//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for inline asm statements. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/AST/TypeLoc.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" using namespace clang; using namespace sema; /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently /// ignore "noop" casts in places where an lvalue is required by an inline asm. /// We emulate this behavior when -fheinous-gnu-extensions is specified, but /// provide a strong guidance to not use it. /// /// This method checks to see if the argument is an acceptable l-value and /// returns false if it is a case we can handle. static bool CheckAsmLValue(const Expr *E, Sema &S) { // Type dependent expressions will be checked during instantiation. if (E->isTypeDependent()) return false; if (E->isLValue()) return false; // Cool, this is an lvalue. // Okay, this is not an lvalue, but perhaps it is the result of a cast that we // are supposed to allow. const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); if (E != E2 && E2->isLValue()) { if (!S.getLangOpts().HeinousExtensions) S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) << E->getSourceRange(); else S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) << E->getSourceRange(); // Accept, even if we emitted an error diagnostic. return false; } // None of the above, just randomly invalid non-lvalue. return true; } /// isOperandMentioned - Return true if the specified operand # is mentioned /// anywhere in the decomposed asm string. static bool isOperandMentioned(unsigned OpNo, ArrayRef AsmStrPieces) { for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; if (!Piece.isOperand()) continue; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (Piece.getOperandNo() == OpNo) return true; } return false; } StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg constraints, MultiExprArg exprs, Expr *asmString, MultiExprArg clobbers, SourceLocation RParenLoc) { unsigned NumClobbers = clobbers.size(); StringLiteral **Constraints = reinterpret_cast(constraints.get()); Expr **Exprs = exprs.get(); StringLiteral *AsmString = cast(asmString); StringLiteral **Clobbers = reinterpret_cast(clobbers.get()); SmallVector OutputConstraintInfos; // The parser verifies that there is a string literal here. if (!AsmString->isAscii()) return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) << AsmString->getSourceRange()); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef OutputName; if (Names[i]) OutputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); if (!Context.getTargetInfo().validateOutputConstraint(Info)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_output_constraint) << Info.getConstraintStr()); // Check that the output exprs are valid lvalues. Expr *OutputExpr = Exprs[i]; if (CheckAsmLValue(OutputExpr, *this)) { return StmtError(Diag(OutputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_output) << OutputExpr->getSourceRange()); } OutputConstraintInfos.push_back(Info); } SmallVector InputConstraintInfos; for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef InputName; if (Names[i]) InputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), NumOutputs, Info)) { return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_input_constraint) << Info.getConstraintStr()); } Expr *InputExpr = Exprs[i]; // Only allow void types for memory constraints. if (Info.allowsMemory() && !Info.allowsRegister()) { if (CheckAsmLValue(InputExpr, *this)) return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_input) << Info.getConstraintStr() << InputExpr->getSourceRange()); } if (Info.allowsRegister()) { if (InputExpr->getType()->isVoidType()) { return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_type_in_input) << InputExpr->getType() << Info.getConstraintStr() << InputExpr->getSourceRange()); } } ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); if (Result.isInvalid()) return StmtError(); Exprs[i] = Result.take(); InputConstraintInfos.push_back(Info); } // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef Clobber = Literal->getString(); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_unknown_register_name) << Clobber); } AsmStmt *NS = new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, NumClobbers, Clobbers, RParenLoc); // Validate the asm string, ensuring it makes sense given the operands we // have. SmallVector Pieces; unsigned DiagOffs; if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) << AsmString->getSourceRange(); return StmtError(); } // Validate tied input operands for type mismatches. for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; // If this is a tied constraint, verify that the output and input have // either exactly the same type, or that they are int/ptr operands with the // same size (int/long, int*/long, are ok etc). if (!Info.hasTiedOperand()) continue; unsigned TiedTo = Info.getTiedOperand(); unsigned InputOpNo = i+NumOutputs; Expr *OutputExpr = Exprs[TiedTo]; Expr *InputExpr = Exprs[InputOpNo]; if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) continue; QualType InTy = InputExpr->getType(); QualType OutTy = OutputExpr->getType(); if (Context.hasSameType(InTy, OutTy)) continue; // All types can be tied to themselves. // Decide if the input and output are in the same domain (integer/ptr or // floating point. enum AsmDomain { AD_Int, AD_FP, AD_Other } InputDomain, OutputDomain; if (InTy->isIntegerType() || InTy->isPointerType()) InputDomain = AD_Int; else if (InTy->isRealFloatingType()) InputDomain = AD_FP; else InputDomain = AD_Other; if (OutTy->isIntegerType() || OutTy->isPointerType()) OutputDomain = AD_Int; else if (OutTy->isRealFloatingType()) OutputDomain = AD_FP; else OutputDomain = AD_Other; // They are ok if they are the same size and in the same domain. This // allows tying things like: // void* to int* // void* to int if they are the same size. // double to long double if they are the same size. // uint64_t OutSize = Context.getTypeSize(OutTy); uint64_t InSize = Context.getTypeSize(InTy); if (OutSize == InSize && InputDomain == OutputDomain && InputDomain != AD_Other) continue; // If the smaller input/output operand is not mentioned in the asm string, // then we can promote the smaller one to a larger input and the asm string // won't notice. bool SmallerValueMentioned = false; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (isOperandMentioned(InputOpNo, Pieces)) { // This is a use in the asm string of the smaller operand. Since we // codegen this by promoting to a wider value, the asm will get printed // "wrong". SmallerValueMentioned |= InSize < OutSize; } if (isOperandMentioned(TiedTo, Pieces)) { // If this is a reference to the output, and if the output is the larger // value, then it's ok because we'll promote the input to the larger type. SmallerValueMentioned |= OutSize < InSize; } // If the smaller value wasn't mentioned in the asm string, and if the // output was a register, just extend the shorter one to the size of the // larger one. if (!SmallerValueMentioned && InputDomain != AD_Other && OutputConstraintInfos[TiedTo].allowsRegister()) continue; // Either both of the operands were mentioned or the smaller one was // mentioned. One more special case that we'll allow: if the tied input is // integer, unmentioned, and is a constant, then we'll allow truncating it // down to the size of the destination. if (InputDomain == AD_Int && OutputDomain == AD_Int && !isOperandMentioned(InputOpNo, Pieces) && InputExpr->isEvaluatable(Context)) { CastKind castKind = (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); Exprs[InputOpNo] = InputExpr; NS->setInputExpr(i, InputExpr); continue; } Diag(InputExpr->getLocStart(), diag::err_asm_tying_incompatible_types) << InTy << OutTy << OutputExpr->getSourceRange() << InputExpr->getSourceRange(); return StmtError(); } return Owned(NS); } // isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These // require special handling. static bool isMSAsmKeyword(StringRef Name) { bool Ret = llvm::StringSwitch(Name) .Cases("EVEN", "ALIGN", true) // Alignment directives. .Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes. .Case("_emit", true) // _emit Pseudoinstruction. .Default(false); return Ret; } static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { StringRef Asm; SmallString<512> TokenBuf; TokenBuf.resize(512); bool StringInvalid = false; Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); assert (!StringInvalid && "Expected valid string!"); return Asm; } static void patchMSAsmStrings(Sema &SemaRef, bool &IsSimple, SourceLocation AsmLoc, ArrayRef AsmToks, const TargetInfo &TI, std::vector &AsmRegs, std::vector &AsmNames, std::vector &AsmStrings) { assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); // Assume simple asm stmt until we parse a non-register identifer (or we just // need to bail gracefully). IsSimple = true; SmallString<512> Asm; unsigned NumAsmStrings = 0; for (unsigned i = 0, e = AsmToks.size(); i != e; ++i) { // Determine if this should be considered a new asm. bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() || AsmToks[i].is(tok::kw_asm); // Emit the previous asm string. if (i && isNewAsm) { AsmStrings[NumAsmStrings++] = Asm.c_str(); if (AsmToks[i].is(tok::kw_asm)) { ++i; // Skip __asm assert (i != e && "Expected another token."); } } // Start a new asm string with the opcode. if (isNewAsm) { AsmRegs[NumAsmStrings].resize(AsmToks.size()); AsmNames[NumAsmStrings].resize(AsmToks.size()); StringRef Piece = AsmToks[i].getIdentifierInfo()->getName(); // MS-style inline asm keywords require special handling. if (isMSAsmKeyword(Piece)) IsSimple = false; // TODO: Verify this is a valid opcode. Asm = Piece; continue; } if (i && AsmToks[i].hasLeadingSpace()) Asm += ' '; // Check the operand(s). switch (AsmToks[i].getKind()) { default: IsSimple = false; Asm += getSpelling(SemaRef, AsmToks[i]); break; case tok::comma: Asm += ","; break; case tok::colon: Asm += ":"; break; case tok::l_square: Asm += "["; break; case tok::r_square: Asm += "]"; break; case tok::l_brace: Asm += "{"; break; case tok::r_brace: Asm += "}"; break; case tok::numeric_constant: Asm += getSpelling(SemaRef, AsmToks[i]); break; case tok::identifier: { IdentifierInfo *II = AsmToks[i].getIdentifierInfo(); StringRef Name = II->getName(); // Valid register? if (TI.isValidGCCRegisterName(Name)) { AsmRegs[NumAsmStrings].set(i); Asm += Name; break; } IsSimple = false; // MS-style inline asm keywords require special handling. if (isMSAsmKeyword(Name)) { IsSimple = false; Asm += Name; break; } // Lookup the identifier. // TODO: Someone with more experience with clang should verify this the // proper way of doing a symbol lookup. DeclarationName DeclName(II); Scope *CurScope = SemaRef.getCurScope(); LookupResult R(SemaRef, DeclName, AsmLoc, Sema::LookupOrdinaryName); if (!SemaRef.LookupName(R, CurScope, false/*AllowBuiltinCreation*/)) break; assert (R.isSingleResult() && "Expected a single result?!"); NamedDecl *Decl = R.getFoundDecl(); switch (Decl->getKind()) { default: assert(0 && "Unknown decl kind."); break; case Decl::Var: { case Decl::ParmVar: AsmNames[NumAsmStrings].set(i); VarDecl *Var = cast(Decl); QualType Ty = Var->getType(); (void)Ty; // Avoid warning. // TODO: Patch identifier with valid operand. One potential idea is to // probe the backend with type information to guess the possible // operand. Asm += getSpelling(SemaRef, AsmToks[i]); break; } } break; } } } // Emit the final (and possibly only) asm string. AsmStrings[NumAsmStrings] = Asm.c_str(); } // Break the AsmSting into pieces. static void buildMSAsmPieces(StringRef Asm, std::vector &Pieces) { std::pair Split = Asm.split(' '); // Mnemonic Pieces.push_back(Split.first); Asm = Split.second; // Operands while (!Asm.empty()) { Split = Asm.split(", "); Pieces.push_back(Split.first); Asm = Split.second; } } // Build the unmodified MSAsmString. static std::string buildMSAsmString(Sema &SemaRef, ArrayRef AsmToks, std::vector &AsmStrings) { assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); SmallString<512> Res; SmallString<512> Asm; for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() || AsmToks[i].is(tok::kw_asm); if (isNewAsm) { if (i) { AsmStrings.push_back(Asm.c_str()); Res += Asm; Asm.clear(); Res += '\n'; } if (AsmToks[i].is(tok::kw_asm)) { i++; // Skip __asm assert (i != e && "Expected another token"); } } if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) Asm += ' '; Asm += getSpelling(SemaRef, AsmToks[i]); } AsmStrings.push_back(Asm.c_str()); Res += Asm; return Res.c_str(); } StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, SourceLocation EndLoc) { // MS-style inline assembly is not fully supported, so emit a warning. Diag(AsmLoc, diag::warn_unsupported_msasm); SmallVector Clobbers; std::set ClobberRegs; SmallVector Inputs; SmallVector Outputs; // Empty asm statements don't need to instantiate the AsmParser, etc. if (AsmToks.empty()) { StringRef AsmString; MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, /*IsVolatile*/ true, AsmToks, Inputs, Outputs, AsmString, Clobbers, EndLoc); return Owned(NS); } unsigned NumAsmStrings; std::vector AsmStrings; std::string AsmString = buildMSAsmString(*this, AsmToks, AsmStrings); NumAsmStrings = AsmStrings.size(); std::vector > Pieces; Pieces.resize(NumAsmStrings); for (unsigned i = 0; i != NumAsmStrings; ++i) buildMSAsmPieces(AsmStrings[i], Pieces[i]); bool IsSimple; std::vector Regs; std::vector Names; std::vector PatchedAsmStrings; Regs.resize(NumAsmStrings); Names.resize(NumAsmStrings); PatchedAsmStrings.resize(NumAsmStrings); // Rewrite operands to appease the AsmParser. patchMSAsmStrings(*this, IsSimple, AsmLoc, AsmToks, Context.getTargetInfo(), Regs, Names, PatchedAsmStrings); // patchMSAsmStrings doesn't correctly patch non-simple asm statements. if (!IsSimple) { MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, /*IsVolatile*/ true, AsmToks, Inputs, Outputs, AsmString, Clobbers, EndLoc); return Owned(NS); } // Initialize targets and assembly printers/parsers. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllAsmParsers(); // Get the target specific parser. std::string Error; const std::string &TT = Context.getTargetInfo().getTriple().getTriple(); const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); OwningPtr MAI(TheTarget->createMCAsmInfo(TT)); OwningPtr MRI(TheTarget->createMCRegInfo(TT)); OwningPtr MOFI(new llvm::MCObjectFileInfo()); OwningPtr STI(TheTarget->createMCSubtargetInfo(TT, "", "")); for (unsigned i = 0, e = PatchedAsmStrings.size(); i != e; ++i) { llvm::SourceMgr SrcMgr; llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(PatchedAsmStrings[i], ""); // Tell SrcMgr about this buffer, which is what the parser will pick up. SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); OwningPtr Str(createNullStreamer(Ctx)); OwningPtr Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); OwningPtr TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); // Change to the Intel dialect. Parser->setAssemblerDialect(1); Parser->setTargetParser(*TargetParser.get()); // Prime the lexer. Parser->Lex(); // Parse the opcode. StringRef IDVal; Parser->ParseIdentifier(IDVal); // Canonicalize the opcode to lower case. SmallString<128> Opcode; for (unsigned i = 0, e = IDVal.size(); i != e; ++i) Opcode.push_back(tolower(IDVal[i])); // Parse the operands. llvm::SMLoc IDLoc; SmallVector Operands; bool HadError = TargetParser->ParseInstruction(Opcode.str(), IDLoc, Operands); assert (!HadError && "Unexpected error parsing instruction"); // Match the MCInstr. unsigned ErrorInfo; SmallVector Instrs; HadError = TargetParser->MatchInstruction(IDLoc, Operands, Instrs, ErrorInfo, /*matchingInlineAsm*/ true); assert (!HadError && "Unexpected error matching instruction"); assert ((Instrs.size() == 1) && "Expected only a single instruction."); // Get the instruction descriptor. llvm::MCInst Inst = Instrs[0]; const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode()); llvm::MCInstPrinter *IP = TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); // Build the list of clobbers. for (unsigned i = 0, e = Desc.getNumDefs(); i != e; ++i) { const llvm::MCOperand &Op = Inst.getOperand(i); if (!Op.isReg()) continue; std::string Reg; llvm::raw_string_ostream OS(Reg); IP->printRegName(OS, Op.getReg()); StringRef Clobber(OS.str()); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) << Clobber); ClobberRegs.insert(Reg); } } for (std::set::iterator I = ClobberRegs.begin(), E = ClobberRegs.end(); I != E; ++I) Clobbers.push_back(*I); MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, /*IsVolatile*/ true, AsmToks, Inputs, Outputs, AsmString, Clobbers, EndLoc); return Owned(NS); }