, 0); for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], Src2Regs[i], CarryIn); DstRegs.push_back(DstReg); CarryIn = CarryOut; } unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_EXTRACT: { if (TypeIdx != 1) return UnableToLegalize; int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); // FIXME: add support for when SizeOp1 isn't an exact multiple of // NarrowSize. if (SizeOp1 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp1 / NarrowSize; SmallVector SrcRegs, DstRegs; SmallVector Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); unsigned OpReg = MI.getOperand(0).getReg(); uint64_t OpStart = MI.getOperand(2).getImm(); uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); for (int i = 0; i < NumParts; ++i) { unsigned SrcStart = i * NarrowSize; if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { // No part of the extract uses this subregister, ignore it. continue; } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { // The entire subregister is extracted, forward the value. DstRegs.push_back(SrcRegs[i]); continue; } // OpSegStart is where this destination segment would start in OpReg if it // extended infinitely in both directions. int64_t ExtractOffset; uint64_t SegSize; if (OpStart < SrcStart) { ExtractOffset = 0; SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); } else { ExtractOffset = OpStart - SrcStart; SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); } unsigned SegReg = SrcRegs[i]; if (ExtractOffset != 0 || SegSize != NarrowSize) { // A genuine extract is needed. SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); } DstRegs.push_back(SegReg); } unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_INSERT: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; SmallVector SrcRegs, DstRegs; SmallVector Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); unsigned OpReg = MI.getOperand(2).getReg(); uint64_t OpStart = MI.getOperand(3).getImm(); uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); for (int i = 0; i < NumParts; ++i) { unsigned DstStart = i * NarrowSize; if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { // No part of the insert affects this subregister, forward the original. DstRegs.push_back(SrcRegs[i]); continue; } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { // The entire subregister is defined by this insert, forward the new // value. DstRegs.push_back(OpReg); continue; } // OpSegStart is where this destination segment would start in OpReg if it // extended infinitely in both directions. int64_t ExtractOffset, InsertOffset; uint64_t SegSize; if (OpStart < DstStart) { InsertOffset = 0; ExtractOffset = DstStart - OpStart; SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); } else { InsertOffset = OpStart - DstStart; ExtractOffset = 0; SegSize = std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); } unsigned SegReg = OpReg; if (ExtractOffset != 0 || SegSize != OpSize) { // A genuine extract is needed. SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); } unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); DstRegs.push_back(DstReg); } assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_LOAD: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; const auto &MMO = **MI.memoperands_begin(); // This implementation doesn't work for atomics. Give up instead of doing // something invalid. if (MMO.getOrdering() != AtomicOrdering::NotAtomic || MMO.getFailureOrdering() != AtomicOrdering::NotAtomic) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; LLT OffsetTy = LLT::scalar( MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits()); SmallVector DstRegs; for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); unsigned SrcReg = 0; unsigned Adjustment = i * NarrowSize / 8; unsigned Alignment = MinAlign(MMO.getAlignment(), Adjustment); MachineMemOperand *SplitMMO = MIRBuilder.getMF().getMachineMemOperand( MMO.getPointerInfo().getWithOffset(Adjustment), MMO.getFlags(), NarrowSize / 8, Alignment, MMO.getAAInfo(), MMO.getRanges(), MMO.getSyncScopeID(), MMO.getOrdering(), MMO.getFailureOrdering()); MIRBuilder.materializeGEP(SrcReg, MI.getOperand(1).getReg(), OffsetTy, Adjustment); MIRBuilder.buildLoad(DstReg, SrcReg, *SplitMMO); DstRegs.push_back(DstReg); } unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_STORE: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; const auto &MMO = **MI.memoperands_begin(); // This implementation doesn't work for atomics. Give up instead of doing // something invalid. if (MMO.getOrdering() != AtomicOrdering::NotAtomic || MMO.getFailureOrdering() != AtomicOrdering::NotAtomic) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; LLT OffsetTy = LLT::scalar( MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits()); SmallVector SrcRegs; extractParts(MI.getOperand(0).getReg(), NarrowTy, NumParts, SrcRegs); for (int i = 0; i < NumParts; ++i) { unsigned DstReg = 0; unsigned Adjustment = i * NarrowSize / 8; unsigned Alignment = MinAlign(MMO.getAlignment(), Adjustment); MachineMemOperand *SplitMMO = MIRBuilder.getMF().getMachineMemOperand( MMO.getPointerInfo().getWithOffset(Adjustment), MMO.getFlags(), NarrowSize / 8, Alignment, MMO.getAAInfo(), MMO.getRanges(), MMO.getSyncScopeID(), MMO.getOrdering(), MMO.getFailureOrdering()); MIRBuilder.materializeGEP(DstReg, MI.getOperand(1).getReg(), OffsetTy, Adjustment); MIRBuilder.buildStore(SrcRegs[i], DstReg, *SplitMMO); } MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CONSTANT: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; const APInt &Cst = MI.getOperand(1).getCImm()->getValue(); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); SmallVector DstRegs; for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); ConstantInt *CI = ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize)); MIRBuilder.buildConstant(DstReg, *CI); DstRegs.push_back(DstReg); } unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: { // Legalize bitwise operation: // A = BinOp B, C // into: // B1, ..., BN = G_UNMERGE_VALUES B // C1, ..., CN = G_UNMERGE_VALUES C // A1 = BinOp B1, C2 // ... // AN = BinOp BN, CN // A = G_MERGE_VALUES A1, ..., AN // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; // List the registers where the destination will be scattered. SmallVector DstRegs; // List the registers where the first argument will be split. SmallVector SrcsReg1; // List the registers where the second argument will be split. SmallVector SrcsReg2; // Create all the temporary registers. for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy); unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy); DstRegs.push_back(DstReg); SrcsReg1.push_back(SrcReg1); SrcsReg2.push_back(SrcReg2); } // Explode the big arguments into smaller chunks. MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg()); MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg()); // Do the operation on each small part. for (int i = 0; i < NumParts; ++i) MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]}, {SrcsReg1[i], SrcsReg2[i]}); // Gather the destination registers into the final destination. unsigned DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } } } void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned ExtOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); MO.setReg(ExtB->getOperand(0).getReg()); } void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned TruncOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); MO.setReg(DstExt); } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_UADDO: case TargetOpcode::G_USUBO: { if (TypeIdx == 1) return UnableToLegalize; // TODO auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, {MI.getOperand(2).getReg()}); auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, {MI.getOperand(3).getReg()}); unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO ? TargetOpcode::G_ADD : TargetOpcode::G_SUB; // Do the arithmetic in the larger type. auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); auto AndOp = MIRBuilder.buildInstr( TargetOpcode::G_AND, {WideTy}, {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); // There is no overflow if the AndOp is the same as NewOp. MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, AndOp); // Now trunc the NewOp to the original result. MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTPOP: { // First ZEXT the input. auto MIBSrc = MIRBuilder.buildZExt(WideTy, MI.getOperand(1).getReg()); LLT CurTy = MRI.getType(MI.getOperand(0).getReg()); if (MI.getOpcode() == TargetOpcode::G_CTTZ) { // The count is the same in the larger type except if the original // value was zero. This can be handled by setting the bit just off // the top of the original type. auto TopBit = APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); MIBSrc = MIRBuilder.buildInstr( TargetOpcode::G_OR, {WideTy}, {MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit.getSExtValue())}); } // Perform the operation at the larger size. auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); // This is already the correct result for CTPOP and CTTZs if (MI.getOpcode() == TargetOpcode::G_CTLZ || MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { // The correct result is NewOp - (Difference in widety and current ty). unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); MIBNewOp = MIRBuilder.buildInstr( TargetOpcode::G_SUB, {WideTy}, {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); } auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); // Make the original instruction a trunc now, and update its source. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_TRUNC)); MI.getOperand(1).setReg(MIBNewOp->getOperand(0).getReg()); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_ADD: case TargetOpcode::G_AND: case TargetOpcode::G_MUL: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: case TargetOpcode::G_SUB: // Perform operation at larger width (any extension is fine here, high bits // don't affect the result) and then truncate the result back to the // original type. Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SHL: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); // The "number of bits to shift" operand must preserve its value as an // unsigned integer: widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SDIV: case TargetOpcode::G_SREM: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ASHR: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); // The "number of bits to shift" operand must preserve its value as an // unsigned integer: widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UDIV: case TargetOpcode::G_UREM: case TargetOpcode::G_LSHR: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SELECT: Observer.changingInstr(MI); if (TypeIdx == 0) { // Perform operation at larger width (any extension is fine here, high // bits don't affect the result) and then truncate the result back to the // original type. widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); } else { // Explicit extension is required here since high bits affect the result. widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SITOFP: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UITOFP: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_INSERT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_LOAD: // For some types like i24, we might try to widen to i32. To properly handle // this we should be using a dedicated extending load, until then avoid // trying to legalize. if (alignTo(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(), 8) != WideTy.getSizeInBits()) return UnableToLegalize; LLVM_FALLTHROUGH; case TargetOpcode::G_SEXTLOAD: case TargetOpcode::G_ZEXTLOAD: Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_STORE: { if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(1) || WideTy != LLT::scalar(8)) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CONSTANT: { MachineOperand &SrcMO = MI.getOperand(1); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); Observer.changingInstr(MI); SrcMO.setCImm(ConstantInt::get(Ctx, Val)); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FCONSTANT: { MachineOperand &SrcMO = MI.getOperand(1); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); APFloat Val = SrcMO.getFPImm()->getValueAPF(); bool LosesInfo; switch (WideTy.getSizeInBits()) { case 32: Val.convert(APFloat::IEEEsingle(), APFloat::rmTowardZero, &LosesInfo); break; case 64: Val.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &LosesInfo); break; default: llvm_unreachable("Unhandled fp widen type"); } Observer.changingInstr(MI); SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_BRCOND: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ANYEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FCMP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else { widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ICMP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else { unsigned ExtOpcode = CmpInst::isSigned(static_cast( MI.getOperand(1).getPredicate())) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; widenScalarSrc(MI, WideTy, 2, ExtOpcode); widenScalarSrc(MI, WideTy, 3, ExtOpcode); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_GEP: assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PHI: { assert(TypeIdx == 0 && "Expecting only Idx 0"); Observer.changingInstr(MI); for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: if (TypeIdx != 2) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FCEIL: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; } } LegalizerHelper::LegalizeResult LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { using namespace TargetOpcode; MIRBuilder.setInstr(MI); switch(MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: { unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) .addDef(QuotReg) .addUse(MI.getOperand(1).getReg()) .addUse(MI.getOperand(2).getReg()); unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), ProdReg); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_SMULO: case TargetOpcode::G_UMULO: { // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the // result. unsigned Res = MI.getOperand(0).getReg(); unsigned Overflow = MI.getOperand(1).getReg(); unsigned LHS = MI.getOperand(2).getReg(); unsigned RHS = MI.getOperand(3).getReg(); MIRBuilder.buildMul(Res, LHS, RHS); unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO ? TargetOpcode::G_SMULH : TargetOpcode::G_UMULH; unsigned HiPart = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildInstr(Opcode) .addDef(HiPart) .addUse(LHS) .addUse(RHS); unsigned Zero = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildConstant(Zero, 0); // For *signed* multiply, overflow is detected by checking: // (hi != (lo >> bitwidth-1)) if (Opcode == TargetOpcode::G_SMULH) { unsigned Shifted = MRI.createGenericVirtualRegister(Ty); unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); MIRBuilder.buildInstr(TargetOpcode::G_ASHR) .addDef(Shifted) .addUse(Res) .addUse(ShiftAmt); MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); } else { MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); } MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FNEG: { // TODO: Handle vector types once we are able to // represent them. if (Ty.isVector()) return UnableToLegalize; unsigned Res = MI.getOperand(0).getReg(); Type *ZeroTy; LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); switch (Ty.getSizeInBits()) { case 16: ZeroTy = Type::getHalfTy(Ctx); break; case 32: ZeroTy = Type::getFloatTy(Ctx); break; case 64: ZeroTy = Type::getDoubleTy(Ctx); break; case 128: ZeroTy = Type::getFP128Ty(Ctx); break; default: llvm_unreachable("unexpected floating-point type"); } ConstantFP &ZeroForNegation = *cast(ConstantFP::getZeroValueForNegation(ZeroTy)); auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); MIRBuilder.buildInstr(TargetOpcode::G_FSUB) .addDef(Res) .addUse(Zero->getOperand(0).getReg()) .addUse(MI.getOperand(1).getReg()); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FSUB: { // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). // First, check if G_FNEG is marked as Lower. If so, we may // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) return UnableToLegalize; unsigned Res = MI.getOperand(0).getReg(); unsigned LHS = MI.getOperand(1).getReg(); unsigned RHS = MI.getOperand(2).getReg(); unsigned Neg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); MIRBuilder.buildInstr(TargetOpcode::G_FADD) .addDef(Res) .addUse(LHS) .addUse(Neg); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { unsigned OldValRes = MI.getOperand(0).getReg(); unsigned SuccessRes = MI.getOperand(1).getReg(); unsigned Addr = MI.getOperand(2).getReg(); unsigned CmpVal = MI.getOperand(3).getReg(); unsigned NewVal = MI.getOperand(4).getReg(); MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, **MI.memoperands_begin()); MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_LOAD: case TargetOpcode::G_SEXTLOAD: case TargetOpcode::G_ZEXTLOAD: { // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT unsigned DstReg = MI.getOperand(0).getReg(); unsigned PtrReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); auto &MMO = **MI.memoperands_begin(); if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { // In the case of G_LOAD, this was a non-extending load already and we're // about to lower to the same instruction. if (MI.getOpcode() == TargetOpcode::G_LOAD) return UnableToLegalize; MIRBuilder.buildLoad(DstReg, PtrReg, MMO); MI.eraseFromParent(); return Legalized; } if (DstTy.isScalar()) { unsigned TmpReg = MRI.createGenericVirtualRegister( LLT::scalar(MMO.getSize() /* in bytes */ * 8)); MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case TargetOpcode::G_LOAD: MIRBuilder.buildAnyExt(DstReg, TmpReg); break; case TargetOpcode::G_SEXTLOAD: MIRBuilder.buildSExt(DstReg, TmpReg); break; case TargetOpcode::G_ZEXTLOAD: MIRBuilder.buildZExt(DstReg, TmpReg); break; } MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTPOP: return lowerBitCount(MI, TypeIdx, Ty); case G_UADDE: { unsigned Res = MI.getOperand(0).getReg(); unsigned CarryOut = MI.getOperand(1).getReg(); unsigned LHS = MI.getOperand(2).getReg(); unsigned RHS = MI.getOperand(3).getReg(); unsigned CarryIn = MI.getOperand(4).getReg(); unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildAdd(TmpRes, LHS, RHS); MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); MI.eraseFromParent(); return Legalized; } } } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_ADD: { unsigned NarrowSize = NarrowTy.getSizeInBits(); unsigned DstReg = MI.getOperand(0).getReg(); unsigned Size = MRI.getType(DstReg).getSizeInBits(); int NumParts = Size / NarrowSize; // FIXME: Don't know how to handle the situation where the small vectors // aren't all the same size yet. if (Size % NarrowSize != 0) return UnableToLegalize; SmallVector Src1Regs, Src2Regs, DstRegs; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); for (int i = 0; i < NumParts; ++i) { unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildAdd(DstReg, Src1Regs[i], Src2Regs[i]); DstRegs.push_back(DstReg); } MIRBuilder.buildConcatVectors(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_LOAD: case TargetOpcode::G_STORE: { bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; unsigned ValReg = MI.getOperand(0).getReg(); unsigned AddrReg = MI.getOperand(1).getReg(); unsigned NarrowSize = NarrowTy.getSizeInBits(); unsigned Size = MRI.getType(ValReg).getSizeInBits(); unsigned NumParts = Size / NarrowSize; SmallVector NarrowRegs; if (!IsLoad) extractParts(ValReg, NarrowTy, NumParts, NarrowRegs); const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); MachineFunction &MF = *MI.getMF(); MachineMemOperand *MMO = *MI.memoperands_begin(); for (unsigned Idx = 0; Idx < NumParts; ++Idx) { unsigned Adjustment = Idx * NarrowTy.getSizeInBits() / 8; unsigned Alignment = MinAlign(MMO->getAlignment(), Adjustment); unsigned NewAddrReg = 0; MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, Adjustment); MachineMemOperand &NewMMO = *MF.getMachineMemOperand( MMO->getPointerInfo().getWithOffset(Adjustment), MMO->getFlags(), NarrowTy.getSizeInBits() / 8, Alignment); if (IsLoad) { unsigned Dst = MRI.createGenericVirtualRegister(NarrowTy); NarrowRegs.push_back(Dst); MIRBuilder.buildLoad(Dst, NewAddrReg, NewMMO); } else { MIRBuilder.buildStore(NarrowRegs[Idx], NewAddrReg, NewMMO); } } if (IsLoad) { if (NarrowTy.isVector()) MIRBuilder.buildConcatVectors(ValReg, NarrowRegs); else MIRBuilder.buildBuildVector(ValReg, NarrowRegs); } MI.eraseFromParent(); return Legalized; } } } LegalizerHelper::LegalizeResult LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { unsigned Opc = MI.getOpcode(); auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); auto isSupported = [this](const LegalityQuery &Q) { auto QAction = LI.getAction(Q).Action; return QAction == Legal || QAction == Libcall || QAction == Custom; }; switch (Opc) { default: return UnableToLegalize; case TargetOpcode::G_CTLZ_ZERO_UNDEF: { // This trivially expands to CTLZ. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CTLZ: { unsigned SrcReg = MI.getOperand(1).getReg(); unsigned Len = Ty.getSizeInBits(); if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty}})) { // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty}, {SrcReg}); auto MIBZero = MIRBuilder.buildConstant(Ty, 0); auto MIBLen = MIRBuilder.buildConstant(Ty, Len); auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), SrcReg, MIBZero); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, MIBCtlzZU); MI.eraseFromParent(); return Legalized; } // for now, we do this: // NewLen = NextPowerOf2(Len); // x = x | (x >> 1); // x = x | (x >> 2); // ... // x = x | (x >>16); // x = x | (x >>32); // for 64-bit input // Upto NewLen/2 // return Len - popcount(x); // // Ref: "Hacker's Delight" by Henry Warren unsigned Op = SrcReg; unsigned NewLen = PowerOf2Ceil(Len); for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); auto MIBOp = MIRBuilder.buildInstr( TargetOpcode::G_OR, {Ty}, {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, {Op, MIBShiftAmt})}); Op = MIBOp->getOperand(0).getReg(); } auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, {MIRBuilder.buildConstant(Ty, Len), MIBPop}); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CTTZ_ZERO_UNDEF: { // This trivially expands to CTTZ. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CTTZ: { unsigned SrcReg = MI.getOperand(1).getReg(); unsigned Len = Ty.getSizeInBits(); if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty}})) { // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with // zero. auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty}, {SrcReg}); auto MIBZero = MIRBuilder.buildConstant(Ty, 0); auto MIBLen = MIRBuilder.buildConstant(Ty, Len); auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), SrcReg, MIBZero); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, MIBCttzZU); MI.eraseFromParent(); return Legalized; } // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // Ref: "Hacker's Delight" by Henry Warren auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); auto MIBNot = MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); auto MIBTmp = MIRBuilder.buildInstr( TargetOpcode::G_AND, {Ty}, {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, {SrcReg, MIBCstNeg1})}); if (!isSupported({TargetOpcode::G_CTPOP, {Ty}}) && isSupported({TargetOpcode::G_CTLZ, {Ty}})) { auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); MIRBuilder.buildInstr( TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, {MIBCstLen, MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); MI.eraseFromParent(); return Legalized; } MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); return Legalized; } } }