//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_SEMA_H #define LLVM_CLANG_AST_SEMA_H #include "IdentifierResolver.h" #include "CXXFieldCollector.h" #include "SemaOverload.h" #include "clang/Parse/Action.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/OwningPtr.h" #include namespace llvm { class APSInt; } namespace clang { class ASTContext; class ASTConsumer; class Preprocessor; class Decl; class DeclContext; class DeclSpec; class NamedDecl; class ScopedDecl; class Stmt; class Expr; class InitListExpr; class CallExpr; class DeclRefExpr; class VarDecl; class ParmVarDecl; class TypedefDecl; class FunctionDecl; class QualType; struct LangOptions; class Token; class IntegerLiteral; class StringLiteral; class ArrayType; class LabelStmt; class SwitchStmt; class ExtVectorType; class TypedefDecl; class ObjCInterfaceDecl; class ObjCCompatibleAliasDecl; class ObjCProtocolDecl; class ObjCImplementationDecl; class ObjCCategoryImplDecl; class ObjCCategoryDecl; class ObjCIvarDecl; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCContainerDecl; struct BlockSemaInfo; class BasePaths; /// PragmaPackStack - Simple class to wrap the stack used by #pragma /// pack. class PragmaPackStack { typedef std::vector< std::pair > stack_ty; /// Alignment - The current user specified alignment. unsigned Alignment; /// Stack - Entries in the #pragma pack stack, consisting of saved /// alignments and optional names. stack_ty Stack; public: PragmaPackStack(unsigned A) : Alignment(A) {} void setAlignment(unsigned A) { Alignment = A; } unsigned getAlignment() { return Alignment; } /// push - Push the current alignment onto the stack, optionally /// using the given \arg Name for the record, if non-zero. void push(IdentifierInfo *Name) { Stack.push_back(std::make_pair(Alignment, Name)); } /// pop - Pop a record from the stack and restore the current /// alignment to the previous value. If \arg Name is non-zero then /// the first such named record is popped, otherwise the top record /// is popped. Returns true if the pop succeeded. bool pop(IdentifierInfo *Name); }; /// Sema - This implements semantic analysis and AST building for C. class Sema : public Action { public: Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; Diagnostic &Diags; SourceManager &SourceMgr; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// PreDeclaratorDC - Keeps the declaration context before switching to the /// context of a declarator's nested-name-specifier. DeclContext *PreDeclaratorDC; /// CurBlock - If inside of a block definition, this contains a pointer to /// the active block object that represents it. BlockSemaInfo *CurBlock; /// PackContext - Manages the stack for #pragma pack. An alignment /// of 0 indicates default alignment. PragmaPackStack PackContext; /// LabelMap - This is a mapping from label identifiers to the LabelStmt for /// it (which acts like the label decl in some ways). Forward referenced /// labels have a LabelStmt created for them with a null location & SubStmt. llvm::DenseMap LabelMap; llvm::SmallVector SwitchStack; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. llvm::SmallVector ExtVectorDecls; /// ObjCImplementations - Keep track of all class @implementations /// so we can emit errors on duplicates. llvm::DenseMap ObjCImplementations; /// ObjCCategoryImpls - Maintain a list of category implementations so /// we can check for duplicates and find local method declarations. llvm::SmallVector ObjCCategoryImpls; /// ObjCProtocols - Keep track of all protocol declarations declared /// with @protocol keyword, so that we can emit errors on duplicates and /// find the declarations when needed. llvm::DenseMap ObjCProtocols; /// ObjCInterfaceDecls - Keep track of all class declarations declared /// with @interface, so that we can emit errors on duplicates and /// find the declarations when needed. typedef llvm::DenseMap ObjCInterfaceDeclsTy; ObjCInterfaceDeclsTy ObjCInterfaceDecls; /// ObjCAliasDecls - Keep track of all class declarations declared /// with @compatibility_alias, so that we can emit errors on duplicates and /// find the declarations when needed. This construct is ancient and will /// likely never be seen. Nevertheless, it is here for compatibility. typedef llvm::DenseMap ObjCAliasTy; ObjCAliasTy ObjCAliasDecls; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. llvm::OwningPtr FieldCollector; IdentifierResolver IdResolver; // Enum values used by KnownFunctionIDs (see below). enum { id_NSLog, id_asprintf, id_fprintf, id_printf, id_snprintf, id_snprintf_chk, id_sprintf, id_sprintf_chk, id_vasprintf, id_vfprintf, id_vsnprintf, id_vsnprintf_chk, id_vsprintf, id_vsprintf_chk, id_vprintf, id_num_known_functions }; /// KnownFunctionIDs - This is a list of IdentifierInfo objects to a set /// of known functions used by the semantic analysis to do various /// kinds of checking (e.g. checking format string errors in printf calls). /// This list is populated upon the creation of a Sema object. IdentifierInfo* KnownFunctionIDs[id_num_known_functions]; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// The C++ "std" namespace, where the standard library resides. Cached here /// by GetStdNamespace NamespaceDecl *StdNamespace; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// ObjCMethodList - a linked list of methods with different signatures. struct ObjCMethodList { ObjCMethodDecl *Method; ObjCMethodList *Next; ObjCMethodList() { Method = 0; Next = 0; } ObjCMethodList(ObjCMethodDecl *M, ObjCMethodList *C) { Method = M; Next = C; } }; /// Instance/Factory Method Pools - allows efficient lookup when typechecking /// messages to "id". We need to maintain a list, since selectors can have /// differing signatures across classes. In Cocoa, this happens to be /// extremely uncommon (only 1% of selectors are "overloaded"). llvm::DenseMap InstanceMethodPool; llvm::DenseMap FactoryMethodPool; public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer); const LangOptions &getLangOptions() const; Diagnostic &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } /// The primitive diagnostic helpers. DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID); } virtual void DeleteExpr(ExprTy *E); virtual void DeleteStmt(StmtTy *S); OwningExprResult Owned(Expr* E) { return OwningExprResult(*this, E); } OwningStmtResult Owned(Stmt* S) { return OwningStmtResult(*this, S); } virtual void ActOnEndOfTranslationUnit(); //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType ConvertDeclSpecToType(const DeclSpec &DS); void ProcessTypeAttributeList(QualType &Result, const AttributeList *AL); QualType GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip = 0); DeclarationName GetNameForDeclarator(Declarator &D); QualType ObjCGetTypeForMethodDefinition(DeclTy *D); bool UnwrapSimilarPointerTypes(QualType& T1, QualType& T2); virtual TypeResult ActOnTypeName(Scope *S, Declarator &D); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // virtual TypeTy *isTypeName(IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS); virtual DeclTy *ActOnDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup) { return ActOnDeclarator(S, D, LastInGroup, false); } DeclTy *ActOnDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup, bool IsFunctionDefinition); virtual DeclTy *ActOnParamDeclarator(Scope *S, Declarator &D); virtual void ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc, ExprTy *defarg); virtual void ActOnParamUnparsedDefaultArgument(DeclTy *param, SourceLocation EqualLoc); virtual void ActOnParamDefaultArgumentError(DeclTy *param); void AddInitializerToDecl(DeclTy *dcl, ExprArg init); void ActOnUninitializedDecl(DeclTy *dcl); virtual DeclTy *FinalizeDeclaratorGroup(Scope *S, DeclTy *Group); virtual DeclTy *ActOnStartOfFunctionDef(Scope *S, Declarator &D); virtual DeclTy *ActOnStartOfFunctionDef(Scope *S, DeclTy *D); virtual void ObjCActOnStartOfMethodDef(Scope *S, DeclTy *D); virtual DeclTy *ActOnFinishFunctionBody(DeclTy *Decl, StmtArg Body); virtual DeclTy *ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr); /// Scope actions. virtual void ActOnPopScope(SourceLocation Loc, Scope *S); virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S); /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with /// no declarator (e.g. "struct foo;") is parsed. virtual DeclTy *ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS); bool InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner, RecordDecl *AnonRecord); virtual DeclTy *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, RecordDecl *Record); virtual DeclTy *ActOnTag(Scope *S, unsigned TagType, TagKind TK, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, MultiTemplateParamsArg TemplateParameterLists); virtual void ActOnDefs(Scope *S, DeclTy *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, llvm::SmallVectorImpl &Decls); virtual DeclTy *ActOnField(Scope *S, DeclTy *TagD, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth); virtual DeclTy *ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. virtual void ActOnFields(Scope* S, SourceLocation RecLoc, DeclTy *TagDecl, DeclTy **Fields, unsigned NumFields, SourceLocation LBrac, SourceLocation RBrac, AttributeList *AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). virtual void ActOnTagStartDefinition(Scope *S, DeclTy *TagDecl); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). virtual void ActOnTagFinishDefinition(Scope *S, DeclTy *TagDecl); virtual DeclTy *ActOnEnumConstant(Scope *S, DeclTy *EnumDecl, DeclTy *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, SourceLocation EqualLoc, ExprTy *Val); virtual void ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDecl, DeclTy **Elements, unsigned NumElements); DeclContext *getContainingDC(DeclContext *DC); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *getCurFunctionDecl(); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. bool isDeclInScope(Decl *D, DeclContext *Ctx, Scope *S = 0) { return IdResolver.isDeclInScope(D, Ctx, Context, S); } /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, ScopedDecl *LastDecl); TypedefDecl *MergeTypeDefDecl(TypedefDecl *New, Decl *Old); FunctionDecl *MergeFunctionDecl(FunctionDecl *New, Decl *Old, bool &Redeclaration); VarDecl *MergeVarDecl(VarDecl *New, Decl *Old); FunctionDecl *MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old); void CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD); /// C++ Overloading. bool IsOverload(FunctionDecl *New, Decl* OldD, OverloadedFunctionDecl::function_iterator &MatchedDecl); ImplicitConversionSequence TryImplicitConversion(Expr* From, QualType ToType, bool SuppressUserConversions = false); bool IsStandardConversion(Expr *From, QualType ToType, StandardConversionSequence& SCS); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool CheckPointerConversion(Expr *From, QualType ToType); bool IsQualificationConversion(QualType FromType, QualType ToType); bool IsUserDefinedConversion(Expr *From, QualType ToType, UserDefinedConversionSequence& User); ImplicitConversionSequence::CompareKind CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, const ImplicitConversionSequence& ICS2); ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence::CompareKind CompareQualificationConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence TryCopyInitialization(Expr* From, QualType ToType, bool SuppressUserConversions = false); bool PerformCopyInitialization(Expr *&From, QualType ToType, const char *Flavor); ImplicitConversionSequence TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method); bool PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method); /// OverloadingResult - Capture the result of performing overload /// resolution. enum OverloadingResult { OR_Success, ///< Overload resolution succeeded. OR_No_Viable_Function, ///< No viable function found. OR_Ambiguous ///< Ambiguous candidates found. }; void AddOverloadCandidate(FunctionDecl *Function, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddConversionCandidate(CXXConversionDecl *Conversion, Expr *From, QualType ToType, OverloadCandidateSet& CandidateSet); void AddSurrogateCandidate(CXXConversionDecl *Conversion, const FunctionTypeProto *Proto, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddOverloadCandidates(const OverloadedFunctionDecl *Ovl, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); bool isBetterOverloadCandidate(const OverloadCandidate& Cand1, const OverloadCandidate& Cand2); OverloadingResult BestViableFunction(OverloadCandidateSet& CandidateSet, OverloadCandidateSet::iterator& Best); void PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, bool OnlyViable); FunctionDecl *ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, bool Complain); void FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn); FunctionDecl *ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, SourceLocation MemberLoc, IdentifierInfo &Member); /// Helpers for dealing with function parameters. bool CheckParmsForFunctionDef(FunctionDecl *FD); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); // FIXME: NamespaceNameOnly parameter is added temporarily // we will need a better way to specify lookup criteria for things // like template specializations, explicit template instantiations, etc. /// More parsing and symbol table subroutines. Decl *LookupDecl(DeclarationName Name, unsigned NSI, Scope *S, const DeclContext *LookupCtx = 0, bool enableLazyBuiltinCreation = true, bool LookInParent = true, bool NamespaceNameOnly = false); Decl *LookupNamespaceName(DeclarationName Name, Scope *S, const DeclContext *LookupCtx) { return LookupDecl(Name, Decl::IDNS_Tag | Decl::IDNS_Ordinary, S, LookupCtx, /* enableLazyBuiltinCreation */ false, /* LookInParent */ true, /* NamespaceNameOnly */ true); } ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *Id); ScopedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S); ScopedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Decl *D, const Declarator &PD); void ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList); void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl); void WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethod, ObjCMethodDecl *IntfMethod); NamespaceDecl *GetStdNamespace(); /// CheckProtocolMethodDefs - This routine checks unimplemented /// methods declared in protocol, and those referenced by it. /// \param IDecl - Used for checking for methods which may have been /// inherited. void CheckProtocolMethodDefs(SourceLocation ImpLoc, ObjCProtocolDecl *PDecl, bool& IncompleteImpl, const llvm::DenseSet &InsMap, const llvm::DenseSet &ClsMap, ObjCInterfaceDecl *IDecl); /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the @implementation class. void ImplMethodsVsClassMethods(ObjCImplementationDecl* IMPDecl, ObjCInterfaceDecl* IDecl); /// ImplCategoryMethodsVsIntfMethods - Checks that methods declared in the /// category interface is implemented in the category @implementation. void ImplCategoryMethodsVsIntfMethods(ObjCCategoryImplDecl *CatImplDecl, ObjCCategoryDecl *CatClassDecl); /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, bool matchBasedOnSizeAndAlignment = false); /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R); /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: virtual OwningStmtResult ActOnExprStmt(ExprArg Expr); virtual OwningStmtResult ActOnNullStmt(SourceLocation SemiLoc); virtual OwningStmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, MultiStmtArg Elts, bool isStmtExpr); virtual OwningStmtResult ActOnDeclStmt(DeclTy *Decl, SourceLocation StartLoc, SourceLocation EndLoc); virtual OwningStmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprArg LHSVal, SourceLocation DotDotDotLoc, ExprArg RHSVal, SourceLocation ColonLoc, StmtArg SubStmt); virtual OwningStmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, StmtArg SubStmt, Scope *CurScope); virtual OwningStmtResult ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation ColonLoc, StmtArg SubStmt); virtual OwningStmtResult ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal, StmtArg ThenVal, SourceLocation ElseLoc, StmtArg ElseVal); virtual OwningStmtResult ActOnStartOfSwitchStmt(ExprArg Cond); virtual OwningStmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, StmtArg Body); virtual StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body); virtual StmtResult ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body, SourceLocation WhileLoc, ExprTy *Cond); virtual StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtTy *First, ExprTy *Second, ExprTy *Third, SourceLocation RParenLoc, StmtTy *Body); virtual StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, SourceLocation LParenLoc, StmtTy *First, ExprTy *Second, SourceLocation RParenLoc, StmtTy *Body); virtual StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, IdentifierInfo *LabelII); virtual StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, ExprTy *DestExp); virtual StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); virtual StmtResult ActOnBreakStmt(SourceLocation GotoLoc, Scope *CurScope); virtual StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *RetValExp); StmtResult ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); virtual StmtResult ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, std::string *Names, ExprTy **Constraints, ExprTy **Exprs, ExprTy *AsmString, unsigned NumClobbers, ExprTy **Clobbers, SourceLocation RParenLoc); virtual StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, StmtTy *Parm, StmtTy *Body, StmtTy *CatchList); virtual StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body); virtual StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtTy *Try, StmtTy *Catch, StmtTy *Finally); virtual StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw); virtual StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr, StmtTy *SynchBody); virtual DeclTy *ActOnExceptionDeclarator(Scope *S, Declarator &D); virtual OwningStmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclTy *ExDecl, StmtArg HandlerBlock); virtual OwningStmtResult ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, MultiStmtArg Handlers); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. // Primary Expressions. virtual ExprResult ActOnIdentifierExpr(Scope *S, SourceLocation Loc, IdentifierInfo &II, bool HasTrailingLParen, const CXXScopeSpec *SS = 0); virtual ExprResult ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc, OverloadedOperatorKind Op, bool HasTrailingLParen, const CXXScopeSpec &SS); virtual ExprResult ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc, TypeTy *Ty, bool HasTrailingLParen, const CXXScopeSpec &SS); DeclRefExpr *BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, bool TypeDependent, bool ValueDependent, const CXXScopeSpec *SS = 0); ExprResult BuildAnonymousStructUnionMemberReference(SourceLocation Loc, FieldDecl *Field, Expr *BaseObjectExpr = 0, SourceLocation OpLoc = SourceLocation()); ExprResult ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, DeclarationName Name, bool HasTrailingLParen, const CXXScopeSpec *SS, bool ForceResolution = false); virtual ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); virtual ExprResult ActOnNumericConstant(const Token &); virtual ExprResult ActOnCharacterConstant(const Token &); virtual ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, ExprTy *Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). virtual ExprResult ActOnStringLiteral(const Token *Toks, unsigned NumToks); // Binary/Unary Operators. 'Tok' is the token for the operator. virtual ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, ExprTy *Input); virtual ExprResult ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, void *TyOrEx, const SourceRange &ArgRange); bool CheckSizeOfAlignOfOperand(QualType type, SourceLocation OpLoc, const SourceRange &R, bool isSizeof); virtual ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, ExprTy *Input); virtual ExprResult ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc, ExprTy *Idx, SourceLocation RLoc); virtual ExprResult ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation MemberLoc, IdentifierInfo &Member); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionTypeProto *Proto, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. virtual ExprResult ActOnCallExpr(Scope *S, ExprTy *Fn, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); virtual ExprResult ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprTy *Op); virtual ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprTy *Op); virtual ExprResult ActOnInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit, InitListDesignations &Designators, SourceLocation RParenLoc); virtual ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, ExprTy *LHS,ExprTy *RHS); ExprResult CreateBuiltinBinOp(SourceLocation TokLoc, unsigned Opc, Expr *lhs, Expr *rhs); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. virtual ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, ExprTy *Cond, ExprTy *LHS, ExprTy *RHS); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". virtual ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, IdentifierInfo *LabelII); virtual ExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtTy *SubStmt, SourceLocation RPLoc); // "({..})" /// __builtin_offsetof(type, a.b[123][456].c) virtual ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, TypeTy *Arg1, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RParenLoc); // __builtin_types_compatible_p(type1, type2) virtual ExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, TypeTy *arg1, TypeTy *arg2, SourceLocation RPLoc); // __builtin_choose_expr(constExpr, expr1, expr2) virtual ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, ExprTy *expr1, ExprTy *expr2, SourceLocation RPLoc); // __builtin_overload(...) virtual ExprResult ActOnOverloadExpr(ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation BuiltinLoc, SourceLocation RParenLoc); // __builtin_va_arg(expr, type) virtual ExprResult ActOnVAArg(SourceLocation BuiltinLoc, ExprTy *expr, TypeTy *type, SourceLocation RPLoc); // __null virtual ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. virtual void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. virtual void ActOnBlockArguments(Declarator &ParamInfo); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. virtual void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} virtual ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *Body, Scope *CurScope); // Act on C++ namespaces virtual DeclTy *ActOnStartNamespaceDef(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace); virtual void ActOnFinishNamespaceDef(DeclTy *Dcl, SourceLocation RBrace); virtual DeclTy *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList); /// AddCXXDirectInitializerToDecl - This action is called immediately after /// ActOnDeclarator, when a C++ direct initializer is present. /// e.g: "int x(1);" virtual void AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc, ExprTy **Exprs, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc); /// InitializationKind - Represents which kind of C++ initialization /// [dcl.init] a routine is to perform. enum InitializationKind { IK_Direct, ///< Direct initialization IK_Copy, ///< Copy initialization IK_Default ///< Default initialization }; CXXConstructorDecl * PerformInitializationByConstructor(QualType ClassType, Expr **Args, unsigned NumArgs, SourceLocation Loc, SourceRange Range, DeclarationName InitEntity, InitializationKind Kind); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. virtual ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, TypeTy *Ty, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, ExprTy *E, SourceLocation RParenLoc); /// ActOnCXXTypeidOfType - Parse typeid( type-id ). virtual ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); //// ActOnCXXThis - Parse 'this' pointer. virtual ExprResult ActOnCXXThis(SourceLocation ThisLoc); /// ActOnCXXBoolLiteral - Parse {true,false} literals. virtual ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); //// ActOnCXXThrow - Parse throw expressions. virtual ExprResult ActOnCXXThrow(SourceLocation OpLoc, ExprTy *expr); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). virtual ExprResult ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, ExprTy **Exprs, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc); /// ActOnCXXNew - Parsed a C++ 'new' expression. virtual ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, ExprTy **PlacementArgs, unsigned NumPlaceArgs, SourceLocation PlacementRParen, bool ParenTypeId, Declarator &D, SourceLocation ConstructorLParen, ExprTy **ConstructorArgs, unsigned NumConsArgs, SourceLocation ConstructorRParen); bool CheckAllocatedType(QualType AllocType, const Declarator &D); bool FindAllocationFunctions(SourceLocation StartLoc, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete); bool FindAllocationOverload(SourceLocation StartLoc, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument); /// ActOnCXXDelete - Parsed a C++ 'delete' expression virtual ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, ExprTy *Operand); /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" virtual ExprResult ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprTy *AssignExprVal); /// ActOnUnaryTypeTrait - Parsed one of the unary type trait support /// pseudo-functions. virtual OwningExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, SourceLocation LParen, TypeTy *Ty, SourceLocation RParen); /// ActOnCXXGlobalScopeSpecifier - Return the object that represents the /// global scope ('::'). virtual CXXScopeTy *ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc); /// ActOnCXXNestedNameSpecifier - Called during parsing of a /// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now /// we want to resolve "bar::". 'SS' is empty or the previously parsed /// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar', /// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'. /// Returns a CXXScopeTy* object representing the C++ scope. virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. virtual void ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. virtual void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); // ParseObjCStringLiteral - Parse Objective-C string literals. virtual ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, ExprTy **Strings, unsigned NumStrings); virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc); // ParseObjCSelectorExpression - Build selector expression for @selector virtual ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); // ParseObjCProtocolExpression - Build protocol expression for @protocol virtual ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // virtual DeclTy *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, const char *Lang, unsigned StrSize, SourceLocation LBraceLoc); virtual DeclTy *ActOnFinishLinkageSpecification(Scope *S, DeclTy *LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // virtual bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS); virtual DeclTy *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, ExprTy *BitfieldWidth, ExprTy *Init, DeclTy *LastInGroup); virtual MemInitResult ActOnMemInitializer(DeclTy *ConstructorD, Scope *S, IdentifierInfo *MemberOrBase, SourceLocation IdLoc, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); virtual void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, DeclTy *TagDecl, SourceLocation LBrac, SourceLocation RBrac); virtual void ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method); virtual void ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *Param); virtual void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method); bool CheckConstructorDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); bool CheckConstructor(CXXConstructorDecl *Constructor); bool CheckDestructorDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); bool CheckConversionDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); DeclTy *ActOnConversionDeclarator(CXXConversionDecl *Conversion); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier virtual BaseResult ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeTy *basetype, SourceLocation BaseLoc); virtual void ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases, unsigned NumBases); bool IsDerivedFrom(QualType Derived, QualType Base); bool IsDerivedFrom(QualType Derived, QualType Base, BasePaths &Paths); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // virtual DeclTy *isTemplateName(IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS = 0); bool DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); virtual DeclTy *ActOnTypeParameter(Scope *S, bool Typename, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position); virtual DeclTy *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position); virtual TemplateParamsTy * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, DeclTy **Params, unsigned NumParams, SourceLocation RAngleLoc); // Objective-C declarations. virtual DeclTy *ActOnStartClassInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, DeclTy * const *ProtoRefs, unsigned NumProtoRefs, SourceLocation EndProtoLoc, AttributeList *AttrList); virtual DeclTy *ActOnCompatiblityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); virtual DeclTy *ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, DeclTy * const *ProtoRefNames, unsigned NumProtoRefs, SourceLocation EndProtoLoc, AttributeList *AttrList); virtual DeclTy *ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, DeclTy * const *ProtoRefs, unsigned NumProtoRefs, SourceLocation EndProtoLoc); virtual DeclTy *ActOnStartClassImplementation( SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc); virtual DeclTy *ActOnStartCategoryImplementation( SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc); virtual DeclTy *ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, unsigned NumElts); virtual DeclTy *ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, const IdentifierLocPair *IdentList, unsigned NumElts, AttributeList *attrList); virtual void FindProtocolDeclaration(bool WarnOnDeclarations, const IdentifierLocPair *ProtocolId, unsigned NumProtocols, llvm::SmallVectorImpl &Protocols); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \arg PropertyTy. void CheckObjCPropertyAttributes(QualType PropertyTy, SourceLocation Loc, unsigned &Attributes); void ProcessPropertyDecl(ObjCPropertyDecl *property, ObjCContainerDecl *DC); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name); void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl); void MergeProtocolPropertiesIntoClass(Decl *CDecl, DeclTy *MergeProtocols); void MergeOneProtocolPropertiesIntoClass(Decl *CDecl, ObjCProtocolDecl *PDecl); virtual void ActOnAtEnd(SourceLocation AtEndLoc, DeclTy *classDecl, DeclTy **allMethods = 0, unsigned allNum = 0, DeclTy **allProperties = 0, unsigned pNum = 0); virtual DeclTy *ActOnProperty(Scope *S, SourceLocation AtLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, DeclTy *ClassCategory, bool *OverridingProperty, tok::ObjCKeywordKind MethodImplKind); virtual DeclTy *ActOnPropertyImplDecl(SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind, DeclTy *ClassImplDecl, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar); virtual DeclTy *ActOnMethodDeclaration( SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, DeclTy *ClassDecl, ObjCDeclSpec &ReturnQT, TypeTy *ReturnType, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCDeclSpec *ArgQT, TypeTy **ArgTypes, IdentifierInfo **ArgNames, llvm::SmallVectorImpl &Cdecls, AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic = false); // ActOnClassMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from NumArgs. virtual ExprResult ActOnClassMessage( Scope *S, IdentifierInfo *receivingClassName, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation rbrac, ExprTy **ArgExprs, unsigned NumArgs); // ActOnInstanceMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from NumArgs. virtual ExprResult ActOnInstanceMessage( ExprTy *receiver, Selector Sel, SourceLocation lbrac, SourceLocation rbrac, ExprTy **ArgExprs, unsigned NumArgs); /// ActOnPragmaPack - Called on well formed #pragma pack(...). virtual void ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name, ExprTy *Alignment, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. void ImpCastExprToType(Expr *&Expr, QualType Type, bool isLvalue = false); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). Expr *UsualUnaryConversions(Expr *&expr); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). void DefaultFunctionArrayConversion(Expr *&expr); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. void DefaultArgumentPromotion(Expr *&Expr); // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr, bool isCompAssign = false); /// UsualArithmeticConversionsType - handles the various conversions /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9) /// and returns the result type of that conversion. QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, const char *Flavor); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// This routine is only used by the following two methods. C99 6.5.16. AssignConvertType CheckAssignmentConstraints(QualType lhs, QualType rhs); // CheckSingleAssignmentConstraints - Currently used by ActOnCallExpr, // CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking, // this routine performs the default function/array converions. AssignConvertType CheckSingleAssignmentConstraints(QualType lhs, Expr *&rExpr); // CheckCompoundAssignmentConstraints - Type check without performing any // conversions. For compound assignments, the "Check...Operands" methods // perform the necessary conversions. AssignConvertType CheckCompoundAssignmentConstraints(QualType lhs, QualType rhs); // Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1) AssignConvertType CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType); // Helper function for CheckAssignmentConstraints involving two // blcok pointer types. AssignConvertType CheckBlockPointerTypesForAssignment(QualType lhsType, QualType rhsType); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor); bool PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS, const char *Flavor); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of ActOnBinOp). inline QualType InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex); inline QualType CheckMultiplyDivideOperands( // C99 6.5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); inline QualType CheckRemainderOperands( // C99 6.5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); inline QualType CheckAdditionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); inline QualType CheckSubtractionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); inline QualType CheckShiftOperands( // C99 6.5.7 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); inline QualType CheckCompareOperands( // C99 6.5.8/9 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isRelational); inline QualType CheckBitwiseOperands( // C99 6.5.[10...12] Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); inline QualType CheckLogicalOperands( // C99 6.5.[13,14] Expr *&lex, Expr *&rex, SourceLocation OpLoc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. inline QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType); inline QualType CheckCommaOperands( // C99 6.5.17 Expr *lex, Expr *&rex, SourceLocation OpLoc); inline QualType CheckConditionalOperands( // C99 6.5.15 Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc); /// type checking for vector binary operators. inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex); inline QualType CheckVectorCompareOperands(Expr *&lex, Expr *&rx, SourceLocation l, bool isRel); /// type checking unary operators (subroutines of ActOnUnaryOp). /// C99 6.5.3.1, 6.5.3.2, 6.5.3.4 QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc, bool isInc); QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc); QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc); QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc); /// type checking primary expressions. QualType CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, IdentifierInfo &Comp, SourceLocation CmpLoc); /// type checking declaration initializers (C99 6.7.8) friend class InitListChecker; bool CheckInitializerTypes(Expr *&simpleInit_or_initList, QualType &declType, SourceLocation InitLoc,DeclarationName InitEntity); bool CheckSingleInitializer(Expr *&simpleInit, QualType declType); bool CheckForConstantInitializer(Expr *e, QualType t); bool CheckArithmeticConstantExpression(const Expr* e); bool CheckAddressConstantExpression(const Expr* e); bool CheckAddressConstantExpressionLValue(const Expr* e); void InitializerElementNotConstant(const Expr *e); StringLiteral *IsStringLiteralInit(Expr *Init, QualType DeclType); bool CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible_With_Added_Qualification - The two types are /// reference-compatible with added qualification, meaning that /// they are reference-compatible and the qualifiers on T1 (cv1) /// are greater than the qualifiers on T2 (cv2). Ref_Compatible_With_Added_Qualification, /// Ref_Compatible - The two types are reference-compatible and /// have equivalent qualifiers (cv1 == cv2). Ref_Compatible }; ReferenceCompareResult CompareReferenceRelationship(QualType T1, QualType T2, bool& DerivedToBase); bool CheckReferenceInit(Expr *&simpleInit_or_initList, QualType &declType, ImplicitConversionSequence *ICS = 0, bool SuppressUserConversions = false); /// CheckCastTypes - Check type constraints for casting between types. bool CheckCastTypes(SourceRange TyRange, QualType CastTy, Expr *&CastExpr); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. bool CheckCXXBooleanCondition(Expr *&CondExpr); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS, bool ForCompare); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); void InitBuiltinVaListType(); /// VerifyIntegerConstantExpression - verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. bool VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result = 0); /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, const Expr *BitWidth); //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system private: Action::ExprResult CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall); bool CheckBuiltinCFStringArgument(Expr* Arg); bool SemaBuiltinVAStart(CallExpr *TheCall); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinStackAddress(CallExpr *TheCall); Action::ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinObjectSize(CallExpr *TheCall); void CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg, unsigned format_idx); void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc); void CheckFloatComparison(SourceLocation loc, Expr* lex, Expr* rex); }; class InitListChecker { Sema *SemaRef; bool hadError; void CheckImplicitInitList(InitListExpr *ParentIList, QualType T, unsigned &Index); void CheckExplicitInitList(InitListExpr *IList, QualType &T, unsigned &Index); void CheckListElementTypes(InitListExpr *IList, QualType &DeclType, unsigned &Index); void CheckSubElementType(InitListExpr *IList, QualType ElemType, unsigned &Index); // FIXME: Does DeclType need to be a reference type? void CheckScalarType(InitListExpr *IList, QualType &DeclType, unsigned &Index); void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index); void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType, unsigned &Index); void CheckArrayType(InitListExpr *IList, QualType &DeclType, unsigned &Index); int numArrayElements(QualType DeclType); int numStructUnionElements(QualType DeclType); public: InitListChecker(Sema *S, InitListExpr *IL, QualType &T); bool HadError() { return hadError; } }; /// BlockSemaInfo - When a block is being parsed, this contains information /// about the block. It is pointed to from Sema::CurBlock. struct BlockSemaInfo { llvm::SmallVector Params; bool hasPrototype; bool isVariadic; BlockDecl *TheDecl; /// TheScope - This is the scope for the block itself, which contains /// arguments etc. Scope *TheScope; /// ReturnType - This will get set to block result type, by looking at /// return types, if any, in the block body. Type *ReturnType; /// PrevBlockInfo - If this is nested inside another block, this points /// to the outer block. BlockSemaInfo *PrevBlockInfo; }; } // end namespace clang #endif