//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "CGCall.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ParameterAttributes.h" using namespace clang; using namespace CodeGen; /***/ // FIXME: Use iterator and sidestep silly type array creation. CGFunctionInfo::CGFunctionInfo(const FunctionTypeNoProto *FTNP) : IsVariadic(true) { ArgTypes.push_back(FTNP->getResultType()); } CGFunctionInfo::CGFunctionInfo(const FunctionTypeProto *FTP) : IsVariadic(FTP->isVariadic()) { ArgTypes.push_back(FTP->getResultType()); for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) ArgTypes.push_back(FTP->getArgType(i)); } // FIXME: Is there really any reason to have this still? CGFunctionInfo::CGFunctionInfo(const FunctionDecl *FD) { const FunctionType *FTy = FD->getType()->getAsFunctionType(); const FunctionTypeProto *FTP = dyn_cast(FTy); ArgTypes.push_back(FTy->getResultType()); if (FTP) { IsVariadic = FTP->isVariadic(); for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) ArgTypes.push_back(FTP->getArgType(i)); } else { IsVariadic = true; } } CGFunctionInfo::CGFunctionInfo(const ObjCMethodDecl *MD, const ASTContext &Context) : IsVariadic(MD->isVariadic()) { ArgTypes.push_back(MD->getResultType()); ArgTypes.push_back(MD->getSelfDecl()->getType()); ArgTypes.push_back(Context.getObjCSelType()); for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), e = MD->param_end(); i != e; ++i) ArgTypes.push_back((*i)->getType()); } ArgTypeIterator CGFunctionInfo::argtypes_begin() const { return ArgTypes.begin(); } ArgTypeIterator CGFunctionInfo::argtypes_end() const { return ArgTypes.end(); } /***/ CGCallInfo::CGCallInfo(QualType _ResultType, const CallArgList &_Args) { ArgTypes.push_back(_ResultType); for (CallArgList::const_iterator i = _Args.begin(), e = _Args.end(); i!=e; ++i) ArgTypes.push_back(i->second); } ArgTypeIterator CGCallInfo::argtypes_begin() const { return ArgTypes.begin(); } ArgTypeIterator CGCallInfo::argtypes_end() const { return ArgTypes.end(); } /***/ /// ABIArgInfo - Helper class to encapsulate information about how a /// specific C type should be passed to or returned from a function. class ABIArgInfo { public: enum Kind { Default, StructRet, /// Only valid for aggregate return types. Coerce, /// Only valid for aggregate return types, the argument /// should be accessed by coercion to a provided type. ByVal, /// Only valid for aggregate argument types. The /// structure should be passed "byval" with the /// specified alignment (0 indicates default /// alignment). Expand, /// Only valid for aggregate argument types. The /// structure should be expanded into consecutive /// arguments for its constituent fields. Currently /// expand is only allowed on structures whose fields /// are all scalar types or are themselves expandable /// types. KindFirst=Default, KindLast=Expand }; private: Kind TheKind; const llvm::Type *TypeData; unsigned UIntData; ABIArgInfo(Kind K, const llvm::Type *TD=0, unsigned UI=0) : TheKind(K), TypeData(TD), UIntData(0) {} public: static ABIArgInfo getDefault() { return ABIArgInfo(Default); } static ABIArgInfo getStructRet() { return ABIArgInfo(StructRet); } static ABIArgInfo getCoerce(const llvm::Type *T) { assert(T->isSingleValueType() && "Can only coerce to simple types"); return ABIArgInfo(Coerce, T); } static ABIArgInfo getByVal(unsigned Alignment) { return ABIArgInfo(ByVal, 0, Alignment); } static ABIArgInfo getExpand() { return ABIArgInfo(Expand); } Kind getKind() const { return TheKind; } bool isDefault() const { return TheKind == Default; } bool isStructRet() const { return TheKind == StructRet; } bool isCoerce() const { return TheKind == Coerce; } bool isByVal() const { return TheKind == ByVal; } bool isExpand() const { return TheKind == Expand; } // Coerce accessors const llvm::Type *getCoerceToType() const { assert(TheKind == Coerce && "Invalid kind!"); return TypeData; } // ByVal accessors unsigned getByValAlignment() const { assert(TheKind == ByVal && "Invalid kind!"); return UIntData; } }; /***/ /// isEmptyStruct - Return true iff a structure has no non-empty /// members. Note that a structure with a flexible array member is not /// considered empty. static bool isEmptyStruct(QualType T) { const RecordType *RT = T->getAsStructureType(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; for (RecordDecl::field_const_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; if (!isEmptyStruct(FD->getType())) return false; } return true; } /// isSingleElementStruct - Determine if a structure is a "single /// element struct", i.e. it has exactly one non-empty field or /// exactly one field which is itself a single element /// struct. Structures with flexible array members are never /// considered single element structs. /// /// \return The field declaration for the single non-empty field, if /// it exists. static const FieldDecl *isSingleElementStruct(QualType T) { const RecordType *RT = T->getAsStructureType(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return 0; const FieldDecl *Found = 0; for (RecordDecl::field_const_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; QualType FT = FD->getType(); if (isEmptyStruct(FT)) { // Ignore } else if (Found) { return 0; } else if (!CodeGenFunction::hasAggregateLLVMType(FT)) { Found = FD; } else { Found = isSingleElementStruct(FT); if (!Found) return 0; } } return Found; } static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { if (!Ty->getAsBuiltinType() && !Ty->isPointerType()) return false; uint64_t Size = Context.getTypeSize(Ty); return Size == 32 || Size == 64; } static bool areAllFields32Or64BitBasicType(const RecordDecl *RD, ASTContext &Context) { for (RecordDecl::field_const_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; if (!is32Or64BitBasicType(FD->getType(), Context)) return false; // If this is a bit-field we need to make sure it is still a // 32-bit or 64-bit type. if (Expr *BW = FD->getBitWidth()) { unsigned Width = BW->getIntegerConstantExprValue(Context).getZExtValue(); if (Width <= 16) return false; } } return true; } static ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context) { assert(!RetTy->isArrayType() && "Array types cannot be passed directly."); if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { // Classify "single element" structs as their element type. const FieldDecl *SeltFD = isSingleElementStruct(RetTy); if (SeltFD) { QualType SeltTy = SeltFD->getType()->getDesugaredType(); if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) { // FIXME: This is gross, it would be nice if we could just // pass back SeltTy and have clients deal with it. Is it worth // supporting coerce to both LLVM and clang Types? if (BT->isIntegerType()) { uint64_t Size = Context.getTypeSize(SeltTy); return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size)); } else if (BT->getKind() == BuiltinType::Float) { return ABIArgInfo::getCoerce(llvm::Type::FloatTy); } else if (BT->getKind() == BuiltinType::Double) { return ABIArgInfo::getCoerce(llvm::Type::DoubleTy); } } else if (SeltTy->isPointerType()) { // FIXME: It would be really nice if this could come out as // the proper pointer type. llvm::Type *PtrTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); return ABIArgInfo::getCoerce(PtrTy); } } uint64_t Size = Context.getTypeSize(RetTy); if (Size == 8) { return ABIArgInfo::getCoerce(llvm::Type::Int8Ty); } else if (Size == 16) { return ABIArgInfo::getCoerce(llvm::Type::Int16Ty); } else if (Size == 32) { return ABIArgInfo::getCoerce(llvm::Type::Int32Ty); } else if (Size == 64) { return ABIArgInfo::getCoerce(llvm::Type::Int64Ty); } else { return ABIArgInfo::getStructRet(); } } else { return ABIArgInfo::getDefault(); } } static ABIArgInfo classifyArgumentType(QualType Ty, ASTContext &Context) { assert(!Ty->isArrayType() && "Array types cannot be passed directly."); if (CodeGenFunction::hasAggregateLLVMType(Ty)) { // Structures with flexible arrays are always byval. if (const RecordType *RT = Ty->getAsStructureType()) if (RT->getDecl()->hasFlexibleArrayMember()) return ABIArgInfo::getByVal(0); // Expand empty structs (i.e. ignore) uint64_t Size = Context.getTypeSize(Ty); if (Ty->isStructureType() && Size == 0) return ABIArgInfo::getExpand(); // Expand structs with size <= 128-bits which consist only of // basic types (int, long long, float, double, xxx*). This is // non-recursive and does not ignore empty fields. if (const RecordType *RT = Ty->getAsStructureType()) { if (Context.getTypeSize(Ty) <= 4*32 && areAllFields32Or64BitBasicType(RT->getDecl(), Context)) return ABIArgInfo::getExpand(); } return ABIArgInfo::getByVal(0); } else { return ABIArgInfo::getDefault(); } } static ABIArgInfo getABIReturnInfo(QualType Ty, ASTContext &Context) { ABIArgInfo Info = classifyReturnType(Ty, Context); // Ensure default on aggregate types is StructRet. if (Info.isDefault() && CodeGenFunction::hasAggregateLLVMType(Ty)) return ABIArgInfo::getStructRet(); return Info; } static ABIArgInfo getABIArgumentInfo(QualType Ty, ASTContext &Context) { ABIArgInfo Info = classifyArgumentType(Ty, Context); // Ensure default on aggregate types is ByVal. if (Info.isDefault() && CodeGenFunction::hasAggregateLLVMType(Ty)) return ABIArgInfo::getByVal(0); return Info; } /***/ void CodeGenTypes::GetExpandedTypes(QualType Ty, std::vector &ArgTys) { const RecordType *RT = Ty->getAsStructureType(); assert(RT && "Can only expand structure types."); const RecordDecl *RD = RT->getDecl(); assert(!RD->hasFlexibleArrayMember() && "Cannot expand structure with flexible array."); for (RecordDecl::field_const_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; assert(!FD->isBitField() && "Cannot expand structure with bit-field members."); QualType FT = FD->getType(); if (CodeGenFunction::hasAggregateLLVMType(FT)) { GetExpandedTypes(FT, ArgTys); } else { ArgTys.push_back(ConvertType(FT)); } } } llvm::Function::arg_iterator CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, llvm::Function::arg_iterator AI) { const RecordType *RT = Ty->getAsStructureType(); assert(RT && "Can only expand structure types."); RecordDecl *RD = RT->getDecl(); assert(LV.isSimple() && "Unexpected non-simple lvalue during struct expansion."); llvm::Value *Addr = LV.getAddress(); for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { FieldDecl *FD = *i; QualType FT = FD->getType(); // FIXME: What are the right qualifiers here? LValue LV = EmitLValueForField(Addr, FD, false, 0); if (CodeGenFunction::hasAggregateLLVMType(FT)) { AI = ExpandTypeFromArgs(FT, LV, AI); } else { EmitStoreThroughLValue(RValue::get(AI), LV, FT); ++AI; } } return AI; } void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, llvm::SmallVector &Args) { const RecordType *RT = Ty->getAsStructureType(); assert(RT && "Can only expand structure types."); RecordDecl *RD = RT->getDecl(); assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); llvm::Value *Addr = RV.getAggregateAddr(); for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { FieldDecl *FD = *i; QualType FT = FD->getType(); // FIXME: What are the right qualifiers here? LValue LV = EmitLValueForField(Addr, FD, false, 0); if (CodeGenFunction::hasAggregateLLVMType(FT)) { ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); } else { RValue RV = EmitLoadOfLValue(LV, FT); assert(RV.isScalar() && "Unexpected non-scalar rvalue during struct expansion."); Args.push_back(RV.getScalarVal()); } } } /***/ const llvm::FunctionType * CodeGenTypes::GetFunctionType(const CGCallInfo &CI, bool IsVariadic) { return GetFunctionType(CI.argtypes_begin(), CI.argtypes_end(), IsVariadic); } const llvm::FunctionType * CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { return GetFunctionType(FI.argtypes_begin(), FI.argtypes_end(), FI.isVariadic()); } const llvm::FunctionType * CodeGenTypes::GetFunctionType(ArgTypeIterator begin, ArgTypeIterator end, bool IsVariadic) { std::vector ArgTys; const llvm::Type *ResultType = 0; QualType RetTy = *begin; ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext()); switch (RetAI.getKind()) { case ABIArgInfo::ByVal: case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); case ABIArgInfo::Default: if (RetTy->isVoidType()) { ResultType = llvm::Type::VoidTy; } else { ResultType = ConvertType(RetTy); } break; case ABIArgInfo::StructRet: { ResultType = llvm::Type::VoidTy; const llvm::Type *STy = ConvertType(RetTy); ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); break; } case ABIArgInfo::Coerce: ResultType = RetAI.getCoerceToType(); break; } for (++begin; begin != end; ++begin) { ABIArgInfo AI = getABIArgumentInfo(*begin, getContext()); const llvm::Type *Ty = ConvertType(*begin); switch (AI.getKind()) { case ABIArgInfo::Coerce: case ABIArgInfo::StructRet: assert(0 && "Invalid ABI kind for non-return argument"); case ABIArgInfo::ByVal: // byval arguments are always on the stack, which is addr space #0. ArgTys.push_back(llvm::PointerType::getUnqual(Ty)); assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled"); break; case ABIArgInfo::Default: ArgTys.push_back(Ty); break; case ABIArgInfo::Expand: GetExpandedTypes(*begin, ArgTys); break; } } return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); } bool CodeGenModule::ReturnTypeUsesSret(QualType RetTy) { return getABIReturnInfo(RetTy, getContext()).isStructRet(); } void CodeGenModule::ConstructParamAttrList(const Decl *TargetDecl, ArgTypeIterator begin, ArgTypeIterator end, ParamAttrListType &PAL) { unsigned FuncAttrs = 0; if (TargetDecl) { if (TargetDecl->getAttr()) FuncAttrs |= llvm::ParamAttr::NoUnwind; if (TargetDecl->getAttr()) FuncAttrs |= llvm::ParamAttr::NoReturn; } QualType RetTy = *begin; unsigned Index = 1; ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext()); switch (RetAI.getKind()) { case ABIArgInfo::Default: if (RetTy->isPromotableIntegerType()) { if (RetTy->isSignedIntegerType()) { FuncAttrs |= llvm::ParamAttr::SExt; } else if (RetTy->isUnsignedIntegerType()) { FuncAttrs |= llvm::ParamAttr::ZExt; } } break; case ABIArgInfo::StructRet: PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, llvm::ParamAttr::StructRet| llvm::ParamAttr::NoAlias)); ++Index; break; case ABIArgInfo::Coerce: break; case ABIArgInfo::ByVal: case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); } if (FuncAttrs) PAL.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs)); for (++begin; begin != end; ++begin) { QualType ParamType = *begin; unsigned ParamAttrs = 0; ABIArgInfo AI = getABIArgumentInfo(ParamType, getContext()); switch (AI.getKind()) { case ABIArgInfo::StructRet: case ABIArgInfo::Coerce: assert(0 && "Invalid ABI kind for non-return argument"); case ABIArgInfo::ByVal: ParamAttrs |= llvm::ParamAttr::ByVal; assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled"); break; case ABIArgInfo::Default: if (ParamType->isPromotableIntegerType()) { if (ParamType->isSignedIntegerType()) { ParamAttrs |= llvm::ParamAttr::SExt; } else if (ParamType->isUnsignedIntegerType()) { ParamAttrs |= llvm::ParamAttr::ZExt; } } break; case ABIArgInfo::Expand: { std::vector Tys; // FIXME: This is rather inefficient. Do we ever actually need // to do anything here? The result should be just reconstructed // on the other side, so extension should be a non-issue. getTypes().GetExpandedTypes(ParamType, Tys); Index += Tys.size(); continue; } } if (ParamAttrs) PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, ParamAttrs)); ++Index; } } void CodeGenFunction::EmitFunctionProlog(llvm::Function *Fn, QualType RetTy, const FunctionArgList &Args) { // Emit allocs for param decls. Give the LLVM Argument nodes names. llvm::Function::arg_iterator AI = Fn->arg_begin(); // Name the struct return argument. if (CGM.ReturnTypeUsesSret(RetTy)) { AI->setName("agg.result"); ++AI; } for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); i != e; ++i) { const VarDecl *Arg = i->first; QualType Ty = i->second; ABIArgInfo ArgI = getABIArgumentInfo(Ty, getContext()); switch (ArgI.getKind()) { case ABIArgInfo::ByVal: case ABIArgInfo::Default: { assert(AI != Fn->arg_end() && "Argument mismatch!"); llvm::Value* V = AI; if (!getContext().typesAreCompatible(Ty, Arg->getType())) { // This must be a promotion, for something like // "void a(x) short x; {..." V = EmitScalarConversion(V, Ty, Arg->getType()); } EmitParmDecl(*Arg, V); break; } case ABIArgInfo::Expand: { // If this was structure was expand into multiple arguments then // we need to create a temporary and reconstruct it from the // arguments. std::string Name(Arg->getName()); llvm::Value *Temp = CreateTempAlloca(ConvertType(Ty), (Name + ".addr").c_str()); // FIXME: What are the right qualifiers here? llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI); EmitParmDecl(*Arg, Temp); // Name the arguments used in expansion and increment AI. unsigned Index = 0; for (; AI != End; ++AI, ++Index) AI->setName(Name + "." + llvm::utostr(Index)); continue; } case ABIArgInfo::Coerce: case ABIArgInfo::StructRet: assert(0 && "Invalid ABI kind for non-return argument"); } ++AI; } assert(AI == Fn->arg_end() && "Argument mismatch!"); } void CodeGenFunction::EmitFunctionEpilog(QualType RetTy, llvm::Value *ReturnValue) { llvm::Value *RV = 0; // Functions with no result always return void. if (ReturnValue) { ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext()); switch (RetAI.getKind()) { case ABIArgInfo::StructRet: EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); break; case ABIArgInfo::Default: RV = Builder.CreateLoad(ReturnValue); break; case ABIArgInfo::Coerce: { const llvm::Type *CoerceToPTy = llvm::PointerType::getUnqual(RetAI.getCoerceToType()); RV = Builder.CreateLoad(Builder.CreateBitCast(ReturnValue, CoerceToPTy)); break; } case ABIArgInfo::ByVal: case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); } } if (RV) { Builder.CreateRet(RV); } else { Builder.CreateRetVoid(); } } RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType RetTy, const CallArgList &CallArgs) { llvm::SmallVector Args; // Handle struct-return functions by passing a pointer to the // location that we would like to return into. ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext()); switch (RetAI.getKind()) { case ABIArgInfo::StructRet: // Create a temporary alloca to hold the result of the call. :( Args.push_back(CreateTempAlloca(ConvertType(RetTy))); break; case ABIArgInfo::Default: case ABIArgInfo::Coerce: break; case ABIArgInfo::ByVal: case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); } for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); I != E; ++I) { ABIArgInfo ArgInfo = getABIArgumentInfo(I->second, getContext()); RValue RV = I->first; switch (ArgInfo.getKind()) { case ABIArgInfo::ByVal: // Default is byval case ABIArgInfo::Default: if (RV.isScalar()) { Args.push_back(RV.getScalarVal()); } else if (RV.isComplex()) { // Make a temporary alloca to pass the argument. Args.push_back(CreateTempAlloca(ConvertType(I->second))); StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); } else { Args.push_back(RV.getAggregateAddr()); } break; case ABIArgInfo::StructRet: case ABIArgInfo::Coerce: assert(0 && "Invalid ABI kind for non-return argument"); break; case ABIArgInfo::Expand: ExpandTypeToArgs(I->second, RV, Args); break; } } llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size()); CGCallInfo CallInfo(RetTy, CallArgs); // FIXME: Provide TargetDecl so nounwind, noreturn, etc, etc get set. CodeGen::ParamAttrListType ParamAttrList; CGM.ConstructParamAttrList(0, CallInfo.argtypes_begin(), CallInfo.argtypes_end(), ParamAttrList); CI->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(), ParamAttrList.size())); if (const llvm::Function *F = dyn_cast(Callee)) CI->setCallingConv(F->getCallingConv()); if (CI->getType() != llvm::Type::VoidTy) CI->setName("call"); switch (RetAI.getKind()) { case ABIArgInfo::StructRet: if (RetTy->isAnyComplexType()) return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); else // Struct return. return RValue::getAggregate(Args[0]); case ABIArgInfo::Default: return RValue::get(RetTy->isVoidType() ? 0 : CI); case ABIArgInfo::Coerce: { const llvm::Type *CoerceToPTy = llvm::PointerType::getUnqual(RetAI.getCoerceToType()); llvm::Value *V = CreateTempAlloca(ConvertType(RetTy), "tmp"); Builder.CreateStore(CI, Builder.CreateBitCast(V, CoerceToPTy)); return RValue::getAggregate(V); } case ABIArgInfo::ByVal: case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); } assert(0 && "Unhandled ABIArgInfo::Kind"); return RValue::get(0); }