//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "CGCall.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "llvm/ParameterAttributes.h" using namespace clang; using namespace CodeGen; /***/ // FIXME: Use iterator and sidestep silly type array creation. CGFunctionInfo::CGFunctionInfo(const FunctionTypeNoProto *FTNP) : IsVariadic(true) { ArgTypes.push_back(FTNP->getResultType()); } CGFunctionInfo::CGFunctionInfo(const FunctionTypeProto *FTP) : IsVariadic(FTP->isVariadic()) { ArgTypes.push_back(FTP->getResultType()); for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) ArgTypes.push_back(FTP->getArgType(i)); } // FIXME: Is there really any reason to have this still? CGFunctionInfo::CGFunctionInfo(const FunctionDecl *FD) { const FunctionType *FTy = FD->getType()->getAsFunctionType(); const FunctionTypeProto *FTP = dyn_cast(FTy); ArgTypes.push_back(FTy->getResultType()); if (FTP) { IsVariadic = FTP->isVariadic(); for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) ArgTypes.push_back(FTP->getArgType(i)); } else { IsVariadic = true; } } CGFunctionInfo::CGFunctionInfo(const ObjCMethodDecl *MD, const ASTContext &Context) : IsVariadic(MD->isVariadic()) { ArgTypes.push_back(MD->getResultType()); ArgTypes.push_back(MD->getSelfDecl()->getType()); ArgTypes.push_back(Context.getObjCSelType()); for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), e = MD->param_end(); i != e; ++i) ArgTypes.push_back((*i)->getType()); } ArgTypeIterator CGFunctionInfo::argtypes_begin() const { return ArgTypes.begin(); } ArgTypeIterator CGFunctionInfo::argtypes_end() const { return ArgTypes.end(); } /***/ CGCallInfo::CGCallInfo(QualType _ResultType, const CallArgList &_Args) { ArgTypes.push_back(_ResultType); for (CallArgList::const_iterator i = _Args.begin(), e = _Args.end(); i!=e; ++i) ArgTypes.push_back(i->second); } ArgTypeIterator CGCallInfo::argtypes_begin() const { return ArgTypes.begin(); } ArgTypeIterator CGCallInfo::argtypes_end() const { return ArgTypes.end(); } /***/ class ABIArgInfo { public: enum Kind { Default, StructRet, // Only valid for struct return types Coerce // Only valid for return types }; private: Kind TheKind; QualType TypeData; ABIArgInfo(Kind K, QualType TD) : TheKind(K), TypeData(TD) {} public: static ABIArgInfo getDefault() { return ABIArgInfo(Default, QualType()); } static ABIArgInfo getStructRet() { return ABIArgInfo(StructRet, QualType()); } static ABIArgInfo getCoerce(QualType T) { return ABIArgInfo(Coerce, T); } Kind getKind() const { return TheKind; } bool isDefault() const { return TheKind == Default; } bool isStructRet() const { return TheKind == StructRet; } bool isCoerce() const { return TheKind == Coerce; } // Coerce accessors QualType getCoerceToType() const { assert(TheKind == Coerce && "Invalid kind!"); return TypeData; } }; /***/ static ABIArgInfo classifyReturnType(QualType RetTy) { if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { return ABIArgInfo::getStructRet(); } else { return ABIArgInfo::getDefault(); } } /***/ const llvm::FunctionType * CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { std::vector ArgTys; const llvm::Type *ResultType = 0; ArgTypeIterator begin = FI.argtypes_begin(), end = FI.argtypes_end(); QualType RetTy = *begin; ABIArgInfo RetAI = classifyReturnType(RetTy); switch (RetAI.getKind()) { case ABIArgInfo::Default: if (RetTy->isVoidType()) { ResultType = llvm::Type::VoidTy; } else { ResultType = ConvertTypeRecursive(RetTy); } break; case ABIArgInfo::StructRet: { ResultType = llvm::Type::VoidTy; const llvm::Type *STy = ConvertTypeRecursive(RetTy); ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); break; } case ABIArgInfo::Coerce: ResultType = llvm::Type::VoidTy; ArgTys.push_back(ConvertTypeRecursive(RetAI.getCoerceToType())); break; } for (++begin; begin != end; ++begin) { const llvm::Type *Ty = ConvertTypeRecursive(*begin); if (Ty->isSingleValueType()) ArgTys.push_back(Ty); else // byval arguments are always on the stack, which is addr space #0. ArgTys.push_back(llvm::PointerType::getUnqual(Ty)); } return llvm::FunctionType::get(ResultType, ArgTys, FI.isVariadic()); } bool CodeGenModule::ReturnTypeUsesSret(QualType RetTy) { return classifyReturnType(RetTy).isStructRet(); } void CodeGenModule::ConstructParamAttrList(const Decl *TargetDecl, ArgTypeIterator begin, ArgTypeIterator end, ParamAttrListType &PAL) { unsigned FuncAttrs = 0; if (TargetDecl) { if (TargetDecl->getAttr()) FuncAttrs |= llvm::ParamAttr::NoUnwind; if (TargetDecl->getAttr()) FuncAttrs |= llvm::ParamAttr::NoReturn; } QualType RetTy = *begin; unsigned Index = 1; ABIArgInfo RetAI = classifyReturnType(RetTy); switch (RetAI.getKind()) { case ABIArgInfo::Default: if (RetTy->isPromotableIntegerType()) { if (RetTy->isSignedIntegerType()) { FuncAttrs |= llvm::ParamAttr::SExt; } else if (RetTy->isUnsignedIntegerType()) { FuncAttrs |= llvm::ParamAttr::ZExt; } } break; case ABIArgInfo::StructRet: PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, llvm::ParamAttr::StructRet)); ++Index; break; case ABIArgInfo::Coerce: assert(0 && "FIXME: ABIArgInfo::Coerce not handled\n"); break; } if (FuncAttrs) PAL.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs)); for (++begin; begin != end; ++begin, ++Index) { QualType ParamType = *begin; unsigned ParamAttrs = 0; if (ParamType->isRecordType()) ParamAttrs |= llvm::ParamAttr::ByVal; if (ParamType->isPromotableIntegerType()) { if (ParamType->isSignedIntegerType()) { ParamAttrs |= llvm::ParamAttr::SExt; } else if (ParamType->isUnsignedIntegerType()) { ParamAttrs |= llvm::ParamAttr::ZExt; } } if (ParamAttrs) PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, ParamAttrs)); } } void CodeGenFunction::EmitFunctionProlog(llvm::Function *Fn, QualType RetTy, const FunctionArgList &Args) { // Emit allocs for param decls. Give the LLVM Argument nodes names. llvm::Function::arg_iterator AI = Fn->arg_begin(); // Name the struct return argument. if (CGM.ReturnTypeUsesSret(RetTy)) { AI->setName("agg.result"); ++AI; } for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); i != e; ++i, ++AI) { const VarDecl *Arg = i->first; QualType T = i->second; assert(AI != Fn->arg_end() && "Argument mismatch!"); llvm::Value* V = AI; if (!getContext().typesAreCompatible(T, Arg->getType())) { // This must be a promotion, for something like // "void a(x) short x; {..." V = EmitScalarConversion(V, T, Arg->getType()); } EmitParmDecl(*Arg, V); } assert(AI == Fn->arg_end() && "Argument mismatch!"); } void CodeGenFunction::EmitFunctionEpilog(QualType RetTy, llvm::Value *ReturnValue) { llvm::Value *RV = 0; // Functions with no result always return void. if (ReturnValue) { ABIArgInfo RetAI = classifyReturnType(RetTy); switch (RetAI.getKind()) { case ABIArgInfo::StructRet: EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); break; case ABIArgInfo::Default: RV = Builder.CreateLoad(ReturnValue); break; case ABIArgInfo::Coerce: assert(0 && "FIXME: ABIArgInfo::Coerce not handled\n"); break; } } if (RV) { Builder.CreateRet(RV); } else { Builder.CreateRetVoid(); } } RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType RetTy, const CallArgList &CallArgs) { // FIXME: Factor out code to load from args into locals into target. llvm::SmallVector Args; llvm::Value *TempArg0 = 0; // Handle struct-return functions by passing a pointer to the // location that we would like to return into. ABIArgInfo RetAI = classifyReturnType(RetTy); switch (RetAI.getKind()) { case ABIArgInfo::StructRet: // Create a temporary alloca to hold the result of the call. :( TempArg0 = CreateTempAlloca(ConvertType(RetTy)); Args.push_back(TempArg0); break; case ABIArgInfo::Default: break; case ABIArgInfo::Coerce: assert(0 && "FIXME: ABIArgInfo::Coerce not handled\n"); break; } for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); I != E; ++I) { RValue RV = I->first; if (RV.isScalar()) { Args.push_back(RV.getScalarVal()); } else if (RV.isComplex()) { // Make a temporary alloca to pass the argument. Args.push_back(CreateTempAlloca(ConvertType(I->second))); StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); } else { Args.push_back(RV.getAggregateAddr()); } } llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size()); CGCallInfo CallInfo(RetTy, CallArgs); // FIXME: Provide TargetDecl so nounwind, noreturn, etc, etc get set. CodeGen::ParamAttrListType ParamAttrList; CGM.ConstructParamAttrList(0, CallInfo.argtypes_begin(), CallInfo.argtypes_end(), ParamAttrList); CI->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(), ParamAttrList.size())); if (const llvm::Function *F = dyn_cast(Callee)) CI->setCallingConv(F->getCallingConv()); if (CI->getType() != llvm::Type::VoidTy) CI->setName("call"); switch (RetAI.getKind()) { case ABIArgInfo::StructRet: if (RetTy->isAnyComplexType()) return RValue::getComplex(LoadComplexFromAddr(TempArg0, false)); else // Struct return. return RValue::getAggregate(TempArg0); case ABIArgInfo::Default: return RValue::get(RetTy->isVoidType() ? 0 : CI); case ABIArgInfo::Coerce: assert(0 && "FIXME: ABIArgInfo::Coerce not handled\n"); return RValue::get(0); } assert(0 && "Unhandled ABIArgInfo::Kind"); return RValue::get(0); }