//===--- CheckExprLifetime.cpp --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "CheckExprLifetime.h" #include "clang/AST/Decl.h" #include "clang/AST/Expr.h" #include "clang/AST/Type.h" #include "clang/Basic/DiagnosticSema.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Sema.h" #include "llvm/ADT/PointerIntPair.h" namespace clang::sema { namespace { enum LifetimeKind { /// The lifetime of a temporary bound to this entity ends at the end of the /// full-expression, and that's (probably) fine. LK_FullExpression, /// The lifetime of a temporary bound to this entity is extended to the /// lifeitme of the entity itself. LK_Extended, /// The lifetime of a temporary bound to this entity probably ends too soon, /// because the entity is allocated in a new-expression. LK_New, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity is a return object. LK_Return, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity passed to a musttail function call. LK_MustTail, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity is the result of a statement expression. LK_StmtExprResult, /// This is a mem-initializer: if it would extend a temporary (other than via /// a default member initializer), the program is ill-formed. LK_MemInitializer, /// The lifetime of a temporary bound to this entity may end too soon, /// because the entity is a pointer and we assign the address of a temporary /// object to it. LK_Assignment, /// The lifetime of a temporary bound to this entity may end too soon, /// because the entity may capture the reference to a temporary object. LK_LifetimeCapture, }; using LifetimeResult = llvm::PointerIntPair; } // namespace /// Determine the declaration which an initialized entity ultimately refers to, /// for the purpose of lifetime-extending a temporary bound to a reference in /// the initialization of \p Entity. static LifetimeResult getEntityLifetime(const InitializedEntity *Entity, const InitializedEntity *InitField = nullptr) { // C++11 [class.temporary]p5: switch (Entity->getKind()) { case InitializedEntity::EK_Variable: // The temporary [...] persists for the lifetime of the reference return {Entity, LK_Extended}; case InitializedEntity::EK_Member: // For subobjects, we look at the complete object. if (Entity->getParent()) return getEntityLifetime(Entity->getParent(), Entity); // except: // C++17 [class.base.init]p8: // A temporary expression bound to a reference member in a // mem-initializer is ill-formed. // C++17 [class.base.init]p11: // A temporary expression bound to a reference member from a // default member initializer is ill-formed. // // The context of p11 and its example suggest that it's only the use of a // default member initializer from a constructor that makes the program // ill-formed, not its mere existence, and that it can even be used by // aggregate initialization. return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended : LK_MemInitializer}; case InitializedEntity::EK_Binding: // Per [dcl.decomp]p3, the binding is treated as a variable of reference // type. return {Entity, LK_Extended}; case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: // -- A temporary bound to a reference parameter in a function call // persists until the completion of the full-expression containing // the call. return {nullptr, LK_FullExpression}; case InitializedEntity::EK_TemplateParameter: // FIXME: This will always be ill-formed; should we eagerly diagnose it // here? return {nullptr, LK_FullExpression}; case InitializedEntity::EK_Result: // -- The lifetime of a temporary bound to the returned value in a // function return statement is not extended; the temporary is // destroyed at the end of the full-expression in the return statement. return {nullptr, LK_Return}; case InitializedEntity::EK_StmtExprResult: // FIXME: Should we lifetime-extend through the result of a statement // expression? return {nullptr, LK_StmtExprResult}; case InitializedEntity::EK_New: // -- A temporary bound to a reference in a new-initializer persists // until the completion of the full-expression containing the // new-initializer. return {nullptr, LK_New}; case InitializedEntity::EK_Temporary: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_RelatedResult: // We don't yet know the storage duration of the surrounding temporary. // Assume it's got full-expression duration for now, it will patch up our // storage duration if that's not correct. return {nullptr, LK_FullExpression}; case InitializedEntity::EK_ArrayElement: // For subobjects, we look at the complete object. return getEntityLifetime(Entity->getParent(), InitField); case InitializedEntity::EK_Base: // For subobjects, we look at the complete object. if (Entity->getParent()) return getEntityLifetime(Entity->getParent(), InitField); return {InitField, LK_MemInitializer}; case InitializedEntity::EK_Delegating: // We can reach this case for aggregate initialization in a constructor: // struct A { int &&r; }; // struct B : A { B() : A{0} {} }; // In this case, use the outermost field decl as the context. return {InitField, LK_MemInitializer}; case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_LambdaCapture: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: return {nullptr, LK_FullExpression}; case InitializedEntity::EK_Exception: // FIXME: Can we diagnose lifetime problems with exceptions? return {nullptr, LK_FullExpression}; case InitializedEntity::EK_ParenAggInitMember: // -- A temporary object bound to a reference element of an aggregate of // class type initialized from a parenthesized expression-list // [dcl.init, 9.3] persists until the completion of the full-expression // containing the expression-list. return {nullptr, LK_FullExpression}; } llvm_unreachable("unknown entity kind"); } namespace { enum ReferenceKind { /// Lifetime would be extended by a reference binding to a temporary. RK_ReferenceBinding, /// Lifetime would be extended by a std::initializer_list object binding to /// its backing array. RK_StdInitializerList, }; /// A temporary or local variable. This will be one of: /// * A MaterializeTemporaryExpr. /// * A DeclRefExpr whose declaration is a local. /// * An AddrLabelExpr. /// * A BlockExpr for a block with captures. using Local = Expr *; /// Expressions we stepped over when looking for the local state. Any steps /// that would inhibit lifetime extension or take us out of subexpressions of /// the initializer are included. struct IndirectLocalPathEntry { enum EntryKind { DefaultInit, AddressOf, VarInit, LValToRVal, LifetimeBoundCall, TemporaryCopy, LambdaCaptureInit, MemberExpr, GslReferenceInit, GslPointerInit, GslPointerAssignment, DefaultArg, ParenAggInit, } Kind; Expr *E; union { const Decl *D = nullptr; const LambdaCapture *Capture; }; IndirectLocalPathEntry() {} IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) : Kind(K), E(E), D(D) {} IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) : Kind(K), E(E), Capture(Capture) {} }; using IndirectLocalPath = llvm::SmallVectorImpl; struct RevertToOldSizeRAII { IndirectLocalPath &Path; unsigned OldSize = Path.size(); RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} ~RevertToOldSizeRAII() { Path.resize(OldSize); } }; using LocalVisitor = llvm::function_ref; } // namespace static bool isVarOnPath(const IndirectLocalPath &Path, VarDecl *VD) { for (auto E : Path) if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) return true; return false; } static bool pathContainsInit(const IndirectLocalPath &Path) { return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { return E.Kind == IndirectLocalPathEntry::DefaultInit || E.Kind == IndirectLocalPathEntry::VarInit; }); } static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, Expr *Init, LocalVisitor Visit, bool RevisitSubinits); static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, Expr *Init, ReferenceKind RK, LocalVisitor Visit); template static bool isRecordWithAttr(QualType Type) { auto *RD = Type->getAsCXXRecordDecl(); if (!RD) return false; // Generally, if a primary template class declaration is annotated with an // attribute, all its specializations generated from template instantiations // should inherit the attribute. // // However, since lifetime analysis occurs during parsing, we may encounter // cases where a full definition of the specialization is not required. In // such cases, the specialization declaration remains incomplete and lacks the // attribute. Therefore, we fall back to checking the primary template class. // // Note: it is possible for a specialization declaration to have an attribute // even if the primary template does not. // // FIXME: What if the primary template and explicit specialization // declarations have conflicting attributes? We should consider diagnosing // this scenario. bool Result = RD->hasAttr(); if (auto *CTSD = dyn_cast(RD)) Result |= CTSD->getSpecializedTemplate()->getTemplatedDecl()->hasAttr(); return Result; } // Tells whether the type is annotated with [[gsl::Pointer]]. bool isGLSPointerType(QualType QT) { return isRecordWithAttr(QT); } static bool isPointerLikeType(QualType QT) { return isGLSPointerType(QT) || QT->isPointerType() || QT->isNullPtrType(); } // Decl::isInStdNamespace will return false for iterators in some STL // implementations due to them being defined in a namespace outside of the std // namespace. static bool isInStlNamespace(const Decl *D) { const DeclContext *DC = D->getDeclContext(); if (!DC) return false; if (const auto *ND = dyn_cast(DC)) if (const IdentifierInfo *II = ND->getIdentifier()) { StringRef Name = II->getName(); if (Name.size() >= 2 && Name.front() == '_' && (Name[1] == '_' || isUppercase(Name[1]))) return true; } return DC->isStdNamespace(); } // Returns true if the given Record decl is a form of `GSLOwner` // type, e.g. std::vector, std::optional. static bool isContainerOfPointer(const RecordDecl *Container) { if (const auto *CTSD = dyn_cast_if_present(Container)) { if (!CTSD->hasAttr()) // Container must be a GSL owner type. return false; const auto &TAs = CTSD->getTemplateArgs(); return TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && isPointerLikeType(TAs[0].getAsType()); } return false; } static bool isContainerOfOwner(const RecordDecl *Container) { const auto *CTSD = dyn_cast_if_present(Container); if (!CTSD) return false; if (!CTSD->hasAttr()) // Container must be a GSL owner type. return false; const auto &TAs = CTSD->getTemplateArgs(); return TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && isRecordWithAttr(TAs[0].getAsType()); } // Returns true if the given Record is `std::initializer_list`. static bool isStdInitializerListOfPointer(const RecordDecl *RD) { if (const auto *CTSD = dyn_cast_if_present(RD)) { const auto &TAs = CTSD->getTemplateArgs(); return isInStlNamespace(RD) && RD->getIdentifier() && RD->getName() == "initializer_list" && TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && isPointerLikeType(TAs[0].getAsType()); } return false; } static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { if (auto *Conv = dyn_cast_or_null(Callee)) if (isRecordWithAttr(Conv->getConversionType()) && Callee->getParent()->hasAttr()) return true; if (!isInStlNamespace(Callee->getParent())) return false; if (!isRecordWithAttr( Callee->getFunctionObjectParameterType()) && !isRecordWithAttr(Callee->getFunctionObjectParameterType())) return false; if (isPointerLikeType(Callee->getReturnType())) { if (!Callee->getIdentifier()) return false; return llvm::StringSwitch(Callee->getName()) .Cases("begin", "rbegin", "cbegin", "crbegin", true) .Cases("end", "rend", "cend", "crend", true) .Cases("c_str", "data", "get", true) // Map and set types. .Cases("find", "equal_range", "lower_bound", "upper_bound", true) .Default(false); } if (Callee->getReturnType()->isReferenceType()) { if (!Callee->getIdentifier()) { auto OO = Callee->getOverloadedOperator(); if (!Callee->getParent()->hasAttr()) return false; return OO == OverloadedOperatorKind::OO_Subscript || OO == OverloadedOperatorKind::OO_Star; } return llvm::StringSwitch(Callee->getName()) .Cases("front", "back", "at", "top", "value", true) .Default(false); } return false; } static bool shouldTrackFirstArgument(const FunctionDecl *FD) { if (!FD->getIdentifier() || FD->getNumParams() != 1) return false; const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) return false; if (!RD->hasAttr() && !RD->hasAttr()) return false; if (FD->getReturnType()->isPointerType() || isRecordWithAttr(FD->getReturnType())) { return llvm::StringSwitch(FD->getName()) .Cases("begin", "rbegin", "cbegin", "crbegin", true) .Cases("end", "rend", "cend", "crend", true) .Case("data", true) .Default(false); } if (FD->getReturnType()->isReferenceType()) { return llvm::StringSwitch(FD->getName()) .Cases("get", "any_cast", true) .Default(false); } return false; } // Returns true if the given constructor is a copy-like constructor, such as // `Ctor(Owner&&)` or `Ctor(const Owner&)`. static bool isCopyLikeConstructor(const CXXConstructorDecl *Ctor) { if (!Ctor || Ctor->param_size() != 1) return false; const auto *ParamRefType = Ctor->getParamDecl(0)->getType()->getAs(); if (!ParamRefType) return false; // Check if the first parameter type is "Owner". if (const auto *TST = ParamRefType->getPointeeType()->getAs()) return TST->getTemplateName() .getAsTemplateDecl() ->getTemplatedDecl() ->hasAttr(); return false; } // Returns true if we should perform the GSL analysis on the first argument for // the given constructor. static bool shouldTrackFirstArgumentForConstructor(const CXXConstructExpr *Ctor) { const auto *LHSRecordDecl = Ctor->getConstructor()->getParent(); // Case 1, construct a GSL pointer, e.g. std::string_view // Always inspect when LHS is a pointer. if (LHSRecordDecl->hasAttr()) return true; if (Ctor->getConstructor()->param_empty() || !isContainerOfPointer(LHSRecordDecl)) return false; // Now, the LHS is an Owner type, e.g., std::vector. // // At a high level, we cannot precisely determine what the nested pointer // owns. However, by analyzing the RHS owner type, we can use heuristics to // infer ownership information. These heuristics are designed to be // conservative, minimizing false positives while still providing meaningful // diagnostics. // // While this inference isn't perfect, it helps catch common use-after-free // patterns. auto RHSArgType = Ctor->getArg(0)->getType(); const auto *RHSRD = RHSArgType->getAsRecordDecl(); // LHS is constructed from an intializer_list. // // std::initializer_list is a proxy object that provides access to the backing // array. We perform analysis on it to determine if there are any dangling // temporaries in the backing array. // E.g. std::vector abc = {string()}; if (isStdInitializerListOfPointer(RHSRD)) return true; // RHS must be an owner. if (!isRecordWithAttr(RHSArgType)) return false; // Bail out if the RHS is Owner. // // We cannot reliably determine what the LHS nested pointer owns -- it could // be the entire RHS or the nested pointer in RHS. To avoid false positives, // we skip this case, such as: // std::stack s(std::deque{}); // // TODO: this also has a false negative, it doesn't catch the case like: // std::optional> os = std::vector{} if (isContainerOfPointer(RHSRD)) return false; // Assume that the nested Pointer is constructed from the nested Owner. // E.g. std::optional sv = std::optional(s); if (isContainerOfOwner(RHSRD)) return true; // Now, the LHS is an Owner and the RHS is an Owner, where X is // neither an `Owner` nor a `Pointer`. // // Use the constructor's signature as a hint. If it is a copy-like constructor // `Owner1(Owner2&&)`, we assume that the nested pointer is // constructed from X. In such cases, we do not diagnose, as `X` is not an // owner, e.g. // std::optional sv = std::optional(); if (const auto *PrimaryCtorTemplate = Ctor->getConstructor()->getPrimaryTemplate(); PrimaryCtorTemplate && isCopyLikeConstructor(dyn_cast_if_present( PrimaryCtorTemplate->getTemplatedDecl()))) { return false; } // Assume that the nested pointer is constructed from the whole RHS. // E.g. optional s = std::string(); return true; } // Return true if this is an "normal" assignment operator. // We assume that a normal assignment operator always returns *this, that is, // an lvalue reference that is the same type as the implicit object parameter // (or the LHS for a non-member operator$=). static bool isNormalAssignmentOperator(const FunctionDecl *FD) { OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { QualType RetT = FD->getReturnType(); if (RetT->isLValueReferenceType()) { ASTContext &Ctx = FD->getASTContext(); QualType LHST; auto *MD = dyn_cast(FD); if (MD && MD->isCXXInstanceMember()) LHST = Ctx.getLValueReferenceType(MD->getFunctionObjectParameterType()); else LHST = FD->getParamDecl(0)->getType(); if (Ctx.hasSameType(RetT, LHST)) return true; } } return false; } static const FunctionDecl * getDeclWithMergedLifetimeBoundAttrs(const FunctionDecl *FD) { return FD != nullptr ? FD->getMostRecentDecl() : nullptr; } static const CXXMethodDecl * getDeclWithMergedLifetimeBoundAttrs(const CXXMethodDecl *CMD) { const FunctionDecl *FD = CMD; return cast_if_present( getDeclWithMergedLifetimeBoundAttrs(FD)); } bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { FD = getDeclWithMergedLifetimeBoundAttrs(FD); const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); if (!TSI) return false; // Don't declare this variable in the second operand of the for-statement; // GCC miscompiles that by ending its lifetime before evaluating the // third operand. See gcc.gnu.org/PR86769. AttributedTypeLoc ATL; for (TypeLoc TL = TSI->getTypeLoc(); (ATL = TL.getAsAdjusted()); TL = ATL.getModifiedLoc()) { if (ATL.getAttrAs()) return true; } return isNormalAssignmentOperator(FD); } // Visit lifetimebound or gsl-pointer arguments. static void visitFunctionCallArguments(IndirectLocalPath &Path, Expr *Call, LocalVisitor Visit) { const FunctionDecl *Callee; ArrayRef Args; if (auto *CE = dyn_cast(Call)) { Callee = CE->getDirectCallee(); Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); } else { auto *CCE = cast(Call); Callee = CCE->getConstructor(); Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()); } if (!Callee) return; bool EnableGSLAnalysis = !Callee->getASTContext().getDiagnostics().isIgnored( diag::warn_dangling_lifetime_pointer, SourceLocation()); Expr *ObjectArg = nullptr; if (isa(Call) && Callee->isCXXInstanceMember()) { ObjectArg = Args[0]; Args = Args.slice(1); } else if (auto *MCE = dyn_cast(Call)) { ObjectArg = MCE->getImplicitObjectArgument(); } auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); if (Arg->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, Visit); else visitLocalsRetainedByInitializer(Path, Arg, Visit, true); Path.pop_back(); }; auto VisitGSLPointerArg = [&](const FunctionDecl *Callee, Expr *Arg) { auto ReturnType = Callee->getReturnType(); // Once we initialized a value with a non gsl-owner reference, it can no // longer dangle. if (ReturnType->isReferenceType() && !isRecordWithAttr(ReturnType->getPointeeType())) { for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit || PE.Kind == IndirectLocalPathEntry::LifetimeBoundCall) continue; if (PE.Kind == IndirectLocalPathEntry::GslPointerInit || PE.Kind == IndirectLocalPathEntry::GslPointerAssignment) return; break; } } Path.push_back({ReturnType->isReferenceType() ? IndirectLocalPathEntry::GslReferenceInit : IndirectLocalPathEntry::GslPointerInit, Arg, Callee}); if (Arg->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, Visit); else visitLocalsRetainedByInitializer(Path, Arg, Visit, true); Path.pop_back(); }; bool CheckCoroCall = false; if (const auto *RD = Callee->getReturnType()->getAsRecordDecl()) { CheckCoroCall = RD->hasAttr() && RD->hasAttr() && !Callee->hasAttr(); } if (ObjectArg) { bool CheckCoroObjArg = CheckCoroCall; // Coroutine lambda objects with empty capture list are not lifetimebound. if (auto *LE = dyn_cast(ObjectArg->IgnoreImplicit()); LE && LE->captures().empty()) CheckCoroObjArg = false; // Allow `get_return_object()` as the object param (__promise) is not // lifetimebound. if (Sema::CanBeGetReturnObject(Callee)) CheckCoroObjArg = false; if (implicitObjectParamIsLifetimeBound(Callee) || CheckCoroObjArg) VisitLifetimeBoundArg(Callee, ObjectArg); else if (EnableGSLAnalysis) { if (auto *CME = dyn_cast(Callee); CME && shouldTrackImplicitObjectArg(CME)) VisitGSLPointerArg(Callee, ObjectArg); } } const FunctionDecl *CanonCallee = getDeclWithMergedLifetimeBoundAttrs(Callee); unsigned NP = std::min(Callee->getNumParams(), CanonCallee->getNumParams()); for (unsigned I = 0, N = std::min(NP, Args.size()); I != N; ++I) { Expr *Arg = Args[I]; RevertToOldSizeRAII RAII(Path); if (auto *DAE = dyn_cast(Arg)) { Path.push_back( {IndirectLocalPathEntry::DefaultArg, DAE, DAE->getParam()}); Arg = DAE->getExpr(); } if (CheckCoroCall || CanonCallee->getParamDecl(I)->hasAttr()) VisitLifetimeBoundArg(CanonCallee->getParamDecl(I), Arg); else if (const auto *CaptureAttr = CanonCallee->getParamDecl(I)->getAttr(); CaptureAttr && isa(CanonCallee) && llvm::any_of(CaptureAttr->params(), [](int ArgIdx) { return ArgIdx == LifetimeCaptureByAttr::THIS; })) // `lifetime_capture_by(this)` in a class constructor has the same // semantics as `lifetimebound`: // // struct Foo { // const int& a; // // Equivalent to Foo(const int& t [[clang::lifetimebound]]) // Foo(const int& t [[clang::lifetime_capture_by(this)]]) : a(t) {} // }; // // In the implementation, `lifetime_capture_by` is treated as an alias for // `lifetimebound` and shares the same code path. This implies the emitted // diagnostics will be emitted under `-Wdangling`, not // `-Wdangling-capture`. VisitLifetimeBoundArg(CanonCallee->getParamDecl(I), Arg); else if (EnableGSLAnalysis && I == 0) { // Perform GSL analysis for the first argument if (shouldTrackFirstArgument(CanonCallee)) { VisitGSLPointerArg(CanonCallee, Arg); } else if (auto *Ctor = dyn_cast(Call); Ctor && shouldTrackFirstArgumentForConstructor(Ctor)) { VisitGSLPointerArg(Ctor->getConstructor(), Arg); } } } } /// Visit the locals that would be reachable through a reference bound to the /// glvalue expression \c Init. static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, Expr *Init, ReferenceKind RK, LocalVisitor Visit) { RevertToOldSizeRAII RAII(Path); // Walk past any constructs which we can lifetime-extend across. Expr *Old; do { Old = Init; if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); if (InitListExpr *ILE = dyn_cast(Init)) { // If this is just redundant braces around an initializer, step over it. if (ILE->isTransparent()) Init = ILE->getInit(0); } if (MemberExpr *ME = dyn_cast(Init->IgnoreImpCasts())) Path.push_back( {IndirectLocalPathEntry::MemberExpr, ME, ME->getMemberDecl()}); // Step over any subobject adjustments; we may have a materialized // temporary inside them. Init = const_cast(Init->skipRValueSubobjectAdjustments()); // Per current approach for DR1376, look through casts to reference type // when performing lifetime extension. if (CastExpr *CE = dyn_cast(Init)) if (CE->getSubExpr()->isGLValue()) Init = CE->getSubExpr(); // Per the current approach for DR1299, look through array element access // on array glvalues when performing lifetime extension. if (auto *ASE = dyn_cast(Init)) { Init = ASE->getBase(); auto *ICE = dyn_cast(Init); if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) Init = ICE->getSubExpr(); else // We can't lifetime extend through this but we might still find some // retained temporaries. return visitLocalsRetainedByInitializer(Path, Init, Visit, true); } // Step into CXXDefaultInitExprs so we can diagnose cases where a // constructor inherits one as an implicit mem-initializer. if (auto *DIE = dyn_cast(Init)) { Path.push_back( {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); Init = DIE->getExpr(); } } while (Init != Old); if (auto *MTE = dyn_cast(Init)) { if (Visit(Path, Local(MTE), RK)) visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true); } if (auto *M = dyn_cast(Init)) { // Lifetime of a non-reference type field is same as base object. if (auto *F = dyn_cast(M->getMemberDecl()); F && !F->getType()->isReferenceType()) visitLocalsRetainedByInitializer(Path, M->getBase(), Visit, true); } if (isa(Init)) return visitFunctionCallArguments(Path, Init, Visit); switch (Init->getStmtClass()) { case Stmt::DeclRefExprClass: { // If we find the name of a local non-reference parameter, we could have a // lifetime problem. auto *DRE = cast(Init); auto *VD = dyn_cast(DRE->getDecl()); if (VD && VD->hasLocalStorage() && !DRE->refersToEnclosingVariableOrCapture()) { if (!VD->getType()->isReferenceType()) { Visit(Path, Local(DRE), RK); } else if (isa(DRE->getDecl())) { // The lifetime of a reference parameter is unknown; assume it's OK // for now. break; } else if (VD->getInit() && !isVarOnPath(Path, VD)) { Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), RK_ReferenceBinding, Visit); } } break; } case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is Deref. All others don't resolve to a "name." This includes // handling all sorts of rvalues passed to a unary operator. const UnaryOperator *U = cast(Init); if (U->getOpcode() == UO_Deref) visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); break; } case Stmt::ArraySectionExprClass: { visitLocalsRetainedByInitializer( Path, cast(Init)->getBase(), Visit, true); break; } case Stmt::ConditionalOperatorClass: case Stmt::BinaryConditionalOperatorClass: { auto *C = cast(Init); if (!C->getTrueExpr()->getType()->isVoidType()) visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); if (!C->getFalseExpr()->getType()->isVoidType()) visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); break; } case Stmt::CompoundLiteralExprClass: { if (auto *CLE = dyn_cast(Init)) { if (!CLE->isFileScope()) Visit(Path, Local(CLE), RK); } break; } // FIXME: Visit the left-hand side of an -> or ->*. default: break; } } /// Visit the locals that would be reachable through an object initialized by /// the prvalue expression \c Init. static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, Expr *Init, LocalVisitor Visit, bool RevisitSubinits) { RevertToOldSizeRAII RAII(Path); Expr *Old; do { Old = Init; // Step into CXXDefaultInitExprs so we can diagnose cases where a // constructor inherits one as an implicit mem-initializer. if (auto *DIE = dyn_cast(Init)) { Path.push_back( {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); Init = DIE->getExpr(); } if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); // Dig out the expression which constructs the extended temporary. Init = const_cast(Init->skipRValueSubobjectAdjustments()); if (CXXBindTemporaryExpr *BTE = dyn_cast(Init)) Init = BTE->getSubExpr(); Init = Init->IgnoreParens(); // Step over value-preserving rvalue casts. if (auto *CE = dyn_cast(Init)) { switch (CE->getCastKind()) { case CK_LValueToRValue: // If we can match the lvalue to a const object, we can look at its // initializer. Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); return visitLocalsRetainedByReferenceBinding( Path, Init, RK_ReferenceBinding, [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { if (auto *DRE = dyn_cast(L)) { auto *VD = dyn_cast(DRE->getDecl()); if (VD && VD->getType().isConstQualified() && VD->getInit() && !isVarOnPath(Path, VD)) { Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); } } else if (auto *MTE = dyn_cast(L)) { if (MTE->getType().isConstQualified()) visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true); } return false; }); // We assume that objects can be retained by pointers cast to integers, // but not if the integer is cast to floating-point type or to _Complex. // We assume that casts to 'bool' do not preserve enough information to // retain a local object. case CK_NoOp: case CK_BitCast: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_Dynamic: case CK_ToUnion: case CK_UserDefinedConversion: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_VectorSplat: case CK_IntegralCast: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_AddressSpaceConversion: break; case CK_ArrayToPointerDecay: // Model array-to-pointer decay as taking the address of the array // lvalue. Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); return visitLocalsRetainedByReferenceBinding( Path, CE->getSubExpr(), RK_ReferenceBinding, Visit); default: return; } Init = CE->getSubExpr(); } } while (Old != Init); // C++17 [dcl.init.list]p6: // initializing an initializer_list object from the array extends the // lifetime of the array exactly like binding a reference to a temporary. if (auto *ILE = dyn_cast(Init)) return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), RK_StdInitializerList, Visit); if (InitListExpr *ILE = dyn_cast(Init)) { // We already visited the elements of this initializer list while // performing the initialization. Don't visit them again unless we've // changed the lifetime of the initialized entity. if (!RevisitSubinits) return; if (ILE->isTransparent()) return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, RevisitSubinits); if (ILE->getType()->isArrayType()) { for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, RevisitSubinits); return; } if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { assert(RD->isAggregate() && "aggregate init on non-aggregate"); // If we lifetime-extend a braced initializer which is initializing an // aggregate, and that aggregate contains reference members which are // bound to temporaries, those temporaries are also lifetime-extended. if (RD->isUnion() && ILE->getInitializedFieldInUnion() && ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), RK_ReferenceBinding, Visit); else { unsigned Index = 0; for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, RevisitSubinits); for (const auto *I : RD->fields()) { if (Index >= ILE->getNumInits()) break; if (I->isUnnamedBitField()) continue; Expr *SubInit = ILE->getInit(Index); if (I->getType()->isReferenceType()) visitLocalsRetainedByReferenceBinding(Path, SubInit, RK_ReferenceBinding, Visit); else // This might be either aggregate-initialization of a member or // initialization of a std::initializer_list object. Regardless, // we should recursively lifetime-extend that initializer. visitLocalsRetainedByInitializer(Path, SubInit, Visit, RevisitSubinits); ++Index; } } } return; } // The lifetime of an init-capture is that of the closure object constructed // by a lambda-expression. if (auto *LE = dyn_cast(Init)) { LambdaExpr::capture_iterator CapI = LE->capture_begin(); for (Expr *E : LE->capture_inits()) { assert(CapI != LE->capture_end()); const LambdaCapture &Cap = *CapI++; if (!E) continue; if (Cap.capturesVariable()) Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); if (E->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, Visit); else visitLocalsRetainedByInitializer(Path, E, Visit, true); if (Cap.capturesVariable()) Path.pop_back(); } } // Assume that a copy or move from a temporary references the same objects // that the temporary does. if (auto *CCE = dyn_cast(Init)) { if (CCE->getConstructor()->isCopyOrMoveConstructor()) { if (auto *MTE = dyn_cast(CCE->getArg(0))) { Expr *Arg = MTE->getSubExpr(); Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, CCE->getConstructor()}); visitLocalsRetainedByInitializer(Path, Arg, Visit, true); Path.pop_back(); } } } if (isa(Init) || isa(Init)) return visitFunctionCallArguments(Path, Init, Visit); if (auto *CPE = dyn_cast(Init)) { RevertToOldSizeRAII RAII(Path); Path.push_back({IndirectLocalPathEntry::ParenAggInit, CPE}); for (auto *I : CPE->getInitExprs()) { if (I->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, I, RK_ReferenceBinding, Visit); else visitLocalsRetainedByInitializer(Path, I, Visit, true); } } switch (Init->getStmtClass()) { case Stmt::UnaryOperatorClass: { auto *UO = cast(Init); // If the initializer is the address of a local, we could have a lifetime // problem. if (UO->getOpcode() == UO_AddrOf) { // If this is &rvalue, then it's ill-formed and we have already diagnosed // it. Don't produce a redundant warning about the lifetime of the // temporary. if (isa(UO->getSubExpr())) return; Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), RK_ReferenceBinding, Visit); } break; } case Stmt::BinaryOperatorClass: { // Handle pointer arithmetic. auto *BO = cast(Init); BinaryOperatorKind BOK = BO->getOpcode(); if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) break; if (BO->getLHS()->getType()->isPointerType()) visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); else if (BO->getRHS()->getType()->isPointerType()) visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); break; } case Stmt::ConditionalOperatorClass: case Stmt::BinaryConditionalOperatorClass: { auto *C = cast(Init); // In C++, we can have a throw-expression operand, which has 'void' type // and isn't interesting from a lifetime perspective. if (!C->getTrueExpr()->getType()->isVoidType()) visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); if (!C->getFalseExpr()->getType()->isVoidType()) visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); break; } case Stmt::BlockExprClass: if (cast(Init)->getBlockDecl()->hasCaptures()) { // This is a local block, whose lifetime is that of the function. Visit(Path, Local(cast(Init)), RK_ReferenceBinding); } break; case Stmt::AddrLabelExprClass: // We want to warn if the address of a label would escape the function. Visit(Path, Local(cast(Init)), RK_ReferenceBinding); break; default: break; } } /// Whether a path to an object supports lifetime extension. enum PathLifetimeKind { /// Lifetime-extend along this path. Extend, /// Do not lifetime extend along this path. NoExtend }; /// Determine whether this is an indirect path to a temporary that we are /// supposed to lifetime-extend along. static PathLifetimeKind shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { for (auto Elem : Path) { if (Elem.Kind == IndirectLocalPathEntry::MemberExpr || Elem.Kind == IndirectLocalPathEntry::LambdaCaptureInit) continue; return Elem.Kind == IndirectLocalPathEntry::DefaultInit ? PathLifetimeKind::Extend : PathLifetimeKind::NoExtend; } return PathLifetimeKind::Extend; } /// Find the range for the first interesting entry in the path at or after I. static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, Expr *E) { for (unsigned N = Path.size(); I != N; ++I) { switch (Path[I].Kind) { case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LValToRVal: case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::TemporaryCopy: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslPointerAssignment: case IndirectLocalPathEntry::ParenAggInit: case IndirectLocalPathEntry::MemberExpr: // These exist primarily to mark the path as not permitting or // supporting lifetime extension. break; case IndirectLocalPathEntry::VarInit: if (cast(Path[I].D)->isImplicit()) return SourceRange(); [[fallthrough]]; case IndirectLocalPathEntry::DefaultInit: return Path[I].E->getSourceRange(); case IndirectLocalPathEntry::LambdaCaptureInit: if (!Path[I].Capture->capturesVariable()) continue; return Path[I].E->getSourceRange(); case IndirectLocalPathEntry::DefaultArg: return cast(Path[I].E)->getUsedLocation(); } } return E->getSourceRange(); } static bool pathOnlyHandlesGslPointer(const IndirectLocalPath &Path) { for (const auto &It : llvm::reverse(Path)) { switch (It.Kind) { case IndirectLocalPathEntry::VarInit: case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::MemberExpr: continue; case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerAssignment: return true; default: return false; } } return false; } // Result of analyzing the Path for GSLPointer. enum AnalysisResult { // Path does not correspond to a GSLPointer. NotGSLPointer, // A relevant case was identified. Report, // Stop the entire traversal. Abandon, // Skip this step and continue traversing inner AST nodes. Skip, }; // Analyze cases where a GSLPointer is initialized or assigned from a // temporary owner object. static AnalysisResult analyzePathForGSLPointer(const IndirectLocalPath &Path, Local L, LifetimeKind LK) { if (!pathOnlyHandlesGslPointer(Path)) return NotGSLPointer; // At this point, Path represents a series of operations involving a // GSLPointer, either in the process of initialization or assignment. // Process temporary base objects for MemberExpr cases, e.g. Temp().field. for (const auto &E : Path) { if (E.Kind == IndirectLocalPathEntry::MemberExpr) { // Avoid interfering with the local base object. if (pathContainsInit(Path)) return Abandon; // We are not interested in the temporary base objects of gsl Pointers: // auto p1 = Temp().ptr; // Here p1 might not dangle. // However, we want to diagnose for gsl owner fields: // auto p2 = Temp().owner; // Here p2 is dangling. if (const auto *FD = llvm::dyn_cast_or_null(E.D); FD && !FD->getType()->isReferenceType() && isRecordWithAttr(FD->getType()) && LK != LK_MemInitializer) { return Report; } return Abandon; } } // Note: A LifetimeBoundCall can appear interleaved in this sequence. // For example: // const std::string& Ref(const std::string& a [[clang::lifetimebound]]); // string_view abc = Ref(std::string()); // The "Path" is [GSLPointerInit, LifetimeboundCall], where "L" is the // temporary "std::string()" object. We need to check the return type of the // function with the lifetimebound attribute. if (Path.back().Kind == IndirectLocalPathEntry::LifetimeBoundCall) { // The lifetimebound applies to the implicit object parameter of a method. const FunctionDecl *FD = llvm::dyn_cast_or_null(Path.back().D); // The lifetimebound applies to a function parameter. if (const auto *PD = llvm::dyn_cast(Path.back().D)) FD = llvm::dyn_cast(PD->getDeclContext()); if (isa_and_present(FD)) { // Constructor case: the parameter is annotated with lifetimebound // e.g., GSLPointer(const S& s [[clang::lifetimebound]]) // We still respect this case even the type S is not an owner. return Report; } // Check the return type, e.g. // const GSLOwner& func(const Foo& foo [[clang::lifetimebound]]) // GSLOwner* func(cosnt Foo& foo [[clang::lifetimebound]]) // GSLPointer func(const Foo& foo [[clang::lifetimebound]]) if (FD && ((FD->getReturnType()->isPointerOrReferenceType() && isRecordWithAttr(FD->getReturnType()->getPointeeType())) || isGLSPointerType(FD->getReturnType()))) return Report; return Abandon; } if (isa(L)) { // We do not want to follow the references when returning a pointer // originating from a local owner to avoid the following false positive: // int &p = *localUniquePtr; // someContainer.add(std::move(localUniquePtr)); // return p; if (!pathContainsInit(Path) && isRecordWithAttr(L->getType())) return Report; return Abandon; } // The GSLPointer is from a temporary object. auto *MTE = dyn_cast(L); bool IsGslPtrValueFromGslTempOwner = MTE && !MTE->getExtendingDecl() && isRecordWithAttr(MTE->getType()); // Skipping a chain of initializing gsl::Pointer annotated objects. // We are looking only for the final source to find out if it was // a local or temporary owner or the address of a local // variable/param. if (!IsGslPtrValueFromGslTempOwner) return Skip; return Report; } static bool isAssignmentOperatorLifetimeBound(const CXXMethodDecl *CMD) { CMD = getDeclWithMergedLifetimeBoundAttrs(CMD); return CMD && isNormalAssignmentOperator(CMD) && CMD->param_size() == 1 && CMD->getParamDecl(0)->hasAttr(); } static bool shouldRunGSLAssignmentAnalysis(const Sema &SemaRef, const AssignedEntity &Entity) { bool EnableGSLAssignmentWarnings = !SemaRef.getDiagnostics().isIgnored( diag::warn_dangling_lifetime_pointer_assignment, SourceLocation()); return (EnableGSLAssignmentWarnings && (isRecordWithAttr(Entity.LHS->getType()) || isAssignmentOperatorLifetimeBound(Entity.AssignmentOperator))); } static void checkExprLifetimeImpl(Sema &SemaRef, const InitializedEntity *InitEntity, const InitializedEntity *ExtendingEntity, LifetimeKind LK, const AssignedEntity *AEntity, const CapturingEntity *CapEntity, Expr *Init) { assert(!AEntity || LK == LK_Assignment); assert(!CapEntity || LK == LK_LifetimeCapture); assert(!InitEntity || (LK != LK_Assignment && LK != LK_LifetimeCapture)); // If this entity doesn't have an interesting lifetime, don't bother looking // for temporaries within its initializer. if (LK == LK_FullExpression) return; // FIXME: consider moving the TemporaryVisitor and visitLocalsRetained* // functions to a dedicated class. auto TemporaryVisitor = [&](const IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { SourceRange DiagRange = nextPathEntryRange(Path, 0, L); SourceLocation DiagLoc = DiagRange.getBegin(); auto *MTE = dyn_cast(L); bool IsGslPtrValueFromGslTempOwner = true; switch (analyzePathForGSLPointer(Path, L, LK)) { case Abandon: return false; case Skip: return true; case NotGSLPointer: IsGslPtrValueFromGslTempOwner = false; LLVM_FALLTHROUGH; case Report: break; } switch (LK) { case LK_FullExpression: llvm_unreachable("already handled this"); case LK_Extended: { if (!MTE) { // The initialized entity has lifetime beyond the full-expression, // and the local entity does too, so don't warn. // // FIXME: We should consider warning if a static / thread storage // duration variable retains an automatic storage duration local. return false; } if (IsGslPtrValueFromGslTempOwner && DiagLoc.isValid()) { SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; return false; } switch (shouldLifetimeExtendThroughPath(Path)) { case PathLifetimeKind::Extend: // Update the storage duration of the materialized temporary. // FIXME: Rebuild the expression instead of mutating it. MTE->setExtendingDecl(ExtendingEntity->getDecl(), ExtendingEntity->allocateManglingNumber()); // Also visit the temporaries lifetime-extended by this initializer. return true; case PathLifetimeKind::NoExtend: // If the path goes through the initialization of a variable or field, // it can't possibly reach a temporary created in this full-expression. // We will have already diagnosed any problems with the initializer. if (pathContainsInit(Path)) return false; SemaRef.Diag(DiagLoc, diag::warn_dangling_variable) << RK << !InitEntity->getParent() << ExtendingEntity->getDecl()->isImplicit() << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; break; } break; } case LK_LifetimeCapture: { // The captured entity has lifetime beyond the full-expression, // and the capturing entity does too, so don't warn. if (!MTE) return false; if (CapEntity->Entity) SemaRef.Diag(DiagLoc, diag::warn_dangling_reference_captured) << CapEntity->Entity << DiagRange; else SemaRef.Diag(DiagLoc, diag::warn_dangling_reference_captured_by_unknown) << DiagRange; return false; } case LK_Assignment: { if (!MTE || pathContainsInit(Path)) return false; if (IsGslPtrValueFromGslTempOwner) SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_assignment) << AEntity->LHS << DiagRange; else SemaRef.Diag(DiagLoc, diag::warn_dangling_pointer_assignment) << AEntity->LHS->getType()->isPointerType() << AEntity->LHS << DiagRange; return false; } case LK_MemInitializer: { if (MTE) { // Under C++ DR1696, if a mem-initializer (or a default member // initializer used by the absence of one) would lifetime-extend a // temporary, the program is ill-formed. if (auto *ExtendingDecl = ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { if (IsGslPtrValueFromGslTempOwner) { SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) << ExtendingDecl << DiagRange; SemaRef.Diag(ExtendingDecl->getLocation(), diag::note_ref_or_ptr_member_declared_here) << true; return false; } bool IsSubobjectMember = ExtendingEntity != InitEntity; SemaRef.Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != PathLifetimeKind::NoExtend ? diag::err_dangling_member : diag::warn_dangling_member) << ExtendingDecl << IsSubobjectMember << RK << DiagRange; // Don't bother adding a note pointing to the field if we're inside // its default member initializer; our primary diagnostic points to // the same place in that case. if (Path.empty() || Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { SemaRef.Diag(ExtendingDecl->getLocation(), diag::note_lifetime_extending_member_declared_here) << RK << IsSubobjectMember; } } else { // We have a mem-initializer but no particular field within it; this // is either a base class or a delegating initializer directly // initializing the base-class from something that doesn't live long // enough. // // FIXME: Warn on this. return false; } } else { // Paths via a default initializer can only occur during error recovery // (there's no other way that a default initializer can refer to a // local). Don't produce a bogus warning on those cases. if (pathContainsInit(Path)) return false; auto *DRE = dyn_cast(L); // Suppress false positives for code like the one below: // Ctor(unique_ptr up) : pointer(up.get()), owner(move(up)) {} // FIXME: move this logic to analyzePathForGSLPointer. if (DRE && isRecordWithAttr(DRE->getType())) return false; auto *VD = DRE ? dyn_cast(DRE->getDecl()) : nullptr; if (!VD) { // A member was initialized to a local block. // FIXME: Warn on this. return false; } if (auto *Member = ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { bool IsPointer = !Member->getType()->isReferenceType(); SemaRef.Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr : diag::warn_bind_ref_member_to_parameter) << Member << VD << isa(VD) << DiagRange; SemaRef.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here) << (unsigned)IsPointer; } } break; } case LK_New: if (isa(L)) { if (IsGslPtrValueFromGslTempOwner) SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; else SemaRef.Diag(DiagLoc, RK == RK_ReferenceBinding ? diag::warn_new_dangling_reference : diag::warn_new_dangling_initializer_list) << !InitEntity->getParent() << DiagRange; } else { // We can't determine if the allocation outlives the local declaration. return false; } break; case LK_Return: case LK_MustTail: case LK_StmtExprResult: if (auto *DRE = dyn_cast(L)) { // We can't determine if the local variable outlives the statement // expression. if (LK == LK_StmtExprResult) return false; SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) << InitEntity->getType()->isReferenceType() << DRE->getDecl() << isa(DRE->getDecl()) << (LK == LK_MustTail) << DiagRange; } else if (isa(L)) { SemaRef.Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; } else if (isa(L)) { // Don't warn when returning a label from a statement expression. // Leaving the scope doesn't end its lifetime. if (LK == LK_StmtExprResult) return false; SemaRef.Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; } else if (auto *CLE = dyn_cast(L)) { SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) << InitEntity->getType()->isReferenceType() << CLE->getInitializer() << 2 << (LK == LK_MustTail) << DiagRange; } else { // P2748R5: Disallow Binding a Returned Glvalue to a Temporary. // [stmt.return]/p6: In a function whose return type is a reference, // other than an invented function for std::is_convertible ([meta.rel]), // a return statement that binds the returned reference to a temporary // expression ([class.temporary]) is ill-formed. if (SemaRef.getLangOpts().CPlusPlus26 && InitEntity->getType()->isReferenceType()) SemaRef.Diag(DiagLoc, diag::err_ret_local_temp_ref) << InitEntity->getType()->isReferenceType() << DiagRange; else if (LK == LK_MustTail) SemaRef.Diag(DiagLoc, diag::warn_musttail_local_temp_addr_ref) << InitEntity->getType()->isReferenceType() << DiagRange; else SemaRef.Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) << InitEntity->getType()->isReferenceType() << DiagRange; } break; } for (unsigned I = 0; I != Path.size(); ++I) { auto Elem = Path[I]; switch (Elem.Kind) { case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LValToRVal: case IndirectLocalPathEntry::ParenAggInit: // These exist primarily to mark the path as not permitting or // supporting lifetime extension. break; case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::TemporaryCopy: case IndirectLocalPathEntry::MemberExpr: case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerAssignment: // FIXME: Consider adding a note for these. break; case IndirectLocalPathEntry::DefaultInit: { auto *FD = cast(Elem.D); SemaRef.Diag(FD->getLocation(), diag::note_init_with_default_member_initializer) << FD << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::VarInit: { const VarDecl *VD = cast(Elem.D); SemaRef.Diag(VD->getLocation(), diag::note_local_var_initializer) << VD->getType()->isReferenceType() << VD->isImplicit() << VD->getDeclName() << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::LambdaCaptureInit: { if (!Elem.Capture->capturesVariable()) break; // FIXME: We can't easily tell apart an init-capture from a nested // capture of an init-capture. const ValueDecl *VD = Elem.Capture->getCapturedVar(); SemaRef.Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) << VD << VD->isInitCapture() << Elem.Capture->isExplicit() << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::DefaultArg: { const auto *DAE = cast(Elem.E); const ParmVarDecl *Param = DAE->getParam(); SemaRef.Diag(Param->getDefaultArgRange().getBegin(), diag::note_init_with_default_argument) << Param << nextPathEntryRange(Path, I + 1, L); break; } } } // We didn't lifetime-extend, so don't go any further; we don't need more // warnings or errors on inner temporaries within this one's initializer. return false; }; llvm::SmallVector Path; switch (LK) { case LK_Assignment: { if (shouldRunGSLAssignmentAnalysis(SemaRef, *AEntity)) Path.push_back( {isAssignmentOperatorLifetimeBound(AEntity->AssignmentOperator) ? IndirectLocalPathEntry::LifetimeBoundCall : IndirectLocalPathEntry::GslPointerAssignment, Init}); break; } case LK_LifetimeCapture: { if (isPointerLikeType(Init->getType())) Path.push_back({IndirectLocalPathEntry::GslPointerInit, Init}); break; } default: break; } if (Init->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, TemporaryVisitor); else visitLocalsRetainedByInitializer( Path, Init, TemporaryVisitor, // Don't revisit the sub inits for the intialization case. /*RevisitSubinits=*/!InitEntity); } void checkInitLifetime(Sema &SemaRef, const InitializedEntity &Entity, Expr *Init) { auto LTResult = getEntityLifetime(&Entity); LifetimeKind LK = LTResult.getInt(); const InitializedEntity *ExtendingEntity = LTResult.getPointer(); checkExprLifetimeImpl(SemaRef, &Entity, ExtendingEntity, LK, /*AEntity=*/nullptr, /*CapEntity=*/nullptr, Init); } void checkExprLifetimeMustTailArg(Sema &SemaRef, const InitializedEntity &Entity, Expr *Init) { checkExprLifetimeImpl(SemaRef, &Entity, nullptr, LK_MustTail, /*AEntity=*/nullptr, /*CapEntity=*/nullptr, Init); } void checkAssignmentLifetime(Sema &SemaRef, const AssignedEntity &Entity, Expr *Init) { bool EnableDanglingPointerAssignment = !SemaRef.getDiagnostics().isIgnored( diag::warn_dangling_pointer_assignment, SourceLocation()); bool RunAnalysis = (EnableDanglingPointerAssignment && Entity.LHS->getType()->isPointerType()) || shouldRunGSLAssignmentAnalysis(SemaRef, Entity); if (!RunAnalysis) return; checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, /*ExtendingEntity=*/nullptr, LK_Assignment, &Entity, /*CapEntity=*/nullptr, Init); } void checkCaptureByLifetime(Sema &SemaRef, const CapturingEntity &Entity, Expr *Init) { if (SemaRef.getDiagnostics().isIgnored(diag::warn_dangling_reference_captured, SourceLocation()) && SemaRef.getDiagnostics().isIgnored( diag::warn_dangling_reference_captured_by_unknown, SourceLocation())) return; return checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, /*ExtendingEntity=*/nullptr, LK_LifetimeCapture, /*AEntity=*/nullptr, /*CapEntity=*/&Entity, Init); } } // namespace clang::sema