//===-- lib/Semantics/resolve-names.cpp -----------------------------------===// // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "resolve-names.h" #include "assignment.h" #include "definable.h" #include "mod-file.h" #include "pointer-assignment.h" #include "program-tree.h" #include "resolve-directives.h" #include "resolve-names-utils.h" #include "rewrite-parse-tree.h" #include "flang/Common/Fortran.h" #include "flang/Common/default-kinds.h" #include "flang/Common/indirection.h" #include "flang/Common/restorer.h" #include "flang/Common/visit.h" #include "flang/Evaluate/characteristics.h" #include "flang/Evaluate/check-expression.h" #include "flang/Evaluate/common.h" #include "flang/Evaluate/fold-designator.h" #include "flang/Evaluate/fold.h" #include "flang/Evaluate/intrinsics.h" #include "flang/Evaluate/tools.h" #include "flang/Evaluate/type.h" #include "flang/Parser/parse-tree-visitor.h" #include "flang/Parser/parse-tree.h" #include "flang/Parser/tools.h" #include "flang/Semantics/attr.h" #include "flang/Semantics/expression.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/semantics.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include namespace Fortran::semantics { using namespace parser::literals; template using Indirection = common::Indirection; using Message = parser::Message; using Messages = parser::Messages; using MessageFixedText = parser::MessageFixedText; using MessageFormattedText = parser::MessageFormattedText; class ResolveNamesVisitor; class ScopeHandler; // ImplicitRules maps initial character of identifier to the DeclTypeSpec // representing the implicit type; std::nullopt if none. // It also records the presence of IMPLICIT NONE statements. // When inheritFromParent is set, defaults come from the parent rules. class ImplicitRules { public: ImplicitRules(SemanticsContext &context, ImplicitRules *parent) : parent_{parent}, context_{context} { inheritFromParent_ = parent != nullptr; } bool isImplicitNoneType() const; bool isImplicitNoneExternal() const; void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; } void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; } void set_inheritFromParent(bool x) { inheritFromParent_ = x; } // Get the implicit type for this name. May be null. const DeclTypeSpec *GetType( SourceName, bool respectImplicitNone = true) const; // Record the implicit type for the range of characters [fromLetter, // toLetter]. void SetTypeMapping(const DeclTypeSpec &type, parser::Location fromLetter, parser::Location toLetter); private: static char Incr(char ch); ImplicitRules *parent_; SemanticsContext &context_; bool inheritFromParent_{false}; // look in parent if not specified here bool isImplicitNoneType_{ context_.IsEnabled(common::LanguageFeature::ImplicitNoneTypeAlways)}; bool isImplicitNoneExternal_{false}; // map_ contains the mapping between letters and types that were defined // by the IMPLICIT statements of the related scope. It does not contain // the default Fortran mappings nor the mapping defined in parents. std::map> map_; friend llvm::raw_ostream &operator<<( llvm::raw_ostream &, const ImplicitRules &); friend void ShowImplicitRule( llvm::raw_ostream &, const ImplicitRules &, char); }; // scope -> implicit rules for that scope using ImplicitRulesMap = std::map; // Track statement source locations and save messages. class MessageHandler { public: MessageHandler() { DIE("MessageHandler: default-constructed"); } explicit MessageHandler(SemanticsContext &c) : context_{&c} {} Messages &messages() { return context_->messages(); }; const std::optional &currStmtSource() { return context_->location(); } void set_currStmtSource(const std::optional &source) { context_->set_location(source); } // Emit a message associated with the current statement source. Message &Say(MessageFixedText &&); Message &Say(MessageFormattedText &&); // Emit a message about a SourceName Message &Say(const SourceName &, MessageFixedText &&); // Emit a formatted message associated with a source location. template Message &Say(const SourceName &source, MessageFixedText &&msg, A &&...args) { return context_->Say(source, std::move(msg), std::forward(args)...); } private: SemanticsContext *context_; }; // Inheritance graph for the parse tree visitation classes that follow: // BaseVisitor // + AttrsVisitor // | + DeclTypeSpecVisitor // | + ImplicitRulesVisitor // | + ScopeHandler -----------+--+ // | + ModuleVisitor ========|==+ // | + InterfaceVisitor | | // | +-+ SubprogramVisitor ==|==+ // + ArraySpecVisitor | | // + DeclarationVisitor <--------+ | // + ConstructVisitor | // + ResolveNamesVisitor <------+ class BaseVisitor { public: BaseVisitor() { DIE("BaseVisitor: default-constructed"); } BaseVisitor( SemanticsContext &c, ResolveNamesVisitor &v, ImplicitRulesMap &rules) : implicitRulesMap_{&rules}, this_{&v}, context_{&c}, messageHandler_{c} { } template void Walk(const T &); MessageHandler &messageHandler() { return messageHandler_; } const std::optional &currStmtSource() { return context_->location(); } SemanticsContext &context() const { return *context_; } evaluate::FoldingContext &GetFoldingContext() const { return context_->foldingContext(); } bool IsIntrinsic( const SourceName &name, std::optional flag) const { if (!flag) { return context_->intrinsics().IsIntrinsic(name.ToString()); } else if (flag == Symbol::Flag::Function) { return context_->intrinsics().IsIntrinsicFunction(name.ToString()); } else if (flag == Symbol::Flag::Subroutine) { return context_->intrinsics().IsIntrinsicSubroutine(name.ToString()); } else { DIE("expected Subroutine or Function flag"); } } bool InModuleFile() const { return GetFoldingContext().inModuleFile(); } // Make a placeholder symbol for a Name that otherwise wouldn't have one. // It is not in any scope and always has MiscDetails. void MakePlaceholder(const parser::Name &, MiscDetails::Kind); template common::IfNoLvalue FoldExpr(T &&expr) { return evaluate::Fold(GetFoldingContext(), std::move(expr)); } template MaybeExpr EvaluateExpr(const T &expr) { return FoldExpr(AnalyzeExpr(*context_, expr)); } template MaybeExpr EvaluateNonPointerInitializer( const Symbol &symbol, const T &expr, parser::CharBlock source) { if (!context().HasError(symbol)) { if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) { auto restorer{GetFoldingContext().messages().SetLocation(source)}; return evaluate::NonPointerInitializationExpr( symbol, std::move(*maybeExpr), GetFoldingContext()); } } return std::nullopt; } template MaybeIntExpr EvaluateIntExpr(const T &expr) { return semantics::EvaluateIntExpr(*context_, expr); } template MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) { if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) { return FoldExpr(evaluate::ConvertToType( std::move(*maybeIntExpr))); } else { return std::nullopt; } } template Message &Say(A &&...args) { return messageHandler_.Say(std::forward(args)...); } template Message &Say( const parser::Name &name, MessageFixedText &&text, const A &...args) { return messageHandler_.Say(name.source, std::move(text), args...); } protected: ImplicitRulesMap *implicitRulesMap_{nullptr}; private: ResolveNamesVisitor *this_; SemanticsContext *context_; MessageHandler messageHandler_; }; // Provide Post methods to collect attributes into a member variable. class AttrsVisitor : public virtual BaseVisitor { public: bool BeginAttrs(); // always returns true Attrs GetAttrs(); Attrs EndAttrs(); bool SetPassNameOn(Symbol &); void SetBindNameOn(Symbol &); void Post(const parser::LanguageBindingSpec &); bool Pre(const parser::IntentSpec &); bool Pre(const parser::Pass &); bool CheckAndSet(Attr); // Simple case: encountering CLASSNAME causes ATTRNAME to be set. #define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \ bool Pre(const parser::CLASSNAME &) { \ CheckAndSet(Attr::ATTRNAME); \ return false; \ } HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL) HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE) HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE) HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE) HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE) HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE) HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C) HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED) HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE) HANDLE_ATTR_CLASS(Abstract, ABSTRACT) HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE) HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS) HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS) HANDLE_ATTR_CLASS(External, EXTERNAL) HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC) HANDLE_ATTR_CLASS(NoPass, NOPASS) HANDLE_ATTR_CLASS(Optional, OPTIONAL) HANDLE_ATTR_CLASS(Parameter, PARAMETER) HANDLE_ATTR_CLASS(Pointer, POINTER) HANDLE_ATTR_CLASS(Protected, PROTECTED) HANDLE_ATTR_CLASS(Save, SAVE) HANDLE_ATTR_CLASS(Target, TARGET) HANDLE_ATTR_CLASS(Value, VALUE) HANDLE_ATTR_CLASS(Volatile, VOLATILE) #undef HANDLE_ATTR_CLASS protected: std::optional attrs_; Attr AccessSpecToAttr(const parser::AccessSpec &x) { switch (x.v) { case parser::AccessSpec::Kind::Public: return Attr::PUBLIC; case parser::AccessSpec::Kind::Private: return Attr::PRIVATE; } llvm_unreachable("Switch covers all cases"); // suppress g++ warning } Attr IntentSpecToAttr(const parser::IntentSpec &x) { switch (x.v) { case parser::IntentSpec::Intent::In: return Attr::INTENT_IN; case parser::IntentSpec::Intent::Out: return Attr::INTENT_OUT; case parser::IntentSpec::Intent::InOut: return Attr::INTENT_INOUT; } llvm_unreachable("Switch covers all cases"); // suppress g++ warning } private: bool IsDuplicateAttr(Attr); bool HaveAttrConflict(Attr, Attr, Attr); bool IsConflictingAttr(Attr); MaybeExpr bindName_; // from BIND(C, NAME="...") std::optional passName_; // from PASS(...) }; // Find and create types from declaration-type-spec nodes. class DeclTypeSpecVisitor : public AttrsVisitor { public: using AttrsVisitor::Post; using AttrsVisitor::Pre; void Post(const parser::IntrinsicTypeSpec::DoublePrecision &); void Post(const parser::IntrinsicTypeSpec::DoubleComplex &); void Post(const parser::DeclarationTypeSpec::ClassStar &); void Post(const parser::DeclarationTypeSpec::TypeStar &); bool Pre(const parser::TypeGuardStmt &); void Post(const parser::TypeGuardStmt &); void Post(const parser::TypeSpec &); // Walk the parse tree of a type spec and return the DeclTypeSpec for it. template const DeclTypeSpec *ProcessTypeSpec(const T &x, bool allowForward = false) { auto restorer{common::ScopedSet(state_, State{})}; set_allowForwardReferenceToDerivedType(allowForward); BeginDeclTypeSpec(); Walk(x); const auto *type{GetDeclTypeSpec()}; EndDeclTypeSpec(); return type; } protected: struct State { bool expectDeclTypeSpec{false}; // should see decl-type-spec only when true const DeclTypeSpec *declTypeSpec{nullptr}; struct { DerivedTypeSpec *type{nullptr}; DeclTypeSpec::Category category{DeclTypeSpec::TypeDerived}; } derived; bool allowForwardReferenceToDerivedType{false}; }; bool allowForwardReferenceToDerivedType() const { return state_.allowForwardReferenceToDerivedType; } void set_allowForwardReferenceToDerivedType(bool yes) { state_.allowForwardReferenceToDerivedType = yes; } const DeclTypeSpec *GetDeclTypeSpec(); void BeginDeclTypeSpec(); void EndDeclTypeSpec(); void SetDeclTypeSpec(const DeclTypeSpec &); void SetDeclTypeSpecCategory(DeclTypeSpec::Category); DeclTypeSpec::Category GetDeclTypeSpecCategory() const { return state_.derived.category; } KindExpr GetKindParamExpr( TypeCategory, const std::optional &); void CheckForAbstractType(const Symbol &typeSymbol); private: State state_; void MakeNumericType(TypeCategory, int kind); }; // Visit ImplicitStmt and related parse tree nodes and updates implicit rules. class ImplicitRulesVisitor : public DeclTypeSpecVisitor { public: using DeclTypeSpecVisitor::Post; using DeclTypeSpecVisitor::Pre; using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec; void Post(const parser::ParameterStmt &); bool Pre(const parser::ImplicitStmt &); bool Pre(const parser::LetterSpec &); bool Pre(const parser::ImplicitSpec &); void Post(const parser::ImplicitSpec &); const DeclTypeSpec *GetType( SourceName name, bool respectImplicitNoneType = true) { return implicitRules_->GetType(name, respectImplicitNoneType); } bool isImplicitNoneType() const { return implicitRules_->isImplicitNoneType(); } bool isImplicitNoneType(const Scope &scope) const { return implicitRulesMap_->at(&scope).isImplicitNoneType(); } bool isImplicitNoneExternal() const { return implicitRules_->isImplicitNoneExternal(); } void set_inheritFromParent(bool x) { implicitRules_->set_inheritFromParent(x); } protected: void BeginScope(const Scope &); void SetScope(const Scope &); private: // implicit rules in effect for current scope ImplicitRules *implicitRules_{nullptr}; std::optional prevImplicit_; std::optional prevImplicitNone_; std::optional prevImplicitNoneType_; std::optional prevParameterStmt_; bool HandleImplicitNone(const std::list &nameSpecs); }; // Track array specifications. They can occur in AttrSpec, EntityDecl, // ObjectDecl, DimensionStmt, CommonBlockObject, or BasedPointerStmt. // 1. INTEGER, DIMENSION(10) :: x // 2. INTEGER :: x(10) // 3. ALLOCATABLE :: x(:) // 4. DIMENSION :: x(10) // 5. COMMON x(10) // 6. BasedPointerStmt class ArraySpecVisitor : public virtual BaseVisitor { public: void Post(const parser::ArraySpec &); void Post(const parser::ComponentArraySpec &); void Post(const parser::CoarraySpec &); void Post(const parser::AttrSpec &) { PostAttrSpec(); } void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); } protected: const ArraySpec &arraySpec(); void set_arraySpec(const ArraySpec arraySpec) { arraySpec_ = arraySpec; } const ArraySpec &coarraySpec(); void BeginArraySpec(); void EndArraySpec(); void ClearArraySpec() { arraySpec_.clear(); } void ClearCoarraySpec() { coarraySpec_.clear(); } private: // arraySpec_/coarraySpec_ are populated from any ArraySpec/CoarraySpec ArraySpec arraySpec_; ArraySpec coarraySpec_; // When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved // into attrArraySpec_ ArraySpec attrArraySpec_; ArraySpec attrCoarraySpec_; void PostAttrSpec(); }; // Manages a stack of function result information. We defer the processing // of a type specification that appears in the prefix of a FUNCTION statement // until the function result variable appears in the specification part // or the end of the specification part. This allows for forward references // in the type specification to resolve to local names. class FuncResultStack { public: explicit FuncResultStack(ScopeHandler &scopeHandler) : scopeHandler_{scopeHandler} {} ~FuncResultStack(); struct FuncInfo { explicit FuncInfo(const Scope &s) : scope{s} {} const Scope &scope; // Parse tree of the type specification in the FUNCTION prefix const parser::DeclarationTypeSpec *parsedType{nullptr}; // Name of the function RESULT in the FUNCTION suffix, if any const parser::Name *resultName{nullptr}; // Result symbol Symbol *resultSymbol{nullptr}; std::optional source; bool inFunctionStmt{false}; // true between Pre/Post of FunctionStmt }; // Completes the definition of the top function's result. void CompleteFunctionResultType(); // Completes the definition of a symbol if it is the top function's result. void CompleteTypeIfFunctionResult(Symbol &); FuncInfo *Top() { return stack_.empty() ? nullptr : &stack_.back(); } FuncInfo &Push(const Scope &scope) { return stack_.emplace_back(scope); } void Pop(); private: ScopeHandler &scopeHandler_; std::vector stack_; }; // Manage a stack of Scopes class ScopeHandler : public ImplicitRulesVisitor { public: using ImplicitRulesVisitor::Post; using ImplicitRulesVisitor::Pre; Scope &currScope() { return DEREF(currScope_); } // The enclosing host procedure if current scope is in an internal procedure Scope *GetHostProcedure(); // The innermost enclosing program unit scope, ignoring BLOCK and other // construct scopes. Scope &InclusiveScope(); // The enclosing scope, skipping derived types. Scope &NonDerivedTypeScope(); // Create a new scope and push it on the scope stack. void PushScope(Scope::Kind kind, Symbol *symbol); void PushScope(Scope &scope); void PopScope(); void SetScope(Scope &); template bool Pre(const parser::Statement &x) { messageHandler().set_currStmtSource(x.source); currScope_->AddSourceRange(x.source); return true; } template void Post(const parser::Statement &) { messageHandler().set_currStmtSource(std::nullopt); } // Special messages: already declared; referencing symbol's declaration; // about a type; two names & locations void SayAlreadyDeclared(const parser::Name &, Symbol &); void SayAlreadyDeclared(const SourceName &, Symbol &); void SayAlreadyDeclared(const SourceName &, const SourceName &); void SayWithReason( const parser::Name &, Symbol &, MessageFixedText &&, Message &&); void SayWithDecl(const parser::Name &, Symbol &, MessageFixedText &&); void SayLocalMustBeVariable(const parser::Name &, Symbol &); void SayDerivedType(const SourceName &, MessageFixedText &&, const Scope &); void Say2(const SourceName &, MessageFixedText &&, const SourceName &, MessageFixedText &&); void Say2( const SourceName &, MessageFixedText &&, Symbol &, MessageFixedText &&); void Say2( const parser::Name &, MessageFixedText &&, Symbol &, MessageFixedText &&); // Search for symbol by name in current, parent derived type, and // containing scopes Symbol *FindSymbol(const parser::Name &); Symbol *FindSymbol(const Scope &, const parser::Name &); // Search for name only in scope, not in enclosing scopes. Symbol *FindInScope(const Scope &, const parser::Name &); Symbol *FindInScope(const Scope &, const SourceName &); template Symbol *FindInScope(const T &name) { return FindInScope(currScope(), name); } // Search for name in a derived type scope and its parents. Symbol *FindInTypeOrParents(const Scope &, const parser::Name &); Symbol *FindInTypeOrParents(const parser::Name &); Symbol *FindSeparateModuleProcedureInterface(const parser::Name &); void EraseSymbol(const parser::Name &); void EraseSymbol(const Symbol &symbol) { currScope().erase(symbol.name()); } // Make a new symbol with the name and attrs of an existing one Symbol &CopySymbol(const SourceName &, const Symbol &); // Make symbols in the current or named scope Symbol &MakeSymbol(Scope &, const SourceName &, Attrs); Symbol &MakeSymbol(const SourceName &, Attrs = Attrs{}); Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{}); Symbol &MakeHostAssocSymbol(const parser::Name &, const Symbol &); template common::IfNoLvalue MakeSymbol( const parser::Name &name, D &&details) { return MakeSymbol(name, Attrs{}, std::move(details)); } template common::IfNoLvalue MakeSymbol( const parser::Name &name, const Attrs &attrs, D &&details) { return Resolve(name, MakeSymbol(name.source, attrs, std::move(details))); } template common::IfNoLvalue MakeSymbol( const SourceName &name, const Attrs &attrs, D &&details) { // Note: don't use FindSymbol here. If this is a derived type scope, // we want to detect whether the name is already declared as a component. auto *symbol{FindInScope(name)}; if (!symbol) { symbol = &MakeSymbol(name, attrs); symbol->set_details(std::move(details)); return *symbol; } if constexpr (std::is_same_v) { if (auto *d{symbol->detailsIf()}) { if (!d->specific()) { // derived type with same name as a generic auto *derivedType{d->derivedType()}; if (!derivedType) { derivedType = &currScope().MakeSymbol(name, attrs, std::move(details)); d->set_derivedType(*derivedType); } else if (derivedType->CanReplaceDetails(details)) { // was forward-referenced CheckDuplicatedAttrs(name, *symbol, attrs); SetExplicitAttrs(*derivedType, attrs); derivedType->set_details(std::move(details)); } else { SayAlreadyDeclared(name, *derivedType); } return *derivedType; } } } if (symbol->CanReplaceDetails(details)) { // update the existing symbol CheckDuplicatedAttrs(name, *symbol, attrs); SetExplicitAttrs(*symbol, attrs); if constexpr (std::is_same_v) { // Dummy argument defined by explicit interface? details.set_isDummy(IsDummy(*symbol)); } symbol->set_details(std::move(details)); return *symbol; } else if constexpr (std::is_same_v) { CheckDuplicatedAttrs(name, *symbol, attrs); SetExplicitAttrs(*symbol, attrs); return *symbol; } else { if (!CheckPossibleBadForwardRef(*symbol)) { if (name.empty() && symbol->name().empty()) { // report the error elsewhere return *symbol; } SayAlreadyDeclared(name, *symbol); } // replace the old symbol with a new one with correct details EraseSymbol(*symbol); auto &result{MakeSymbol(name, attrs, std::move(details))}; context().SetError(result); return result; } } void MakeExternal(Symbol &); // C815 duplicated attribute checking; returns false on error bool CheckDuplicatedAttr(SourceName, const Symbol &, Attr); bool CheckDuplicatedAttrs(SourceName, const Symbol &, Attrs); void SetExplicitAttr(Symbol &symbol, Attr attr) const { symbol.attrs().set(attr); symbol.implicitAttrs().reset(attr); } void SetExplicitAttrs(Symbol &symbol, Attrs attrs) const { symbol.attrs() |= attrs; symbol.implicitAttrs() &= ~attrs; } void SetImplicitAttr(Symbol &symbol, Attr attr) const { symbol.attrs().set(attr); symbol.implicitAttrs().set(attr); } protected: FuncResultStack &funcResultStack() { return funcResultStack_; } // Apply the implicit type rules to this symbol. void ApplyImplicitRules(Symbol &, bool allowForwardReference = false); bool ImplicitlyTypeForwardRef(Symbol &); void AcquireIntrinsicProcedureFlags(Symbol &); const DeclTypeSpec *GetImplicitType( Symbol &, bool respectImplicitNoneType = true); bool ConvertToObjectEntity(Symbol &); bool ConvertToProcEntity(Symbol &); const DeclTypeSpec &MakeNumericType( TypeCategory, const std::optional &); const DeclTypeSpec &MakeNumericType(TypeCategory, int); const DeclTypeSpec &MakeLogicalType( const std::optional &); const DeclTypeSpec &MakeLogicalType(int); void NotePossibleBadForwardRef(const parser::Name &); std::optional HadForwardRef(const Symbol &) const; bool CheckPossibleBadForwardRef(const Symbol &); bool inSpecificationPart_{false}; bool inEquivalenceStmt_{false}; // Some information is collected from a specification part for deferred // processing in DeclarationPartVisitor functions (e.g., CheckSaveStmts()) // that are called by ResolveNamesVisitor::FinishSpecificationPart(). Since // specification parts can nest (e.g., INTERFACE bodies), the collected // information that is not contained in the scope needs to be packaged // and restorable. struct SpecificationPartState { std::set forwardRefs; // Collect equivalence sets and process at end of specification part std::vector *> equivalenceSets; // Names of all common block objects in the scope std::set commonBlockObjects; // Info about about SAVE statements and attributes in current scope struct { std::optional saveAll; // "SAVE" without entity list std::set entities; // names of entities with save attr std::set commons; // names of common blocks with save attr } saveInfo; } specPartState_; // Some declaration processing can and should be deferred to // ResolveExecutionParts() to avoid prematurely creating implicitly-typed // local symbols that should be host associations. struct DeferredDeclarationState { // The content of each namelist group std::list namelistGroups; }; DeferredDeclarationState *GetDeferredDeclarationState(bool add = false) { if (!add && deferred_.find(&currScope()) == deferred_.end()) { return nullptr; } else { return &deferred_.emplace(&currScope(), DeferredDeclarationState{}) .first->second; } } private: Scope *currScope_{nullptr}; FuncResultStack funcResultStack_{*this}; std::map deferred_; }; class ModuleVisitor : public virtual ScopeHandler { public: bool Pre(const parser::AccessStmt &); bool Pre(const parser::Only &); bool Pre(const parser::Rename::Names &); bool Pre(const parser::Rename::Operators &); bool Pre(const parser::UseStmt &); void Post(const parser::UseStmt &); void BeginModule(const parser::Name &, bool isSubmodule); bool BeginSubmodule(const parser::Name &, const parser::ParentIdentifier &); void ApplyDefaultAccess(); Symbol &AddGenericUse(GenericDetails &, const SourceName &, const Symbol &); void AddAndCheckExplicitIntrinsicUse(SourceName, bool isIntrinsic); void ClearUseRenames() { useRenames_.clear(); } void ClearUseOnly() { useOnly_.clear(); } void ClearExplicitIntrinsicUses() { explicitIntrinsicUses_.clear(); explicitNonIntrinsicUses_.clear(); } private: // The default access spec for this module. Attr defaultAccess_{Attr::PUBLIC}; // The location of the last AccessStmt without access-ids, if any. std::optional prevAccessStmt_; // The scope of the module during a UseStmt Scope *useModuleScope_{nullptr}; // Names that have appeared in a rename clause of a USE statement std::set> useRenames_; // Names that have appeared in an ONLY clause of a USE statement std::set> useOnly_; // Module names that have appeared in USE statements with explicit // INTRINSIC or NON_INTRINSIC keywords std::set explicitIntrinsicUses_; std::set explicitNonIntrinsicUses_; Symbol &SetAccess(const SourceName &, Attr attr, Symbol * = nullptr); // A rename in a USE statement: local => use struct SymbolRename { Symbol *local{nullptr}; Symbol *use{nullptr}; }; // Record a use from useModuleScope_ of use Name/Symbol as local Name/Symbol SymbolRename AddUse(const SourceName &localName, const SourceName &useName); SymbolRename AddUse(const SourceName &, const SourceName &, Symbol *); void DoAddUse( SourceName, SourceName, Symbol &localSymbol, const Symbol &useSymbol); void AddUse(const GenericSpecInfo &); // If appropriate, erase a previously USE-associated symbol void EraseRenamedSymbol(const Symbol &); // Record a name appearing in a USE rename clause void AddUseRename(const SourceName &name) { useRenames_.emplace(std::make_pair(name, useModuleScope_)); } bool IsUseRenamed(const SourceName &name) const { return useRenames_.find({name, useModuleScope_}) != useRenames_.end(); } // Record a name appearing in a USE ONLY clause void AddUseOnly(const SourceName &name) { useOnly_.emplace(std::make_pair(name, useModuleScope_)); } bool IsUseOnly(const SourceName &name) const { return useOnly_.find({name, useModuleScope_}) != useOnly_.end(); } Scope *FindModule(const parser::Name &, std::optional isIntrinsic, Scope *ancestor = nullptr); }; class InterfaceVisitor : public virtual ScopeHandler { public: bool Pre(const parser::InterfaceStmt &); void Post(const parser::InterfaceStmt &); void Post(const parser::EndInterfaceStmt &); bool Pre(const parser::GenericSpec &); bool Pre(const parser::ProcedureStmt &); bool Pre(const parser::GenericStmt &); void Post(const parser::GenericStmt &); bool inInterfaceBlock() const; bool isGeneric() const; bool isAbstract() const; protected: Symbol &GetGenericSymbol() { return DEREF(genericInfo_.top().symbol); } // Add to generic the symbol for the subprogram with the same name void CheckGenericProcedures(Symbol &); private: // A new GenericInfo is pushed for each interface block and generic stmt struct GenericInfo { GenericInfo(bool isInterface, bool isAbstract = false) : isInterface{isInterface}, isAbstract{isAbstract} {} bool isInterface; // in interface block bool isAbstract; // in abstract interface block Symbol *symbol{nullptr}; // the generic symbol being defined }; std::stack genericInfo_; const GenericInfo &GetGenericInfo() const { return genericInfo_.top(); } void SetGenericSymbol(Symbol &symbol) { genericInfo_.top().symbol = &symbol; } using ProcedureKind = parser::ProcedureStmt::Kind; // mapping of generic to its specific proc names and kinds std::multimap> specificProcs_; void AddSpecificProcs(const std::list &, ProcedureKind); void ResolveSpecificsInGeneric(Symbol &generic); }; class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor { public: bool HandleStmtFunction(const parser::StmtFunctionStmt &); bool Pre(const parser::SubroutineStmt &); bool Pre(const parser::FunctionStmt &); void Post(const parser::FunctionStmt &); bool Pre(const parser::EntryStmt &); void Post(const parser::EntryStmt &); bool Pre(const parser::InterfaceBody::Subroutine &); void Post(const parser::InterfaceBody::Subroutine &); bool Pre(const parser::InterfaceBody::Function &); void Post(const parser::InterfaceBody::Function &); bool Pre(const parser::Suffix &); bool Pre(const parser::PrefixSpec &); bool BeginSubprogram(const parser::Name &, Symbol::Flag, bool hasModulePrefix = false, const parser::LanguageBindingSpec * = nullptr, const ProgramTree::EntryStmtList * = nullptr); bool BeginMpSubprogram(const parser::Name &); void PushBlockDataScope(const parser::Name &); void EndSubprogram(std::optional stmtSource = std::nullopt, const std::optional * = nullptr, const ProgramTree::EntryStmtList * = nullptr); protected: // Set when we see a stmt function that is really an array element assignment bool badStmtFuncFound_{false}; private: // Edits an existing symbol created for earlier calls to a subprogram or ENTRY // so that it can be replaced by a later definition. bool HandlePreviousCalls(const parser::Name &, Symbol &, Symbol::Flag); void CheckExtantProc(const parser::Name &, Symbol::Flag); // Create a subprogram symbol in the current scope and push a new scope. Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag, const parser::LanguageBindingSpec * = nullptr); Symbol *GetSpecificFromGeneric(const parser::Name &); SubprogramDetails &PostSubprogramStmt(); void CreateEntry(const parser::EntryStmt &stmt, Symbol &subprogram); void PostEntryStmt(const parser::EntryStmt &stmt); void HandleLanguageBinding(Symbol *, std::optional stmtSource, const std::optional *); }; class DeclarationVisitor : public ArraySpecVisitor, public virtual ScopeHandler { public: using ArraySpecVisitor::Post; using ScopeHandler::Post; using ScopeHandler::Pre; bool Pre(const parser::Initialization &); void Post(const parser::EntityDecl &); void Post(const parser::ObjectDecl &); void Post(const parser::PointerDecl &); bool Pre(const parser::BindStmt &) { return BeginAttrs(); } void Post(const parser::BindStmt &) { EndAttrs(); } bool Pre(const parser::BindEntity &); bool Pre(const parser::OldParameterStmt &); bool Pre(const parser::NamedConstantDef &); bool Pre(const parser::NamedConstant &); void Post(const parser::EnumDef &); bool Pre(const parser::Enumerator &); bool Pre(const parser::AccessSpec &); bool Pre(const parser::AsynchronousStmt &); bool Pre(const parser::ContiguousStmt &); bool Pre(const parser::ExternalStmt &); bool Pre(const parser::IntentStmt &); bool Pre(const parser::IntrinsicStmt &); bool Pre(const parser::OptionalStmt &); bool Pre(const parser::ProtectedStmt &); bool Pre(const parser::ValueStmt &); bool Pre(const parser::VolatileStmt &); bool Pre(const parser::AllocatableStmt &) { objectDeclAttr_ = Attr::ALLOCATABLE; return true; } void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; } bool Pre(const parser::TargetStmt &) { objectDeclAttr_ = Attr::TARGET; return true; } void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; } void Post(const parser::DimensionStmt::Declaration &); void Post(const parser::CodimensionDecl &); bool Pre(const parser::TypeDeclarationStmt &) { return BeginDecl(); } void Post(const parser::TypeDeclarationStmt &); void Post(const parser::IntegerTypeSpec &); void Post(const parser::IntrinsicTypeSpec::Real &); void Post(const parser::IntrinsicTypeSpec::Complex &); void Post(const parser::IntrinsicTypeSpec::Logical &); void Post(const parser::IntrinsicTypeSpec::Character &); void Post(const parser::CharSelector::LengthAndKind &); void Post(const parser::CharLength &); void Post(const parser::LengthSelector &); bool Pre(const parser::KindParam &); bool Pre(const parser::DeclarationTypeSpec::Type &); void Post(const parser::DeclarationTypeSpec::Type &); bool Pre(const parser::DeclarationTypeSpec::Class &); void Post(const parser::DeclarationTypeSpec::Class &); void Post(const parser::DeclarationTypeSpec::Record &); void Post(const parser::DerivedTypeSpec &); bool Pre(const parser::DerivedTypeDef &); bool Pre(const parser::DerivedTypeStmt &); void Post(const parser::DerivedTypeStmt &); bool Pre(const parser::TypeParamDefStmt &) { return BeginDecl(); } void Post(const parser::TypeParamDefStmt &); bool Pre(const parser::TypeAttrSpec::Extends &); bool Pre(const parser::PrivateStmt &); bool Pre(const parser::SequenceStmt &); bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); } void Post(const parser::ComponentDefStmt &) { EndDecl(); } void Post(const parser::ComponentDecl &); void Post(const parser::FillDecl &); bool Pre(const parser::ProcedureDeclarationStmt &); void Post(const parser::ProcedureDeclarationStmt &); bool Pre(const parser::DataComponentDefStmt &); // returns false bool Pre(const parser::ProcComponentDefStmt &); void Post(const parser::ProcComponentDefStmt &); bool Pre(const parser::ProcPointerInit &); void Post(const parser::ProcInterface &); void Post(const parser::ProcDecl &); bool Pre(const parser::TypeBoundProcedurePart &); void Post(const parser::TypeBoundProcedurePart &); void Post(const parser::ContainsStmt &); bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); } void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); } void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &); void Post(const parser::TypeBoundProcedureStmt::WithInterface &); void Post(const parser::FinalProcedureStmt &); bool Pre(const parser::TypeBoundGenericStmt &); bool Pre(const parser::StructureDef &); // returns false bool Pre(const parser::Union::UnionStmt &); bool Pre(const parser::StructureField &); void Post(const parser::StructureField &); bool Pre(const parser::AllocateStmt &); void Post(const parser::AllocateStmt &); bool Pre(const parser::StructureConstructor &); bool Pre(const parser::NamelistStmt::Group &); bool Pre(const parser::IoControlSpec &); bool Pre(const parser::CommonStmt::Block &); bool Pre(const parser::CommonBlockObject &); void Post(const parser::CommonBlockObject &); bool Pre(const parser::EquivalenceStmt &); bool Pre(const parser::SaveStmt &); bool Pre(const parser::BasedPointerStmt &); void PointerInitialization( const parser::Name &, const parser::InitialDataTarget &); void PointerInitialization( const parser::Name &, const parser::ProcPointerInit &); void NonPointerInitialization( const parser::Name &, const parser::ConstantExpr &); void CheckExplicitInterface(const parser::Name &); void CheckBindings(const parser::TypeBoundProcedureStmt::WithoutInterface &); const parser::Name *ResolveDesignator(const parser::Designator &); protected: bool BeginDecl(); void EndDecl(); Symbol &DeclareObjectEntity(const parser::Name &, Attrs = Attrs{}); // Make sure that there's an entity in an enclosing scope called Name Symbol &FindOrDeclareEnclosingEntity(const parser::Name &); // Declare a LOCAL/LOCAL_INIT entity. If there isn't a type specified // it comes from the entity in the containing scope, or implicit rules. // Return pointer to the new symbol, or nullptr on error. Symbol *DeclareLocalEntity(const parser::Name &); // Declare a statement entity (i.e., an implied DO loop index for // a DATA statement or an array constructor). If there isn't an explict // type specified, implicit rules apply. Return pointer to the new symbol, // or nullptr on error. Symbol *DeclareStatementEntity(const parser::DoVariable &, const std::optional &); Symbol &MakeCommonBlockSymbol(const parser::Name &); Symbol &MakeCommonBlockSymbol(const std::optional &); bool CheckUseError(const parser::Name &); void CheckAccessibility(const SourceName &, bool, Symbol &); void CheckCommonBlocks(); void CheckSaveStmts(); void CheckEquivalenceSets(); bool CheckNotInBlock(const char *); bool NameIsKnownOrIntrinsic(const parser::Name &); void FinishNamelists(); // Each of these returns a pointer to a resolved Name (i.e. with symbol) // or nullptr in case of error. const parser::Name *ResolveStructureComponent( const parser::StructureComponent &); const parser::Name *ResolveDataRef(const parser::DataRef &); const parser::Name *ResolveName(const parser::Name &); bool PassesSharedLocalityChecks(const parser::Name &name, Symbol &symbol); Symbol *NoteInterfaceName(const parser::Name &); bool IsUplevelReference(const Symbol &); std::optional BeginCheckOnIndexUseInOwnBounds( const parser::DoVariable &name) { std::optional result{checkIndexUseInOwnBounds_}; checkIndexUseInOwnBounds_ = name.thing.thing.source; return result; } void EndCheckOnIndexUseInOwnBounds(const std::optional &restore) { checkIndexUseInOwnBounds_ = restore; } private: // The attribute corresponding to the statement containing an ObjectDecl std::optional objectDeclAttr_; // Info about current character type while walking DeclTypeSpec. // Also captures any "*length" specifier on an individual declaration. struct { std::optional length; std::optional kind; } charInfo_; // Info about current derived type or STRUCTURE while walking // DerivedTypeDef / StructureDef struct { const parser::Name *extends{nullptr}; // EXTENDS(name) bool privateComps{false}; // components are private by default bool privateBindings{false}; // bindings are private by default bool sawContains{false}; // currently processing bindings bool sequence{false}; // is a sequence type const Symbol *type{nullptr}; // derived type being defined bool isStructure{false}; // is a DEC STRUCTURE } derivedTypeInfo_; // In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is // the interface name, if any. const parser::Name *interfaceName_{nullptr}; // Map type-bound generic to binding names of its specific bindings std::multimap genericBindings_; // Info about current ENUM struct EnumeratorState { // Enum value must hold inside a C_INT (7.6.2). std::optional value{0}; } enumerationState_; // Set for OldParameterStmt processing bool inOldStyleParameterStmt_{false}; // Set when walking DATA & array constructor implied DO loop bounds // to warn about use of the implied DO intex therein. std::optional checkIndexUseInOwnBounds_; bool hasBindCName_{false}; bool HandleAttributeStmt(Attr, const std::list &); Symbol &HandleAttributeStmt(Attr, const parser::Name &); Symbol &DeclareUnknownEntity(const parser::Name &, Attrs); Symbol &DeclareProcEntity(const parser::Name &, Attrs, const ProcInterface &); void SetType(const parser::Name &, const DeclTypeSpec &); std::optional ResolveDerivedType(const parser::Name &); std::optional ResolveExtendsType( const parser::Name &, const parser::Name *); Symbol *MakeTypeSymbol(const SourceName &, Details &&); Symbol *MakeTypeSymbol(const parser::Name &, Details &&); bool OkToAddComponent(const parser::Name &, const Symbol * = nullptr); ParamValue GetParamValue( const parser::TypeParamValue &, common::TypeParamAttr attr); void CheckCommonBlockDerivedType(const SourceName &, const Symbol &); std::optional CheckSaveAttr(const Symbol &); Attrs HandleSaveName(const SourceName &, Attrs); void AddSaveName(std::set &, const SourceName &); void SetSaveAttr(Symbol &); bool HandleUnrestrictedSpecificIntrinsicFunction(const parser::Name &); const parser::Name *FindComponent(const parser::Name *, const parser::Name &); void Initialization(const parser::Name &, const parser::Initialization &, bool inComponentDecl); bool PassesLocalityChecks(const parser::Name &name, Symbol &symbol); bool CheckForHostAssociatedImplicit(const parser::Name &); // Declare an object or procedure entity. // T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails template Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) { Symbol &symbol{MakeSymbol(name, attrs)}; if (context().HasError(symbol) || symbol.has()) { return symbol; // OK or error already reported } else if (symbol.has()) { symbol.set_details(T{}); return symbol; } else if (auto *details{symbol.detailsIf()}) { symbol.set_details(T{std::move(*details)}); return symbol; } else if (std::is_same_v && (symbol.has() || symbol.has())) { return symbol; // OK } else if (auto *details{symbol.detailsIf()}) { Say(name.source, "'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US, name.source, GetUsedModule(*details).name()); } else if (auto *details{symbol.detailsIf()}) { if (details->kind() == SubprogramKind::Module) { Say2(name, "Declaration of '%s' conflicts with its use as module procedure"_err_en_US, symbol, "Module procedure definition"_en_US); } else if (details->kind() == SubprogramKind::Internal) { Say2(name, "Declaration of '%s' conflicts with its use as internal procedure"_err_en_US, symbol, "Internal procedure definition"_en_US); } else { DIE("unexpected kind"); } } else if (std::is_same_v && symbol.has()) { SayWithDecl( name, symbol, "'%s' is already declared as a procedure"_err_en_US); } else if (std::is_same_v && symbol.has()) { if (InCommonBlock(symbol)) { SayWithDecl(name, symbol, "'%s' may not be a procedure as it is in a COMMON block"_err_en_US); } else { SayWithDecl( name, symbol, "'%s' is already declared as an object"_err_en_US); } } else if (!CheckPossibleBadForwardRef(symbol)) { SayAlreadyDeclared(name, symbol); } context().SetError(symbol); return symbol; } bool HasCycle(const Symbol &, const ProcInterface &); }; // Resolve construct entities and statement entities. // Check that construct names don't conflict with other names. class ConstructVisitor : public virtual DeclarationVisitor { public: bool Pre(const parser::ConcurrentHeader &); bool Pre(const parser::LocalitySpec::Local &); bool Pre(const parser::LocalitySpec::LocalInit &); bool Pre(const parser::LocalitySpec::Shared &); bool Pre(const parser::AcSpec &); bool Pre(const parser::AcImpliedDo &); bool Pre(const parser::DataImpliedDo &); bool Pre(const parser::DataIDoObject &); bool Pre(const parser::DataStmtObject &); bool Pre(const parser::DataStmtValue &); bool Pre(const parser::DoConstruct &); void Post(const parser::DoConstruct &); bool Pre(const parser::ForallConstruct &); void Post(const parser::ForallConstruct &); bool Pre(const parser::ForallStmt &); void Post(const parser::ForallStmt &); bool Pre(const parser::BlockStmt &); bool Pre(const parser::EndBlockStmt &); void Post(const parser::Selector &); void Post(const parser::AssociateStmt &); void Post(const parser::EndAssociateStmt &); bool Pre(const parser::Association &); void Post(const parser::SelectTypeStmt &); void Post(const parser::SelectRankStmt &); bool Pre(const parser::SelectTypeConstruct &); void Post(const parser::SelectTypeConstruct &); bool Pre(const parser::SelectTypeConstruct::TypeCase &); void Post(const parser::SelectTypeConstruct::TypeCase &); // Creates Block scopes with neither symbol name nor symbol details. bool Pre(const parser::SelectRankConstruct::RankCase &); void Post(const parser::SelectRankConstruct::RankCase &); bool Pre(const parser::TypeGuardStmt::Guard &); void Post(const parser::TypeGuardStmt::Guard &); void Post(const parser::SelectRankCaseStmt::Rank &); bool Pre(const parser::ChangeTeamStmt &); void Post(const parser::EndChangeTeamStmt &); void Post(const parser::CoarrayAssociation &); // Definitions of construct names bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); } bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); } bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); } bool Pre(const parser::LabelDoStmt &) { return false; // error recovery } bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); } bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); } bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); } bool Pre(const parser::SelectRankConstruct &); void Post(const parser::SelectRankConstruct &); bool Pre(const parser::SelectRankStmt &x) { return CheckDef(std::get<0>(x.t)); } bool Pre(const parser::SelectTypeStmt &x) { return CheckDef(std::get<0>(x.t)); } // References to construct names void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); } void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); } void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); } void Post(const parser::EndForallStmt &x) { CheckRef(x.v); } void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); } void Post(const parser::EndDoStmt &x) { CheckRef(x.v); } void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); } void Post(const parser::ElseStmt &x) { CheckRef(x.v); } void Post(const parser::EndIfStmt &x) { CheckRef(x.v); } void Post(const parser::CaseStmt &x) { CheckRef(x.t); } void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); } void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); } void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); } void Post(const parser::CycleStmt &x) { CheckRef(x.v); } void Post(const parser::ExitStmt &x) { CheckRef(x.v); } private: // R1105 selector -> expr | variable // expr is set in either case unless there were errors struct Selector { Selector() {} Selector(const SourceName &source, MaybeExpr &&expr) : source{source}, expr{std::move(expr)} {} operator bool() const { return expr.has_value(); } parser::CharBlock source; MaybeExpr expr; }; // association -> [associate-name =>] selector struct Association { const parser::Name *name{nullptr}; Selector selector; }; std::vector associationStack_; Association *currentAssociation_{nullptr}; template bool CheckDef(const T &t) { return CheckDef(std::get>(t)); } template void CheckRef(const T &t) { CheckRef(std::get>(t)); } bool CheckDef(const std::optional &); void CheckRef(const std::optional &); const DeclTypeSpec &ToDeclTypeSpec(evaluate::DynamicType &&); const DeclTypeSpec &ToDeclTypeSpec( evaluate::DynamicType &&, MaybeSubscriptIntExpr &&length); Symbol *MakeAssocEntity(); void SetTypeFromAssociation(Symbol &); void SetAttrsFromAssociation(Symbol &); Selector ResolveSelector(const parser::Selector &); void ResolveIndexName(const parser::ConcurrentControl &control); void SetCurrentAssociation(std::size_t n); Association &GetCurrentAssociation(); void PushAssociation(); void PopAssociation(std::size_t count = 1); }; // Create scopes for OpenACC constructs class AccVisitor : public virtual DeclarationVisitor { public: void AddAccSourceRange(const parser::CharBlock &); static bool NeedsScope(const parser::OpenACCBlockConstruct &); bool Pre(const parser::OpenACCBlockConstruct &); void Post(const parser::OpenACCBlockConstruct &); bool Pre(const parser::AccBeginBlockDirective &x) { AddAccSourceRange(x.source); return true; } void Post(const parser::AccBeginBlockDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::AccEndBlockDirective &x) { AddAccSourceRange(x.source); return true; } void Post(const parser::AccEndBlockDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::AccBeginLoopDirective &x) { AddAccSourceRange(x.source); return true; } void Post(const parser::AccBeginLoopDirective &x) { messageHandler().set_currStmtSource(std::nullopt); } }; bool AccVisitor::NeedsScope(const parser::OpenACCBlockConstruct &x) { const auto &beginBlockDir{std::get(x.t)}; const auto &beginDir{std::get(beginBlockDir.t)}; switch (beginDir.v) { case llvm::acc::Directive::ACCD_data: case llvm::acc::Directive::ACCD_host_data: case llvm::acc::Directive::ACCD_kernels: case llvm::acc::Directive::ACCD_parallel: case llvm::acc::Directive::ACCD_serial: return true; default: return false; } } void AccVisitor::AddAccSourceRange(const parser::CharBlock &source) { messageHandler().set_currStmtSource(source); currScope().AddSourceRange(source); } bool AccVisitor::Pre(const parser::OpenACCBlockConstruct &x) { if (NeedsScope(x)) { PushScope(Scope::Kind::OtherConstruct, nullptr); } return true; } void AccVisitor::Post(const parser::OpenACCBlockConstruct &x) { if (NeedsScope(x)) { PopScope(); } } // Create scopes for OpenMP constructs class OmpVisitor : public virtual DeclarationVisitor { public: void AddOmpSourceRange(const parser::CharBlock &); static bool NeedsScope(const parser::OpenMPBlockConstruct &); bool Pre(const parser::OpenMPBlockConstruct &); void Post(const parser::OpenMPBlockConstruct &); bool Pre(const parser::OmpBeginBlockDirective &x) { AddOmpSourceRange(x.source); return true; } void Post(const parser::OmpBeginBlockDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::OmpEndBlockDirective &x) { AddOmpSourceRange(x.source); return true; } void Post(const parser::OmpEndBlockDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::OpenMPLoopConstruct &) { PushScope(Scope::Kind::OtherConstruct, nullptr); return true; } void Post(const parser::OpenMPLoopConstruct &) { PopScope(); } bool Pre(const parser::OmpBeginLoopDirective &x) { AddOmpSourceRange(x.source); return true; } void Post(const parser::OmpBeginLoopDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::OmpEndLoopDirective &x) { AddOmpSourceRange(x.source); return true; } void Post(const parser::OmpEndLoopDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::OpenMPSectionsConstruct &) { PushScope(Scope::Kind::OtherConstruct, nullptr); return true; } void Post(const parser::OpenMPSectionsConstruct &) { PopScope(); } bool Pre(const parser::OmpBeginSectionsDirective &x) { AddOmpSourceRange(x.source); return true; } void Post(const parser::OmpBeginSectionsDirective &) { messageHandler().set_currStmtSource(std::nullopt); } bool Pre(const parser::OmpEndSectionsDirective &x) { AddOmpSourceRange(x.source); return true; } void Post(const parser::OmpEndSectionsDirective &) { messageHandler().set_currStmtSource(std::nullopt); } }; bool OmpVisitor::NeedsScope(const parser::OpenMPBlockConstruct &x) { const auto &beginBlockDir{std::get(x.t)}; const auto &beginDir{std::get(beginBlockDir.t)}; switch (beginDir.v) { case llvm::omp::Directive::OMPD_target_data: case llvm::omp::Directive::OMPD_master: case llvm::omp::Directive::OMPD_ordered: case llvm::omp::Directive::OMPD_taskgroup: return false; default: return true; } } void OmpVisitor::AddOmpSourceRange(const parser::CharBlock &source) { messageHandler().set_currStmtSource(source); currScope().AddSourceRange(source); } bool OmpVisitor::Pre(const parser::OpenMPBlockConstruct &x) { if (NeedsScope(x)) { PushScope(Scope::Kind::OtherConstruct, nullptr); } return true; } void OmpVisitor::Post(const parser::OpenMPBlockConstruct &x) { if (NeedsScope(x)) { PopScope(); } } // Walk the parse tree and resolve names to symbols. class ResolveNamesVisitor : public virtual ScopeHandler, public ModuleVisitor, public SubprogramVisitor, public ConstructVisitor, public OmpVisitor, public AccVisitor { public: using AccVisitor::Post; using AccVisitor::Pre; using ArraySpecVisitor::Post; using ConstructVisitor::Post; using ConstructVisitor::Pre; using DeclarationVisitor::Post; using DeclarationVisitor::Pre; using ImplicitRulesVisitor::Post; using ImplicitRulesVisitor::Pre; using InterfaceVisitor::Post; using InterfaceVisitor::Pre; using ModuleVisitor::Post; using ModuleVisitor::Pre; using OmpVisitor::Post; using OmpVisitor::Pre; using ScopeHandler::Post; using ScopeHandler::Pre; using SubprogramVisitor::Post; using SubprogramVisitor::Pre; ResolveNamesVisitor( SemanticsContext &context, ImplicitRulesMap &rules, Scope &top) : BaseVisitor{context, *this, rules}, topScope_{top} { PushScope(top); } Scope &topScope() const { return topScope_; } // Default action for a parse tree node is to visit children. template bool Pre(const T &) { return true; } template void Post(const T &) {} bool Pre(const parser::SpecificationPart &); void Post(const parser::Program &); bool Pre(const parser::ImplicitStmt &); void Post(const parser::PointerObject &); void Post(const parser::AllocateObject &); bool Pre(const parser::PointerAssignmentStmt &); void Post(const parser::Designator &); void Post(const parser::SubstringInquiry &); template void Post(const parser::LoopBounds &x) { ResolveName(*parser::Unwrap(x.name)); } void Post(const parser::ProcComponentRef &); bool Pre(const parser::FunctionReference &); bool Pre(const parser::CallStmt &); bool Pre(const parser::ImportStmt &); void Post(const parser::TypeGuardStmt &); bool Pre(const parser::StmtFunctionStmt &); bool Pre(const parser::DefinedOpName &); bool Pre(const parser::ProgramUnit &); void Post(const parser::AssignStmt &); void Post(const parser::AssignedGotoStmt &); // These nodes should never be reached: they are handled in ProgramUnit bool Pre(const parser::MainProgram &) { llvm_unreachable("This node is handled in ProgramUnit"); } bool Pre(const parser::FunctionSubprogram &) { llvm_unreachable("This node is handled in ProgramUnit"); } bool Pre(const parser::SubroutineSubprogram &) { llvm_unreachable("This node is handled in ProgramUnit"); } bool Pre(const parser::SeparateModuleSubprogram &) { llvm_unreachable("This node is handled in ProgramUnit"); } bool Pre(const parser::Module &) { llvm_unreachable("This node is handled in ProgramUnit"); } bool Pre(const parser::Submodule &) { llvm_unreachable("This node is handled in ProgramUnit"); } bool Pre(const parser::BlockData &) { llvm_unreachable("This node is handled in ProgramUnit"); } void NoteExecutablePartCall(Symbol::Flag, const parser::Call &); friend void ResolveSpecificationParts(SemanticsContext &, const Symbol &); private: // Kind of procedure we are expecting to see in a ProcedureDesignator std::optional expectedProcFlag_; std::optional prevImportStmt_; Scope &topScope_; void PreSpecificationConstruct(const parser::SpecificationConstruct &); void CreateCommonBlockSymbols(const parser::CommonStmt &); void CreateGeneric(const parser::GenericSpec &); void FinishSpecificationPart(const std::list &); void AnalyzeStmtFunctionStmt(const parser::StmtFunctionStmt &); void CheckImports(); void CheckImport(const SourceName &, const SourceName &); void HandleCall(Symbol::Flag, const parser::Call &); void HandleProcedureName(Symbol::Flag, const parser::Name &); bool CheckImplicitNoneExternal(const SourceName &, const Symbol &); bool SetProcFlag(const parser::Name &, Symbol &, Symbol::Flag); void ResolveSpecificationParts(ProgramTree &); void AddSubpNames(ProgramTree &); bool BeginScopeForNode(const ProgramTree &); void EndScopeForNode(const ProgramTree &); void FinishSpecificationParts(const ProgramTree &); void FinishDerivedTypeInstantiation(Scope &); void ResolveExecutionParts(const ProgramTree &); }; // ImplicitRules implementation bool ImplicitRules::isImplicitNoneType() const { if (isImplicitNoneType_) { return true; } else if (map_.empty() && inheritFromParent_) { return parent_->isImplicitNoneType(); } else { return false; // default if not specified } } bool ImplicitRules::isImplicitNoneExternal() const { if (isImplicitNoneExternal_) { return true; } else if (inheritFromParent_) { return parent_->isImplicitNoneExternal(); } else { return false; // default if not specified } } const DeclTypeSpec *ImplicitRules::GetType( SourceName name, bool respectImplicitNoneType) const { char ch{name.begin()[0]}; if (isImplicitNoneType_ && respectImplicitNoneType) { return nullptr; } else if (auto it{map_.find(ch)}; it != map_.end()) { return &*it->second; } else if (inheritFromParent_) { return parent_->GetType(name, respectImplicitNoneType); } else if (ch >= 'i' && ch <= 'n') { return &context_.MakeNumericType(TypeCategory::Integer); } else if (ch >= 'a' && ch <= 'z') { return &context_.MakeNumericType(TypeCategory::Real); } else { return nullptr; } } void ImplicitRules::SetTypeMapping(const DeclTypeSpec &type, parser::Location fromLetter, parser::Location toLetter) { for (char ch = *fromLetter; ch; ch = ImplicitRules::Incr(ch)) { auto res{map_.emplace(ch, type)}; if (!res.second) { context_.Say(parser::CharBlock{fromLetter}, "More than one implicit type specified for '%c'"_err_en_US, ch); } if (ch == *toLetter) { break; } } } // Return the next char after ch in a way that works for ASCII or EBCDIC. // Return '\0' for the char after 'z'. char ImplicitRules::Incr(char ch) { switch (ch) { case 'i': return 'j'; case 'r': return 's'; case 'z': return '\0'; default: return ch + 1; } } llvm::raw_ostream &operator<<( llvm::raw_ostream &o, const ImplicitRules &implicitRules) { o << "ImplicitRules:\n"; for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) { ShowImplicitRule(o, implicitRules, ch); } ShowImplicitRule(o, implicitRules, '_'); ShowImplicitRule(o, implicitRules, '$'); ShowImplicitRule(o, implicitRules, '@'); return o; } void ShowImplicitRule( llvm::raw_ostream &o, const ImplicitRules &implicitRules, char ch) { auto it{implicitRules.map_.find(ch)}; if (it != implicitRules.map_.end()) { o << " " << ch << ": " << *it->second << '\n'; } } template void BaseVisitor::Walk(const T &x) { parser::Walk(x, *this_); } void BaseVisitor::MakePlaceholder( const parser::Name &name, MiscDetails::Kind kind) { if (!name.symbol) { name.symbol = &context_->globalScope().MakeSymbol( name.source, Attrs{}, MiscDetails{kind}); } } // AttrsVisitor implementation bool AttrsVisitor::BeginAttrs() { CHECK(!attrs_); attrs_ = std::make_optional(); return true; } Attrs AttrsVisitor::GetAttrs() { CHECK(attrs_); return *attrs_; } Attrs AttrsVisitor::EndAttrs() { Attrs result{GetAttrs()}; attrs_.reset(); passName_ = std::nullopt; bindName_.reset(); return result; } bool AttrsVisitor::SetPassNameOn(Symbol &symbol) { if (!passName_) { return false; } common::visit(common::visitors{ [&](ProcEntityDetails &x) { x.set_passName(*passName_); }, [&](ProcBindingDetails &x) { x.set_passName(*passName_); }, [](auto &) { common::die("unexpected pass name"); }, }, symbol.details()); return true; } void AttrsVisitor::SetBindNameOn(Symbol &symbol) { if (!attrs_ || !attrs_->test(Attr::BIND_C)) { return; } std::optional label{ evaluate::GetScalarConstantValue(bindName_)}; if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) { if (label) { // C1552: no NAME= allowed even if null Say(symbol.name(), "An internal procedure may not have a BIND(C,NAME=) binding label"_err_en_US); } return; } // 18.9.2(2): discard leading and trailing blanks if (label) { auto first{label->find_first_not_of(" ")}; if (first == std::string::npos) { // Empty NAME= means no binding at all (18.10.2p2) return; } auto last{label->find_last_not_of(" ")}; label = label->substr(first, last - first + 1); } else { label = parser::ToLowerCaseLetters(symbol.name().ToString()); } // Check if a symbol has two Bind names. std::string oldBindName; if (symbol.GetBindName()) { oldBindName = *symbol.GetBindName(); } symbol.SetBindName(std::move(*label)); if (!oldBindName.empty()) { if (const std::string * newBindName{symbol.GetBindName()}) { if (oldBindName != *newBindName) { Say(symbol.name(), "The entity '%s' has multiple BIND names"_err_en_US); } } } } void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) { CHECK(attrs_); if (CheckAndSet(Attr::BIND_C)) { if (x.v) { bindName_ = EvaluateExpr(*x.v); } } } bool AttrsVisitor::Pre(const parser::IntentSpec &x) { CHECK(attrs_); CheckAndSet(IntentSpecToAttr(x)); return false; } bool AttrsVisitor::Pre(const parser::Pass &x) { if (CheckAndSet(Attr::PASS)) { if (x.v) { passName_ = x.v->source; MakePlaceholder(*x.v, MiscDetails::Kind::PassName); } } return false; } // C730, C743, C755, C778, C1543 say no attribute or prefix repetitions bool AttrsVisitor::IsDuplicateAttr(Attr attrName) { if (attrs_->test(attrName)) { Say(currStmtSource().value(), "Attribute '%s' cannot be used more than once"_warn_en_US, AttrToString(attrName)); return true; } return false; } // See if attrName violates a constraint cause by a conflict. attr1 and attr2 // name attributes that cannot be used on the same declaration bool AttrsVisitor::HaveAttrConflict(Attr attrName, Attr attr1, Attr attr2) { if ((attrName == attr1 && attrs_->test(attr2)) || (attrName == attr2 && attrs_->test(attr1))) { Say(currStmtSource().value(), "Attributes '%s' and '%s' conflict with each other"_err_en_US, AttrToString(attr1), AttrToString(attr2)); return true; } return false; } // C759, C1543 bool AttrsVisitor::IsConflictingAttr(Attr attrName) { return HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_INOUT) || HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_OUT) || HaveAttrConflict(attrName, Attr::INTENT_INOUT, Attr::INTENT_OUT) || HaveAttrConflict(attrName, Attr::PASS, Attr::NOPASS) || // C781 HaveAttrConflict(attrName, Attr::PURE, Attr::IMPURE) || HaveAttrConflict(attrName, Attr::PUBLIC, Attr::PRIVATE) || HaveAttrConflict(attrName, Attr::RECURSIVE, Attr::NON_RECURSIVE); } bool AttrsVisitor::CheckAndSet(Attr attrName) { CHECK(attrs_); if (IsConflictingAttr(attrName) || IsDuplicateAttr(attrName)) { return false; } attrs_->set(attrName); return true; } // DeclTypeSpecVisitor implementation const DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() { return state_.declTypeSpec; } void DeclTypeSpecVisitor::BeginDeclTypeSpec() { CHECK(!state_.expectDeclTypeSpec); CHECK(!state_.declTypeSpec); state_.expectDeclTypeSpec = true; } void DeclTypeSpecVisitor::EndDeclTypeSpec() { CHECK(state_.expectDeclTypeSpec); state_ = {}; } void DeclTypeSpecVisitor::SetDeclTypeSpecCategory( DeclTypeSpec::Category category) { CHECK(state_.expectDeclTypeSpec); state_.derived.category = category; } bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) { BeginDeclTypeSpec(); return true; } void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) { EndDeclTypeSpec(); } void DeclTypeSpecVisitor::Post(const parser::TypeSpec &typeSpec) { // Record the resolved DeclTypeSpec in the parse tree for use by // expression semantics if the DeclTypeSpec is a valid TypeSpec. // The grammar ensures that it's an intrinsic or derived type spec, // not TYPE(*) or CLASS(*) or CLASS(T). if (const DeclTypeSpec * spec{state_.declTypeSpec}) { switch (spec->category()) { case DeclTypeSpec::Numeric: case DeclTypeSpec::Logical: case DeclTypeSpec::Character: typeSpec.declTypeSpec = spec; break; case DeclTypeSpec::TypeDerived: if (const DerivedTypeSpec * derived{spec->AsDerived()}) { CheckForAbstractType(derived->typeSymbol()); // C703 typeSpec.declTypeSpec = spec; } break; default: CRASH_NO_CASE; } } } void DeclTypeSpecVisitor::Post( const parser::IntrinsicTypeSpec::DoublePrecision &) { MakeNumericType(TypeCategory::Real, context().doublePrecisionKind()); } void DeclTypeSpecVisitor::Post( const parser::IntrinsicTypeSpec::DoubleComplex &) { MakeNumericType(TypeCategory::Complex, context().doublePrecisionKind()); } void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) { SetDeclTypeSpec(context().MakeNumericType(category, kind)); } void DeclTypeSpecVisitor::CheckForAbstractType(const Symbol &typeSymbol) { if (typeSymbol.attrs().test(Attr::ABSTRACT)) { Say("ABSTRACT derived type may not be used here"_err_en_US); } } void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) { SetDeclTypeSpec(context().globalScope().MakeClassStarType()); } void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) { SetDeclTypeSpec(context().globalScope().MakeTypeStarType()); } // Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet) // and save it in state_.declTypeSpec. void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) { CHECK(state_.expectDeclTypeSpec); CHECK(!state_.declTypeSpec); state_.declTypeSpec = &declTypeSpec; } KindExpr DeclTypeSpecVisitor::GetKindParamExpr( TypeCategory category, const std::optional &kind) { return AnalyzeKindSelector(context(), category, kind); } // MessageHandler implementation Message &MessageHandler::Say(MessageFixedText &&msg) { return context_->Say(currStmtSource().value(), std::move(msg)); } Message &MessageHandler::Say(MessageFormattedText &&msg) { return context_->Say(currStmtSource().value(), std::move(msg)); } Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) { return Say(name, std::move(msg), name); } // ImplicitRulesVisitor implementation void ImplicitRulesVisitor::Post(const parser::ParameterStmt &) { prevParameterStmt_ = currStmtSource(); } bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) { bool result{ common::visit(common::visitors{ [&](const std::list &y) { return HandleImplicitNone(y); }, [&](const std::list &) { if (prevImplicitNoneType_) { Say("IMPLICIT statement after IMPLICIT NONE or " "IMPLICIT NONE(TYPE) statement"_err_en_US); return false; } implicitRules_->set_isImplicitNoneType(false); return true; }, }, x.u)}; prevImplicit_ = currStmtSource(); return result; } bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) { auto loLoc{std::get(x.t)}; auto hiLoc{loLoc}; if (auto hiLocOpt{std::get>(x.t)}) { hiLoc = *hiLocOpt; if (*hiLoc < *loLoc) { Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US, std::string(hiLoc, 1), std::string(loLoc, 1)); return false; } } implicitRules_->SetTypeMapping(*GetDeclTypeSpec(), loLoc, hiLoc); return false; } bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) { BeginDeclTypeSpec(); set_allowForwardReferenceToDerivedType(true); return true; } void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) { EndDeclTypeSpec(); } void ImplicitRulesVisitor::SetScope(const Scope &scope) { implicitRules_ = &DEREF(implicitRulesMap_).at(&scope); prevImplicit_ = std::nullopt; prevImplicitNone_ = std::nullopt; prevImplicitNoneType_ = std::nullopt; prevParameterStmt_ = std::nullopt; } void ImplicitRulesVisitor::BeginScope(const Scope &scope) { // find or create implicit rules for this scope DEREF(implicitRulesMap_).try_emplace(&scope, context(), implicitRules_); SetScope(scope); } // TODO: for all of these errors, reference previous statement too bool ImplicitRulesVisitor::HandleImplicitNone( const std::list &nameSpecs) { if (prevImplicitNone_) { Say("More than one IMPLICIT NONE statement"_err_en_US); Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US); return false; } if (prevParameterStmt_) { Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US); return false; } prevImplicitNone_ = currStmtSource(); bool implicitNoneTypeNever{ context().IsEnabled(common::LanguageFeature::ImplicitNoneTypeNever)}; if (nameSpecs.empty()) { if (!implicitNoneTypeNever) { prevImplicitNoneType_ = currStmtSource(); implicitRules_->set_isImplicitNoneType(true); if (prevImplicit_) { Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US); return false; } } } else { int sawType{0}; int sawExternal{0}; for (const auto noneSpec : nameSpecs) { switch (noneSpec) { case ImplicitNoneNameSpec::External: implicitRules_->set_isImplicitNoneExternal(true); ++sawExternal; break; case ImplicitNoneNameSpec::Type: if (!implicitNoneTypeNever) { prevImplicitNoneType_ = currStmtSource(); implicitRules_->set_isImplicitNoneType(true); if (prevImplicit_) { Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US); return false; } ++sawType; } break; } } if (sawType > 1) { Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US); return false; } if (sawExternal > 1) { Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US); return false; } } return true; } // ArraySpecVisitor implementation void ArraySpecVisitor::Post(const parser::ArraySpec &x) { CHECK(arraySpec_.empty()); arraySpec_ = AnalyzeArraySpec(context(), x); } void ArraySpecVisitor::Post(const parser::ComponentArraySpec &x) { CHECK(arraySpec_.empty()); arraySpec_ = AnalyzeArraySpec(context(), x); } void ArraySpecVisitor::Post(const parser::CoarraySpec &x) { CHECK(coarraySpec_.empty()); coarraySpec_ = AnalyzeCoarraySpec(context(), x); } const ArraySpec &ArraySpecVisitor::arraySpec() { return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_; } const ArraySpec &ArraySpecVisitor::coarraySpec() { return !coarraySpec_.empty() ? coarraySpec_ : attrCoarraySpec_; } void ArraySpecVisitor::BeginArraySpec() { CHECK(arraySpec_.empty()); CHECK(coarraySpec_.empty()); CHECK(attrArraySpec_.empty()); CHECK(attrCoarraySpec_.empty()); } void ArraySpecVisitor::EndArraySpec() { CHECK(arraySpec_.empty()); CHECK(coarraySpec_.empty()); attrArraySpec_.clear(); attrCoarraySpec_.clear(); } void ArraySpecVisitor::PostAttrSpec() { // Save dimension/codimension from attrs so we can process array/coarray-spec // on the entity-decl if (!arraySpec_.empty()) { if (attrArraySpec_.empty()) { attrArraySpec_ = arraySpec_; arraySpec_.clear(); } else { Say(currStmtSource().value(), "Attribute 'DIMENSION' cannot be used more than once"_err_en_US); } } if (!coarraySpec_.empty()) { if (attrCoarraySpec_.empty()) { attrCoarraySpec_ = coarraySpec_; coarraySpec_.clear(); } else { Say(currStmtSource().value(), "Attribute 'CODIMENSION' cannot be used more than once"_err_en_US); } } } // FuncResultStack implementation FuncResultStack::~FuncResultStack() { CHECK(stack_.empty()); } void FuncResultStack::CompleteFunctionResultType() { // If the function has a type in the prefix, process it now. FuncInfo *info{Top()}; if (info && &info->scope == &scopeHandler_.currScope()) { if (info->parsedType && info->resultSymbol) { scopeHandler_.messageHandler().set_currStmtSource(info->source); if (const auto *type{ scopeHandler_.ProcessTypeSpec(*info->parsedType, true)}) { Symbol &symbol{*info->resultSymbol}; if (!scopeHandler_.context().HasError(symbol)) { if (symbol.GetType()) { scopeHandler_.Say(symbol.name(), "Function cannot have both an explicit type prefix and a RESULT suffix"_err_en_US); scopeHandler_.context().SetError(symbol); } else { symbol.SetType(*type); } } } info->parsedType = nullptr; } } } // Called from ConvertTo{Object/Proc}Entity to cope with any appearance // of the function result in a specification expression. void FuncResultStack::CompleteTypeIfFunctionResult(Symbol &symbol) { if (FuncInfo * info{Top()}) { if (info->resultSymbol == &symbol) { CompleteFunctionResultType(); } } } void FuncResultStack::Pop() { if (!stack_.empty() && &stack_.back().scope == &scopeHandler_.currScope()) { stack_.pop_back(); } } // ScopeHandler implementation void ScopeHandler::SayAlreadyDeclared(const parser::Name &name, Symbol &prev) { SayAlreadyDeclared(name.source, prev); } void ScopeHandler::SayAlreadyDeclared(const SourceName &name, Symbol &prev) { if (context().HasError(prev)) { // don't report another error about prev } else { if (const auto *details{prev.detailsIf()}) { Say(name, "'%s' is already declared in this scoping unit"_err_en_US) .Attach(details->location(), "It is use-associated with '%s' in module '%s'"_en_US, details->symbol().name(), GetUsedModule(*details).name()); } else { SayAlreadyDeclared(name, prev.name()); } context().SetError(prev); } } void ScopeHandler::SayAlreadyDeclared( const SourceName &name1, const SourceName &name2) { if (name1.begin() < name2.begin()) { SayAlreadyDeclared(name2, name1); } else { Say(name1, "'%s' is already declared in this scoping unit"_err_en_US) .Attach(name2, "Previous declaration of '%s'"_en_US, name2); } } void ScopeHandler::SayWithReason(const parser::Name &name, Symbol &symbol, MessageFixedText &&msg1, Message &&msg2) { Say(name, std::move(msg1), symbol.name()).Attach(std::move(msg2)); context().SetError(symbol, msg1.isFatal()); } void ScopeHandler::SayWithDecl( const parser::Name &name, Symbol &symbol, MessageFixedText &&msg) { Say(name, std::move(msg), symbol.name()) .Attach(Message{name.source, symbol.test(Symbol::Flag::Implicit) ? "Implicit declaration of '%s'"_en_US : "Declaration of '%s'"_en_US, name.source}); context().SetError(symbol, msg.isFatal()); } void ScopeHandler::SayLocalMustBeVariable( const parser::Name &name, Symbol &symbol) { SayWithDecl(name, symbol, "The name '%s' must be a variable to appear" " in a locality-spec"_err_en_US); } void ScopeHandler::SayDerivedType( const SourceName &name, MessageFixedText &&msg, const Scope &type) { const Symbol &typeSymbol{DEREF(type.GetSymbol())}; Say(name, std::move(msg), name, typeSymbol.name()) .Attach(typeSymbol.name(), "Declaration of derived type '%s'"_en_US, typeSymbol.name()); } void ScopeHandler::Say2(const SourceName &name1, MessageFixedText &&msg1, const SourceName &name2, MessageFixedText &&msg2) { Say(name1, std::move(msg1)).Attach(name2, std::move(msg2), name2); } void ScopeHandler::Say2(const SourceName &name, MessageFixedText &&msg1, Symbol &symbol, MessageFixedText &&msg2) { Say2(name, std::move(msg1), symbol.name(), std::move(msg2)); context().SetError(symbol, msg1.isFatal()); } void ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1, Symbol &symbol, MessageFixedText &&msg2) { Say2(name.source, std::move(msg1), symbol.name(), std::move(msg2)); context().SetError(symbol, msg1.isFatal()); } // This is essentially GetProgramUnitContaining(), but it can return // a mutable Scope &, it ignores statement functions, and it fails // gracefully for error recovery (returning the original Scope). template static T &GetInclusiveScope(T &scope) { for (T *s{&scope}; !s->IsGlobal(); s = &s->parent()) { switch (s->kind()) { case Scope::Kind::Module: case Scope::Kind::MainProgram: case Scope::Kind::Subprogram: case Scope::Kind::BlockData: if (!s->IsStmtFunction()) { return *s; } break; default:; } } return scope; } Scope &ScopeHandler::InclusiveScope() { return GetInclusiveScope(currScope()); } Scope *ScopeHandler::GetHostProcedure() { Scope &parent{InclusiveScope().parent()}; switch (parent.kind()) { case Scope::Kind::Subprogram: return &parent; case Scope::Kind::MainProgram: return &parent; default: return nullptr; } } Scope &ScopeHandler::NonDerivedTypeScope() { return currScope_->IsDerivedType() ? currScope_->parent() : *currScope_; } void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) { PushScope(currScope().MakeScope(kind, symbol)); } void ScopeHandler::PushScope(Scope &scope) { currScope_ = &scope; auto kind{currScope_->kind()}; if (kind != Scope::Kind::BlockConstruct && kind != Scope::Kind::OtherConstruct) { BeginScope(scope); } // The name of a module or submodule cannot be "used" in its scope, // as we read 19.3.1(2), so we allow the name to be used as a local // identifier in the module or submodule too. Same with programs // (14.1(3)) and BLOCK DATA. if (!currScope_->IsDerivedType() && kind != Scope::Kind::Module && kind != Scope::Kind::MainProgram && kind != Scope::Kind::BlockData) { if (auto *symbol{scope.symbol()}) { // Create a dummy symbol so we can't create another one with the same // name. It might already be there if we previously pushed the scope. SourceName name{symbol->name()}; if (!FindInScope(scope, name)) { auto &newSymbol{MakeSymbol(name)}; if (kind == Scope::Kind::Subprogram) { // Allow for recursive references. If this symbol is a function // without an explicit RESULT(), this new symbol will be discarded // and replaced with an object of the same name. newSymbol.set_details(HostAssocDetails{*symbol}); } else { newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName}); } } } } } void ScopeHandler::PopScope() { // Entities that are not yet classified as objects or procedures are now // assumed to be objects. // TODO: Statement functions for (auto &pair : currScope()) { ConvertToObjectEntity(*pair.second); } funcResultStack_.Pop(); // If popping back into a global scope, pop back to the main global scope. SetScope(currScope_->parent().IsGlobal() ? context().globalScope() : currScope_->parent()); } void ScopeHandler::SetScope(Scope &scope) { currScope_ = &scope; ImplicitRulesVisitor::SetScope(InclusiveScope()); } Symbol *ScopeHandler::FindSymbol(const parser::Name &name) { return FindSymbol(currScope(), name); } Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) { if (scope.IsDerivedType()) { if (Symbol * symbol{scope.FindComponent(name.source)}) { if (symbol->has()) { return Resolve(name, symbol); } } return FindSymbol(scope.parent(), name); } else { // In EQUIVALENCE statements only resolve names in the local scope, see // 19.5.1.4, paragraph 2, item (10) return Resolve(name, inEquivalenceStmt_ ? FindInScope(scope, name) : scope.FindSymbol(name.source)); } } Symbol &ScopeHandler::MakeSymbol( Scope &scope, const SourceName &name, Attrs attrs) { if (Symbol * symbol{FindInScope(scope, name)}) { CheckDuplicatedAttrs(name, *symbol, attrs); SetExplicitAttrs(*symbol, attrs); return *symbol; } else { const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})}; CHECK(pair.second); // name was not found, so must be able to add return *pair.first->second; } } Symbol &ScopeHandler::MakeSymbol(const SourceName &name, Attrs attrs) { return MakeSymbol(currScope(), name, attrs); } Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) { return Resolve(name, MakeSymbol(name.source, attrs)); } Symbol &ScopeHandler::MakeHostAssocSymbol( const parser::Name &name, const Symbol &hostSymbol) { Symbol &symbol{*NonDerivedTypeScope() .try_emplace(name.source, HostAssocDetails{hostSymbol}) .first->second}; name.symbol = &symbol; symbol.attrs() = hostSymbol.attrs(); // TODO: except PRIVATE, PUBLIC? symbol.flags() = hostSymbol.flags(); return symbol; } Symbol &ScopeHandler::CopySymbol(const SourceName &name, const Symbol &symbol) { CHECK(!FindInScope(name)); return MakeSymbol(currScope(), name, symbol.attrs()); } // Look for name only in scope, not in enclosing scopes. Symbol *ScopeHandler::FindInScope( const Scope &scope, const parser::Name &name) { return Resolve(name, FindInScope(scope, name.source)); } Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) { // all variants of names, e.g. "operator(.ne.)" for "operator(/=)" for (const std::string &n : GetAllNames(context(), name)) { auto it{scope.find(SourceName{n})}; if (it != scope.end()) { return &*it->second; } } return nullptr; } // Find a component or type parameter by name in a derived type or its parents. Symbol *ScopeHandler::FindInTypeOrParents( const Scope &scope, const parser::Name &name) { return Resolve(name, scope.FindComponent(name.source)); } Symbol *ScopeHandler::FindInTypeOrParents(const parser::Name &name) { return FindInTypeOrParents(currScope(), name); } void ScopeHandler::EraseSymbol(const parser::Name &name) { currScope().erase(name.source); name.symbol = nullptr; } static bool NeedsType(const Symbol &symbol) { return !symbol.GetType() && common::visit(common::visitors{ [](const EntityDetails &) { return true; }, [](const ObjectEntityDetails &) { return true; }, [](const AssocEntityDetails &) { return true; }, [&](const ProcEntityDetails &p) { return symbol.test(Symbol::Flag::Function) && !symbol.attrs().test(Attr::INTRINSIC) && !p.interface().type() && !p.interface().symbol(); }, [](const auto &) { return false; }, }, symbol.details()); } void ScopeHandler::ApplyImplicitRules( Symbol &symbol, bool allowForwardReference) { funcResultStack_.CompleteTypeIfFunctionResult(symbol); if (context().HasError(symbol) || !NeedsType(symbol)) { return; } if (const DeclTypeSpec * type{GetImplicitType(symbol)}) { symbol.set(Symbol::Flag::Implicit); symbol.SetType(*type); return; } if (symbol.has() && !symbol.attrs().test(Attr::EXTERNAL)) { std::optional functionOrSubroutineFlag; if (symbol.test(Symbol::Flag::Function)) { functionOrSubroutineFlag = Symbol::Flag::Function; } else if (symbol.test(Symbol::Flag::Subroutine)) { functionOrSubroutineFlag = Symbol::Flag::Subroutine; } if (IsIntrinsic(symbol.name(), functionOrSubroutineFlag)) { // type will be determined in expression semantics AcquireIntrinsicProcedureFlags(symbol); return; } } if (allowForwardReference && ImplicitlyTypeForwardRef(symbol)) { return; } if (!context().HasError(symbol)) { Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US); context().SetError(symbol); } } // Extension: Allow forward references to scalar integer dummy arguments // to appear in specification expressions under IMPLICIT NONE(TYPE) when // what would otherwise have been their implicit type is default INTEGER. bool ScopeHandler::ImplicitlyTypeForwardRef(Symbol &symbol) { if (!inSpecificationPart_ || context().HasError(symbol) || !IsDummy(symbol) || symbol.Rank() != 0 || !context().languageFeatures().IsEnabled( common::LanguageFeature::ForwardRefDummyImplicitNone)) { return false; } const DeclTypeSpec *type{ GetImplicitType(symbol, false /*ignore IMPLICIT NONE*/)}; if (!type || !type->IsNumeric(TypeCategory::Integer)) { return false; } auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())}; if (!kind || *kind != context().GetDefaultKind(TypeCategory::Integer)) { return false; } if (!ConvertToObjectEntity(symbol)) { return false; } // TODO: check no INTENT(OUT)? if (context().languageFeatures().ShouldWarn( common::LanguageFeature::ForwardRefDummyImplicitNone)) { Say(symbol.name(), "Dummy argument '%s' was used without being explicitly typed"_warn_en_US, symbol.name()); } symbol.set(Symbol::Flag::Implicit); symbol.SetType(*type); return true; } // Ensure that the symbol for an intrinsic procedure is marked with // the INTRINSIC attribute. Also set PURE &/or ELEMENTAL as // appropriate. void ScopeHandler::AcquireIntrinsicProcedureFlags(Symbol &symbol) { SetImplicitAttr(symbol, Attr::INTRINSIC); switch (context().intrinsics().GetIntrinsicClass(symbol.name().ToString())) { case evaluate::IntrinsicClass::elementalFunction: case evaluate::IntrinsicClass::elementalSubroutine: SetExplicitAttr(symbol, Attr::ELEMENTAL); SetExplicitAttr(symbol, Attr::PURE); break; case evaluate::IntrinsicClass::impureSubroutine: break; default: SetExplicitAttr(symbol, Attr::PURE); } } const DeclTypeSpec *ScopeHandler::GetImplicitType( Symbol &symbol, bool respectImplicitNoneType) { const Scope *scope{&symbol.owner()}; if (scope->IsGlobal()) { scope = &currScope(); } scope = &GetInclusiveScope(*scope); const auto *type{implicitRulesMap_->at(scope).GetType( symbol.name(), respectImplicitNoneType)}; if (type) { if (const DerivedTypeSpec * derived{type->AsDerived()}) { // Resolve any forward-referenced derived type; a quick no-op else. auto &instantiatable{*const_cast(derived)}; instantiatable.Instantiate(currScope()); } } return type; } // Convert symbol to be a ObjectEntity or return false if it can't be. bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) { if (symbol.has()) { // nothing to do } else if (symbol.has()) { symbol.set_details(ObjectEntityDetails{}); } else if (auto *details{symbol.detailsIf()}) { funcResultStack_.CompleteTypeIfFunctionResult(symbol); symbol.set_details(ObjectEntityDetails{std::move(*details)}); } else if (auto *useDetails{symbol.detailsIf()}) { return useDetails->symbol().has(); } else if (auto *hostDetails{symbol.detailsIf()}) { return hostDetails->symbol().has(); } else { return false; } return true; } // Convert symbol to be a ProcEntity or return false if it can't be. bool ScopeHandler::ConvertToProcEntity(Symbol &symbol) { if (symbol.has()) { // nothing to do } else if (symbol.has()) { symbol.set_details(ProcEntityDetails{}); } else if (auto *details{symbol.detailsIf()}) { if (IsFunctionResult(symbol) && !(IsPointer(symbol) && symbol.attrs().test(Attr::EXTERNAL))) { // Don't turn function result into a procedure pointer unless both // POUNTER and EXTERNAL return false; } funcResultStack_.CompleteTypeIfFunctionResult(symbol); symbol.set_details(ProcEntityDetails{std::move(*details)}); if (symbol.GetType() && !symbol.test(Symbol::Flag::Implicit)) { CHECK(!symbol.test(Symbol::Flag::Subroutine)); symbol.set(Symbol::Flag::Function); } } else if (auto *useDetails{symbol.detailsIf()}) { return useDetails->symbol().has(); } else if (auto *hostDetails{symbol.detailsIf()}) { return hostDetails->symbol().has(); } else { return false; } return true; } const DeclTypeSpec &ScopeHandler::MakeNumericType( TypeCategory category, const std::optional &kind) { KindExpr value{GetKindParamExpr(category, kind)}; if (auto known{evaluate::ToInt64(value)}) { return MakeNumericType(category, static_cast(*known)); } else { return currScope_->MakeNumericType(category, std::move(value)); } } const DeclTypeSpec &ScopeHandler::MakeNumericType( TypeCategory category, int kind) { return context().MakeNumericType(category, kind); } const DeclTypeSpec &ScopeHandler::MakeLogicalType( const std::optional &kind) { KindExpr value{GetKindParamExpr(TypeCategory::Logical, kind)}; if (auto known{evaluate::ToInt64(value)}) { return MakeLogicalType(static_cast(*known)); } else { return currScope_->MakeLogicalType(std::move(value)); } } const DeclTypeSpec &ScopeHandler::MakeLogicalType(int kind) { return context().MakeLogicalType(kind); } void ScopeHandler::NotePossibleBadForwardRef(const parser::Name &name) { if (inSpecificationPart_ && name.symbol) { auto kind{currScope().kind()}; if ((kind == Scope::Kind::Subprogram && !currScope().IsStmtFunction()) || kind == Scope::Kind::BlockConstruct) { bool isHostAssociated{&name.symbol->owner() == &currScope() ? name.symbol->has() : name.symbol->owner().Contains(currScope())}; if (isHostAssociated) { specPartState_.forwardRefs.insert(name.source); } } } } std::optional ScopeHandler::HadForwardRef( const Symbol &symbol) const { auto iter{specPartState_.forwardRefs.find(symbol.name())}; if (iter != specPartState_.forwardRefs.end()) { return *iter; } return std::nullopt; } bool ScopeHandler::CheckPossibleBadForwardRef(const Symbol &symbol) { if (!context().HasError(symbol)) { if (auto fwdRef{HadForwardRef(symbol)}) { const Symbol *outer{symbol.owner().FindSymbol(symbol.name())}; if (outer && symbol.has() && &symbol.GetUltimate() == &outer->GetUltimate()) { // e.g. IMPORT of host's USE association return false; } Say(*fwdRef, "Forward reference to '%s' is not allowed in the same specification part"_err_en_US, *fwdRef) .Attach(symbol.name(), "Later declaration of '%s'"_en_US, *fwdRef); context().SetError(symbol); return true; } if (IsDummy(symbol) && isImplicitNoneType() && symbol.test(Symbol::Flag::Implicit) && !context().HasError(symbol)) { // Dummy was implicitly typed despite IMPLICIT NONE(TYPE) in // ApplyImplicitRules() due to use in a specification expression, // and no explicit type declaration appeared later. Say(symbol.name(), "No explicit type declared for dummy argument '%s'"_err_en_US); context().SetError(symbol); return true; } } return false; } void ScopeHandler::MakeExternal(Symbol &symbol) { if (!symbol.attrs().test(Attr::EXTERNAL)) { SetImplicitAttr(symbol, Attr::EXTERNAL); if (symbol.attrs().test(Attr::INTRINSIC)) { // C840 Say(symbol.name(), "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US, symbol.name()); } } } bool ScopeHandler::CheckDuplicatedAttr( SourceName name, const Symbol &symbol, Attr attr) { if (attr == Attr::SAVE || attr == Attr::BIND_C) { // these are checked elsewhere } else if (symbol.attrs().test(attr)) { // C815 if (symbol.implicitAttrs().test(attr)) { // Implied attribute is now confirmed explicitly } else { Say(name, "%s attribute was already specified on '%s'"_err_en_US, EnumToString(attr), name); return false; } } return true; } bool ScopeHandler::CheckDuplicatedAttrs( SourceName name, const Symbol &symbol, Attrs attrs) { bool ok{true}; attrs.IterateOverMembers( [&](Attr x) { ok &= CheckDuplicatedAttr(name, symbol, x); }); return ok; } // ModuleVisitor implementation bool ModuleVisitor::Pre(const parser::Only &x) { common::visit(common::visitors{ [&](const Indirection &generic) { GenericSpecInfo genericSpecInfo{generic.value()}; AddUseOnly(genericSpecInfo.symbolName()); AddUse(genericSpecInfo); }, [&](const parser::Name &name) { AddUseOnly(name.source); Resolve(name, AddUse(name.source, name.source).use); }, [&](const parser::Rename &rename) { Walk(rename); }, }, x.u); return false; } bool ModuleVisitor::Pre(const parser::Rename::Names &x) { const auto &localName{std::get<0>(x.t)}; const auto &useName{std::get<1>(x.t)}; AddUseRename(useName.source); SymbolRename rename{AddUse(localName.source, useName.source)}; if (rename.use) { EraseRenamedSymbol(*rename.use); } Resolve(useName, rename.use); Resolve(localName, rename.local); return false; } bool ModuleVisitor::Pre(const parser::Rename::Operators &x) { const parser::DefinedOpName &local{std::get<0>(x.t)}; const parser::DefinedOpName &use{std::get<1>(x.t)}; GenericSpecInfo localInfo{local}; GenericSpecInfo useInfo{use}; if (IsIntrinsicOperator(context(), local.v.source)) { Say(local.v, "Intrinsic operator '%s' may not be used as a defined operator"_err_en_US); } else if (IsLogicalConstant(context(), local.v.source)) { Say(local.v, "Logical constant '%s' may not be used as a defined operator"_err_en_US); } else { SymbolRename rename{AddUse(localInfo.symbolName(), useInfo.symbolName())}; if (rename.use) { EraseRenamedSymbol(*rename.use); } useInfo.Resolve(rename.use); localInfo.Resolve(rename.local); } return false; } // Set useModuleScope_ to the Scope of the module being used. bool ModuleVisitor::Pre(const parser::UseStmt &x) { std::optional isIntrinsic; if (x.nature) { isIntrinsic = *x.nature == parser::UseStmt::ModuleNature::Intrinsic; AddAndCheckExplicitIntrinsicUse(x.moduleName.source, *isIntrinsic); } else if (currScope().IsModule() && currScope().symbol() && currScope().symbol()->attrs().test(Attr::INTRINSIC)) { // Intrinsic modules USE only other intrinsic modules isIntrinsic = true; } useModuleScope_ = FindModule(x.moduleName, isIntrinsic); if (!useModuleScope_) { return false; } // use the name from this source file useModuleScope_->symbol()->ReplaceName(x.moduleName.source); return true; } void ModuleVisitor::Post(const parser::UseStmt &x) { if (const auto *list{std::get_if>(&x.u)}) { // Not a use-only: collect the names that were used in renames, // then add a use for each public name that was not renamed. std::set useNames; for (const auto &rename : *list) { common::visit(common::visitors{ [&](const parser::Rename::Names &names) { useNames.insert(std::get<1>(names.t).source); }, [&](const parser::Rename::Operators &ops) { useNames.insert(std::get<1>(ops.t).v.source); }, }, rename.u); } for (const auto &[name, symbol] : *useModuleScope_) { if (symbol->attrs().test(Attr::PUBLIC) && !IsUseRenamed(symbol->name()) && (!symbol->attrs().test(Attr::INTRINSIC) || symbol->has()) && !symbol->has() && useNames.count(name) == 0) { SourceName location{x.moduleName.source}; if (auto *localSymbol{FindInScope(name)}) { DoAddUse(location, localSymbol->name(), *localSymbol, *symbol); } else { DoAddUse(location, location, CopySymbol(name, *symbol), *symbol); } } } } useModuleScope_ = nullptr; } ModuleVisitor::SymbolRename ModuleVisitor::AddUse( const SourceName &localName, const SourceName &useName) { return AddUse(localName, useName, FindInScope(*useModuleScope_, useName)); } ModuleVisitor::SymbolRename ModuleVisitor::AddUse( const SourceName &localName, const SourceName &useName, Symbol *useSymbol) { if (!useModuleScope_) { return {}; // error occurred finding module } if (!useSymbol) { Say(useName, "'%s' not found in module '%s'"_err_en_US, MakeOpName(useName), useModuleScope_->GetName().value()); return {}; } if (useSymbol->attrs().test(Attr::PRIVATE) && !FindModuleFileContaining(currScope())) { // Privacy is not enforced in module files so that generic interfaces // can be resolved to private specific procedures in specification // expressions. Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, MakeOpName(useName), useModuleScope_->GetName().value()); return {}; } auto &localSymbol{MakeSymbol(localName)}; DoAddUse(useName, localName, localSymbol, *useSymbol); return {&localSymbol, useSymbol}; } // symbol must be either a Use or a Generic formed by merging two uses. // Convert it to a UseError with this additional location. static bool ConvertToUseError( Symbol &symbol, const SourceName &location, const Scope &module) { const auto *useDetails{symbol.detailsIf()}; if (!useDetails) { if (auto *genericDetails{symbol.detailsIf()}) { if (!genericDetails->uses().empty()) { useDetails = &genericDetails->uses().at(0)->get(); } } } if (useDetails) { symbol.set_details( UseErrorDetails{*useDetails}.add_occurrence(location, module)); return true; } else { return false; } } // If a symbol has previously been USE-associated and did not appear in a USE // ONLY clause, erase it from the current scope. This is needed when a name // appears in a USE rename clause. void ModuleVisitor::EraseRenamedSymbol(const Symbol &useSymbol) { const SourceName &name{useSymbol.name()}; if (const Symbol * symbol{FindInScope(name)}) { if (auto *useDetails{symbol->detailsIf()}) { const Symbol &moduleSymbol{useDetails->symbol()}; if (moduleSymbol.name() == name && moduleSymbol.owner() == useSymbol.owner() && IsUseRenamed(name) && !IsUseOnly(name)) { EraseSymbol(*symbol); } } } } void ModuleVisitor::DoAddUse(SourceName location, SourceName localName, Symbol &localSymbol, const Symbol &useSymbol) { if (localName != useSymbol.name()) { EraseRenamedSymbol(useSymbol); } if (auto *details{localSymbol.detailsIf()}) { details->add_occurrence(location, *useModuleScope_); return; } if (localSymbol.has()) { localSymbol.set_details(UseDetails{localName, useSymbol}); localSymbol.attrs() = useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}; localSymbol.implicitAttrs() = localSymbol.attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE}; localSymbol.flags() = useSymbol.flags(); return; } Symbol &localUltimate{localSymbol.GetUltimate()}; const Symbol &useUltimate{useSymbol.GetUltimate()}; if (&localUltimate == &useUltimate) { // use-associating the same symbol again -- ok return; } auto checkAmbiguousDerivedType{[this, location, localName]( const Symbol *t1, const Symbol *t2) { if (!t1 || !t2) { return true; } else { t1 = &t1->GetUltimate(); t2 = &t2->GetUltimate(); if (&t1 != &t2) { Say(location, "Generic interface '%s' has ambiguous derived types from modules '%s' and '%s'"_err_en_US, localName, t1->owner().GetName().value(), t2->owner().GetName().value()); return false; } } }}; auto *localGeneric{localUltimate.detailsIf()}; const auto *useGeneric{useUltimate.detailsIf()}; auto combine{false}; if (localGeneric) { if (useGeneric) { if (!checkAmbiguousDerivedType( localGeneric->derivedType(), useGeneric->derivedType())) { return; } combine = true; } else if (useUltimate.has()) { if (checkAmbiguousDerivedType( &useUltimate, localGeneric->derivedType())) { combine = true; } else { return; } } else if (&useUltimate == &BypassGeneric(localUltimate).GetUltimate()) { return; // nothing to do; used subprogram is local's specific } } else if (useGeneric) { if (localUltimate.has()) { if (checkAmbiguousDerivedType( &localUltimate, useGeneric->derivedType())) { combine = true; } else { return; } } else if (&localUltimate == &BypassGeneric(useUltimate).GetUltimate()) { // Local is the specific of the used generic; replace it. EraseSymbol(localSymbol); Symbol &newSymbol{MakeSymbol(localName, useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}, UseDetails{localName, useUltimate})}; newSymbol.flags() = useSymbol.flags(); return; } } else { auto localClass{ClassifyProcedure(localUltimate)}; auto useClass{ClassifyProcedure(useUltimate)}; if (localClass == useClass && (localClass == ProcedureDefinitionClass::Intrinsic || localClass == ProcedureDefinitionClass::External) && localUltimate.name() == useUltimate.name()) { auto localChars{evaluate::characteristics::Procedure::Characterize( localUltimate, GetFoldingContext())}; auto useChars{evaluate::characteristics::Procedure::Characterize( useUltimate, GetFoldingContext())}; if (localChars && useChars) { if (*localChars == *useChars) { // Same intrinsic or external procedure defined identically in two // modules return; } } } } if (!combine) { if (!ConvertToUseError(localSymbol, location, *useModuleScope_)) { Say(location, "Cannot use-associate '%s'; it is already declared in this scope"_err_en_US, localName) .Attach(localSymbol.name(), "Previous declaration of '%s'"_en_US, localName); } return; } // Two items are being use-associated from different modules // to the same local name. At least one of them must be a generic, // and the other one can be a generic or a derived type. // (It could also have been the specific of the generic, but those // cases are handled above without needing to make a local copy of the // generic.) if (localGeneric) { if (localSymbol.has()) { // Create a local copy of a previously use-associated generic so that // it can be locally extended without corrupting the original. GenericDetails generic; generic.CopyFrom(*localGeneric); if (localGeneric->specific()) { generic.set_specific(*localGeneric->specific()); } EraseSymbol(localSymbol); Symbol &newSymbol{MakeSymbol( localSymbol.name(), localSymbol.attrs(), std::move(generic))}; newSymbol.flags() = localSymbol.flags(); localGeneric = &newSymbol.get(); localGeneric->AddUse(localSymbol); } if (useGeneric) { // Combine two use-associated generics localSymbol.attrs() = useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}; localSymbol.flags() = useSymbol.flags(); AddGenericUse(*localGeneric, localName, useUltimate); localGeneric->CopyFrom(*useGeneric); if (useGeneric->specific()) { if (!localGeneric->specific()) { localGeneric->set_specific( *const_cast(useGeneric->specific())); } else if (&localGeneric->specific()->GetUltimate() != &useGeneric->specific()->GetUltimate()) { Say(location, "Cannot use-associate generic interface '%s' with specific procedure of the same name when another such generic is in scope"_err_en_US, localName) .Attach( localSymbol.name(), "Previous USE of '%s'"_en_US, localName); } } } else { CHECK(useUltimate.has()); localGeneric->set_derivedType( AddGenericUse(*localGeneric, localName, useUltimate)); } } else { CHECK(useGeneric && localUltimate.has()); CHECK(localSymbol.has()); // Create a local copy of the use-associated generic, then extend it // with the local derived type. GenericDetails generic; generic.CopyFrom(*useGeneric); if (useGeneric->specific()) { generic.set_specific(*const_cast(useGeneric->specific())); } EraseSymbol(localSymbol); Symbol &newSymbol{MakeSymbol(localName, useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}, std::move(generic))}; newSymbol.flags() = useUltimate.flags(); auto &newUseGeneric{newSymbol.get()}; AddGenericUse(newUseGeneric, localName, useUltimate); newUseGeneric.AddUse(localSymbol); newUseGeneric.set_derivedType(localSymbol); } } void ModuleVisitor::AddUse(const GenericSpecInfo &info) { if (useModuleScope_) { const auto &name{info.symbolName()}; auto rename{AddUse(name, name, FindInScope(*useModuleScope_, name))}; info.Resolve(rename.use); } } // Create a UseDetails symbol for this USE and add it to generic Symbol &ModuleVisitor::AddGenericUse( GenericDetails &generic, const SourceName &name, const Symbol &useSymbol) { Symbol &newSymbol{ currScope().MakeSymbol(name, {}, UseDetails{name, useSymbol})}; generic.AddUse(newSymbol); return newSymbol; } // Enforce C1406 void ModuleVisitor::AddAndCheckExplicitIntrinsicUse( SourceName name, bool isIntrinsic) { if (isIntrinsic) { if (auto iter{explicitNonIntrinsicUses_.find(name)}; iter != explicitNonIntrinsicUses_.end()) { Say(name, "Cannot USE,INTRINSIC module '%s' in the same scope as USE,NON_INTRINSIC"_err_en_US, name) .Attach(*iter, "Previous USE of '%s'"_en_US, *iter); } explicitIntrinsicUses_.insert(name); } else { if (auto iter{explicitIntrinsicUses_.find(name)}; iter != explicitIntrinsicUses_.end()) { Say(name, "Cannot USE,NON_INTRINSIC module '%s' in the same scope as USE,INTRINSIC"_err_en_US, name) .Attach(*iter, "Previous USE of '%s'"_en_US, *iter); } explicitNonIntrinsicUses_.insert(name); } } bool ModuleVisitor::BeginSubmodule( const parser::Name &name, const parser::ParentIdentifier &parentId) { const auto &ancestorName{std::get(parentId.t)}; Scope *parentScope{nullptr}; Scope *ancestor{FindModule(ancestorName, false /*not intrinsic*/)}; if (ancestor) { if (const auto &parentName{ std::get>(parentId.t)}) { parentScope = FindModule(*parentName, false /*not intrinsic*/, ancestor); } else { parentScope = ancestor; } } if (parentScope) { PushScope(*parentScope); } else { // Error recovery: there's no ancestor scope, so create a dummy one to // hold the submodule's scope. SourceName dummyName{context().GetTempName(currScope())}; Symbol &dummySymbol{MakeSymbol(dummyName, Attrs{}, ModuleDetails{false})}; PushScope(Scope::Kind::Module, &dummySymbol); parentScope = &currScope(); } BeginModule(name, true); if (ancestor && !ancestor->AddSubmodule(name.source, currScope())) { Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US, ancestorName.source, name.source); } return true; } void ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule) { auto &symbol{MakeSymbol(name, ModuleDetails{isSubmodule})}; auto &details{symbol.get()}; PushScope(Scope::Kind::Module, &symbol); details.set_scope(&currScope()); defaultAccess_ = Attr::PUBLIC; prevAccessStmt_ = std::nullopt; } // Find a module or submodule by name and return its scope. // If ancestor is present, look for a submodule of that ancestor module. // May have to read a .mod file to find it. // If an error occurs, report it and return nullptr. Scope *ModuleVisitor::FindModule(const parser::Name &name, std::optional isIntrinsic, Scope *ancestor) { ModFileReader reader{context()}; Scope *scope{reader.Read(name.source, isIntrinsic, ancestor)}; if (!scope) { return nullptr; } if (DoesScopeContain(scope, currScope())) { // 14.2.2(1) Say(name, "Module '%s' cannot USE itself"_err_en_US); } Resolve(name, scope->symbol()); return scope; } void ModuleVisitor::ApplyDefaultAccess() { for (auto &pair : currScope()) { Symbol &symbol = *pair.second; if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) { SetImplicitAttr(symbol, defaultAccess_); } } } // InterfaceVistor implementation bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) { bool isAbstract{std::holds_alternative(x.u)}; genericInfo_.emplace(/*isInterface*/ true, isAbstract); return BeginAttrs(); } void InterfaceVisitor::Post(const parser::InterfaceStmt &) { EndAttrs(); } void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) { genericInfo_.pop(); } // Create a symbol in genericSymbol_ for this GenericSpec. bool InterfaceVisitor::Pre(const parser::GenericSpec &x) { if (auto *symbol{FindInScope(GenericSpecInfo{x}.symbolName())}) { SetGenericSymbol(*symbol); } return false; } bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) { if (!isGeneric()) { Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US); return false; } auto kind{std::get(x.t)}; const auto &names{std::get>(x.t)}; AddSpecificProcs(names, kind); return false; } bool InterfaceVisitor::Pre(const parser::GenericStmt &) { genericInfo_.emplace(/*isInterface*/ false); return true; } void InterfaceVisitor::Post(const parser::GenericStmt &x) { if (auto &accessSpec{std::get>(x.t)}) { SetExplicitAttr(*GetGenericInfo().symbol, AccessSpecToAttr(*accessSpec)); } const auto &names{std::get>(x.t)}; AddSpecificProcs(names, ProcedureKind::Procedure); genericInfo_.pop(); } bool InterfaceVisitor::inInterfaceBlock() const { return !genericInfo_.empty() && GetGenericInfo().isInterface; } bool InterfaceVisitor::isGeneric() const { return !genericInfo_.empty() && GetGenericInfo().symbol; } bool InterfaceVisitor::isAbstract() const { return !genericInfo_.empty() && GetGenericInfo().isAbstract; } void InterfaceVisitor::AddSpecificProcs( const std::list &names, ProcedureKind kind) { for (const auto &name : names) { specificProcs_.emplace( GetGenericInfo().symbol, std::make_pair(&name, kind)); } } // By now we should have seen all specific procedures referenced by name in // this generic interface. Resolve those names to symbols. void InterfaceVisitor::ResolveSpecificsInGeneric(Symbol &generic) { auto &details{generic.get()}; UnorderedSymbolSet symbolsSeen; for (const Symbol &symbol : details.specificProcs()) { symbolsSeen.insert(symbol.GetUltimate()); } auto range{specificProcs_.equal_range(&generic)}; for (auto it{range.first}; it != range.second; ++it) { const parser::Name *name{it->second.first}; auto kind{it->second.second}; const auto *symbol{FindSymbol(*name)}; if (!symbol) { Say(*name, "Procedure '%s' not found"_err_en_US); continue; } // Subtlety: when *symbol is a use- or host-association, the specific // procedure that is recorded in the GenericDetails below must be *symbol, // not the specific procedure shadowed by a generic, because that specific // procedure may be a symbol from another module and its name unavailable to // emit to a module file. const Symbol &bypassed{BypassGeneric(*symbol)}; const Symbol &specific{ symbol == &symbol->GetUltimate() ? bypassed : *symbol}; const Symbol &ultimate{bypassed.GetUltimate()}; ProcedureDefinitionClass defClass{ClassifyProcedure(ultimate)}; if (defClass == ProcedureDefinitionClass::Module) { // ok } else if (kind == ProcedureKind::ModuleProcedure) { Say(*name, "'%s' is not a module procedure"_err_en_US); continue; } else { switch (defClass) { case ProcedureDefinitionClass::Intrinsic: case ProcedureDefinitionClass::External: case ProcedureDefinitionClass::Internal: break; case ProcedureDefinitionClass::None: Say(*name, "'%s' is not a procedure"_err_en_US); continue; default: Say(*name, "'%s' is not a procedure that can appear in a generic interface"_err_en_US); continue; } } if (symbolsSeen.insert(ultimate).second /*true if added*/) { // When a specific procedure is a USE association, that association // is saved in the generic's specifics, not its ultimate symbol, // so that module file output of interfaces can distinguish them. details.AddSpecificProc(specific, name->source); } else if (&specific == &ultimate) { Say(name->source, "Procedure '%s' is already specified in generic '%s'"_err_en_US, name->source, MakeOpName(generic.name())); } else { Say(name->source, "Procedure '%s' from module '%s' is already specified in generic '%s'"_err_en_US, ultimate.name(), ultimate.owner().GetName().value(), MakeOpName(generic.name())); } } specificProcs_.erase(range.first, range.second); } // Mixed interfaces are allowed by the standard. // If there is a derived type with the same name, they must all be functions. void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) { ResolveSpecificsInGeneric(generic); auto &details{generic.get()}; if (auto *proc{details.CheckSpecific()}) { auto msg{ "'%s' should not be the name of both a generic interface and a" " procedure unless it is a specific procedure of the generic"_warn_en_US}; if (proc->name().begin() > generic.name().begin()) { Say(proc->name(), std::move(msg)); } else { Say(generic.name(), std::move(msg)); } } auto &specifics{details.specificProcs()}; if (specifics.empty()) { if (details.derivedType()) { generic.set(Symbol::Flag::Function); } return; } const Symbol &firstSpecific{specifics.front()}; bool isFunction{firstSpecific.test(Symbol::Flag::Function)}; bool isBoth{false}; for (const Symbol &specific : specifics) { if (isFunction != specific.test(Symbol::Flag::Function)) { // C1514 auto &msg{Say(generic.name(), "Generic interface '%s' has both a function and a subroutine"_warn_en_US)}; if (isFunction) { msg.Attach(firstSpecific.name(), "Function declaration"_en_US); msg.Attach(specific.name(), "Subroutine declaration"_en_US); } else { msg.Attach(firstSpecific.name(), "Subroutine declaration"_en_US); msg.Attach(specific.name(), "Function declaration"_en_US); } isFunction = false; isBoth = true; break; } } if (!isFunction && details.derivedType()) { SayDerivedType(generic.name(), "Generic interface '%s' may only contain functions due to derived type" " with same name"_err_en_US, *details.derivedType()->GetUltimate().scope()); } if (!isBoth) { generic.set(isFunction ? Symbol::Flag::Function : Symbol::Flag::Subroutine); } } // SubprogramVisitor implementation // Return false if it is actually an assignment statement. bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) { const auto &name{std::get(x.t)}; const DeclTypeSpec *resultType{nullptr}; // Look up name: provides return type or tells us if it's an array if (auto *symbol{FindSymbol(name)}) { auto *details{symbol->detailsIf()}; if (!details || symbol->has() || symbol->has()) { badStmtFuncFound_ = true; return false; } // TODO: check that attrs are compatible with stmt func resultType = details->type(); symbol->details() = UnknownDetails{}; // will be replaced below } if (badStmtFuncFound_) { Say(name, "'%s' has not been declared as an array"_err_en_US); return false; } auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)}; symbol.set(Symbol::Flag::StmtFunction); EraseSymbol(symbol); // removes symbol added by PushSubprogramScope auto &details{symbol.get()}; for (const auto &dummyName : std::get>(x.t)) { ObjectEntityDetails dummyDetails{true}; if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) { if (auto *d{dummySymbol->detailsIf()}) { if (d->type()) { dummyDetails.set_type(*d->type()); } } } Symbol &dummy{MakeSymbol(dummyName, std::move(dummyDetails))}; ApplyImplicitRules(dummy); details.add_dummyArg(dummy); } ObjectEntityDetails resultDetails; if (resultType) { resultDetails.set_type(*resultType); } resultDetails.set_funcResult(true); Symbol &result{MakeSymbol(name, std::move(resultDetails))}; result.flags().set(Symbol::Flag::StmtFunction); ApplyImplicitRules(result); details.set_result(result); // The analysis of the expression that constitutes the body of the // statement function is deferred to FinishSpecificationPart() so that // all declarations and implicit typing are complete. PopScope(); return true; } bool SubprogramVisitor::Pre(const parser::Suffix &suffix) { if (suffix.resultName) { if (IsFunction(currScope())) { if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) { if (info->inFunctionStmt) { info->resultName = &suffix.resultName.value(); } else { // will check the result name in Post(EntryStmt) } } } else { Message &msg{Say(*suffix.resultName, "RESULT(%s) may appear only in a function"_err_en_US)}; if (const Symbol * subprogram{InclusiveScope().symbol()}) { msg.Attach(subprogram->name(), "Containing subprogram"_en_US); } } } // LanguageBindingSpec deferred to Post(EntryStmt) or, for FunctionStmt, // all the way to EndSubprogram(). return false; } bool SubprogramVisitor::Pre(const parser::PrefixSpec &x) { // Save this to process after UseStmt and ImplicitPart if (const auto *parsedType{std::get_if(&x.u)}) { FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())}; if (info.parsedType) { // C1543 Say(currStmtSource().value(), "FUNCTION prefix cannot specify the type more than once"_err_en_US); return false; } else { info.parsedType = parsedType; info.source = currStmtSource(); return false; } } else { return true; } } bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) { const auto &name{std::get( std::get>(x.t).statement.t)}; return BeginSubprogram(name, Symbol::Flag::Subroutine); } void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &x) { const auto &stmt{std::get>(x.t)}; EndSubprogram(stmt.source, &std::get>(stmt.statement.t)); } bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) { const auto &name{std::get( std::get>(x.t).statement.t)}; return BeginSubprogram(name, Symbol::Flag::Function); } void SubprogramVisitor::Post(const parser::InterfaceBody::Function &x) { const auto &stmt{std::get>(x.t)}; const auto &maybeSuffix{ std::get>(stmt.statement.t)}; EndSubprogram(stmt.source, maybeSuffix ? &maybeSuffix->binding : nullptr); } bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) { BeginAttrs(); Walk(std::get>(stmt.t)); Walk(std::get(stmt.t)); Walk(std::get>(stmt.t)); // Don't traverse the LanguageBindingSpec now; it's deferred to EndSubprogram. auto &details{PostSubprogramStmt()}; for (const auto &dummyArg : std::get>(stmt.t)) { if (const auto *dummyName{std::get_if(&dummyArg.u)}) { Symbol &dummy{MakeSymbol(*dummyName, EntityDetails{true})}; details.add_dummyArg(dummy); } else { details.add_alternateReturn(); } } return false; } bool SubprogramVisitor::Pre(const parser::FunctionStmt &) { FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())}; CHECK(!info.inFunctionStmt); info.inFunctionStmt = true; return BeginAttrs(); } bool SubprogramVisitor::Pre(const parser::EntryStmt &) { return BeginAttrs(); } void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) { const auto &name{std::get(stmt.t)}; auto &details{PostSubprogramStmt()}; for (const auto &dummyName : std::get>(stmt.t)) { Symbol &dummy{MakeSymbol(dummyName, EntityDetails{true})}; details.add_dummyArg(dummy); } const parser::Name *funcResultName; FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())}; CHECK(info.inFunctionStmt); info.inFunctionStmt = false; bool distinctResultName{ info.resultName && info.resultName->source != name.source}; if (distinctResultName) { // Note that RESULT is ignored if it has the same name as the function. // The symbol created by PushScope() is retained as a place-holder // for error detection. funcResultName = info.resultName; } else { EraseSymbol(name); // was added by PushScope() funcResultName = &name; } if (details.isFunction()) { CHECK(context().HasError(currScope().symbol())); } else { // RESULT(x) can be the same explicitly-named RESULT(x) as an ENTRY // statement. Symbol *result{nullptr}; if (distinctResultName) { if (auto iter{currScope().find(funcResultName->source)}; iter != currScope().end()) { Symbol &entryResult{*iter->second}; if (IsFunctionResult(entryResult)) { result = &entryResult; } } } if (result) { Resolve(*funcResultName, *result); } else { // add function result to function scope EntityDetails funcResultDetails; funcResultDetails.set_funcResult(true); result = &MakeSymbol(*funcResultName, std::move(funcResultDetails)); } info.resultSymbol = result; details.set_result(*result); } // C1560. if (info.resultName && !distinctResultName) { Say(info.resultName->source, "The function name should not appear in RESULT, references to '%s' " "inside the function will be considered as references to the " "result only"_warn_en_US, name.source); // RESULT name was ignored above, the only side effect from doing so will be // the inability to make recursive calls. The related parser::Name is still // resolved to the created function result symbol because every parser::Name // should be resolved to avoid internal errors. Resolve(*info.resultName, info.resultSymbol); } name.symbol = currScope().symbol(); // must not be function result symbol // Clear the RESULT() name now in case an ENTRY statement in the implicit-part // has a RESULT() suffix. info.resultName = nullptr; } SubprogramDetails &SubprogramVisitor::PostSubprogramStmt() { Symbol &symbol{*currScope().symbol()}; SetExplicitAttrs(symbol, EndAttrs()); if (symbol.attrs().test(Attr::MODULE)) { symbol.attrs().set(Attr::EXTERNAL, false); symbol.implicitAttrs().set(Attr::EXTERNAL, false); } return symbol.get(); } void SubprogramVisitor::Post(const parser::EntryStmt &stmt) { if (const auto &suffix{std::get>(stmt.t)}) { Walk(suffix->binding); } PostEntryStmt(stmt); EndAttrs(); } void SubprogramVisitor::CreateEntry( const parser::EntryStmt &stmt, Symbol &subprogram) { const auto &entryName{std::get(stmt.t)}; Scope &outer{currScope().parent()}; Symbol::Flag subpFlag{subprogram.test(Symbol::Flag::Function) ? Symbol::Flag::Function : Symbol::Flag::Subroutine}; Attrs attrs; const auto &suffix{std::get>(stmt.t)}; bool hasGlobalBindingName{outer.IsGlobal() && suffix && suffix->binding && suffix->binding->v.has_value()}; if (!hasGlobalBindingName) { if (Symbol * extant{FindSymbol(outer, entryName)}) { if (!HandlePreviousCalls(entryName, *extant, subpFlag)) { if (outer.IsTopLevel()) { Say2(entryName, "'%s' is already defined as a global identifier"_err_en_US, *extant, "Previous definition of '%s'"_en_US); } else { SayAlreadyDeclared(entryName, *extant); } return; } attrs = extant->attrs(); } } bool badResultName{false}; std::optional distinctResultName; if (suffix && suffix->resultName && suffix->resultName->source != entryName.source) { distinctResultName = suffix->resultName->source; const parser::Name &resultName{*suffix->resultName}; if (resultName.source == subprogram.name()) { // C1574 Say2(resultName.source, "RESULT(%s) may not have the same name as the function"_err_en_US, subprogram, "Containing function"_en_US); badResultName = true; } else if (const Symbol * extant{FindSymbol(outer, resultName)}) { // C1574 if (const auto *details{extant->detailsIf()}) { if (details->entryScope() == &currScope()) { Say2(resultName.source, "RESULT(%s) may not have the same name as an ENTRY in the function"_err_en_US, extant->name(), "Conflicting ENTRY"_en_US); badResultName = true; } } } } if (outer.IsModule() && !attrs.test(Attr::PRIVATE)) { attrs.set(Attr::PUBLIC); } Symbol *entrySymbol{nullptr}; if (hasGlobalBindingName) { // Hide the entry's symbol in a new anonymous global scope so // that its name doesn't clash with anything. Symbol &symbol{MakeSymbol(outer, context().GetTempName(outer), Attrs{})}; symbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName}); Scope &hidden{outer.MakeScope(Scope::Kind::Global, &symbol)}; entrySymbol = &MakeSymbol(hidden, entryName.source, attrs); } else { entrySymbol = FindInScope(outer, entryName.source); if (entrySymbol) { if (auto *generic{entrySymbol->detailsIf()}) { if (auto *specific{generic->specific()}) { // Forward reference to ENTRY from a generic interface entrySymbol = specific; CheckDuplicatedAttrs(entryName.source, *entrySymbol, attrs); SetExplicitAttrs(*entrySymbol, attrs); } } } else { entrySymbol = &MakeSymbol(outer, entryName.source, attrs); } } SubprogramDetails entryDetails; entryDetails.set_entryScope(currScope()); entrySymbol->set(subpFlag); if (subpFlag == Symbol::Flag::Function) { Symbol *result{nullptr}; EntityDetails resultDetails; resultDetails.set_funcResult(true); if (distinctResultName) { if (!badResultName) { // RESULT(x) can be the same explicitly-named RESULT(x) as // the enclosing function or another ENTRY. if (auto iter{currScope().find(suffix->resultName->source)}; iter != currScope().end()) { result = &*iter->second; } if (!result) { result = &MakeSymbol( *distinctResultName, Attrs{}, std::move(resultDetails)); } Resolve(*suffix->resultName, *result); } } else { result = &MakeSymbol(entryName.source, Attrs{}, std::move(resultDetails)); } if (result) { entryDetails.set_result(*result); } } if (subpFlag == Symbol::Flag::Subroutine || (distinctResultName && !badResultName)) { Symbol &assoc{MakeSymbol(entryName.source)}; assoc.set_details(HostAssocDetails{*entrySymbol}); assoc.set(Symbol::Flag::Subroutine); } Resolve(entryName, *entrySymbol); Details details{std::move(entryDetails)}; entrySymbol->set_details(std::move(entryDetails)); } void SubprogramVisitor::PostEntryStmt(const parser::EntryStmt &stmt) { // The entry symbol should have already been created and resolved // in CreateEntry(), called by BeginSubprogram(), with one exception (below). const auto &name{std::get(stmt.t)}; Scope &inclusiveScope{InclusiveScope()}; if (!name.symbol) { if (inclusiveScope.kind() != Scope::Kind::Subprogram) { Say(name.source, "ENTRY '%s' may appear only in a subroutine or function"_err_en_US, name.source); } else if (FindSeparateModuleSubprogramInterface(inclusiveScope.symbol())) { Say(name.source, "ENTRY '%s' may not appear in a separate module procedure"_err_en_US, name.source); } else { // C1571 - entry is nested, so was not put into the program tree; error // is emitted from MiscChecker in semantics.cpp. } return; } Symbol &entrySymbol{*name.symbol}; if (context().HasError(entrySymbol)) { return; } if (!entrySymbol.has()) { SayAlreadyDeclared(name, entrySymbol); return; } SubprogramDetails &entryDetails{entrySymbol.get()}; CHECK(entryDetails.entryScope() == &inclusiveScope); entrySymbol.attrs() |= GetAttrs(); SetBindNameOn(entrySymbol); for (const auto &dummyArg : std::get>(stmt.t)) { if (const auto *dummyName{std::get_if(&dummyArg.u)}) { Symbol *dummy{FindSymbol(*dummyName)}; if (dummy) { common::visit( common::visitors{[](EntityDetails &x) { x.set_isDummy(); }, [](ObjectEntityDetails &x) { x.set_isDummy(); }, [](ProcEntityDetails &x) { x.set_isDummy(); }, [](SubprogramDetails &x) { x.set_isDummy(); }, [&](const auto &) { Say2(dummyName->source, "ENTRY dummy argument '%s' is previously declared as an item that may not be used as a dummy argument"_err_en_US, dummy->name(), "Previous declaration of '%s'"_en_US); }}, dummy->details()); } else { dummy = &MakeSymbol(*dummyName, EntityDetails{true}); if (!inSpecificationPart_) { ApplyImplicitRules(*dummy); } } entryDetails.add_dummyArg(*dummy); } else { if (entrySymbol.test(Symbol::Flag::Function)) { // C1573 Say(name, "ENTRY in a function may not have an alternate return dummy argument"_err_en_US); break; } entryDetails.add_alternateReturn(); } } } Symbol *ScopeHandler::FindSeparateModuleProcedureInterface( const parser::Name &name) { auto *symbol{FindSymbol(name)}; if (symbol && symbol->has()) { symbol = FindSymbol(currScope().parent(), name); } if (symbol) { if (auto *generic{symbol->detailsIf()}) { symbol = generic->specific(); } } if (!IsSeparateModuleProcedureInterface(symbol)) { Say(name, "'%s' was not declared a separate module procedure"_err_en_US); symbol = nullptr; } return symbol; } // A subprogram declared with MODULE PROCEDURE bool SubprogramVisitor::BeginMpSubprogram(const parser::Name &name) { Symbol *symbol{FindSeparateModuleProcedureInterface(name)}; if (!symbol) { return false; } if (symbol->owner() == currScope() && symbol->scope()) { // This is a MODULE PROCEDURE whose interface appears in its host. // Convert the module procedure's interface into a subprogram. SetScope(DEREF(symbol->scope())); symbol->get().set_isInterface(false); } else { // Copy the interface into a new subprogram scope. EraseSymbol(name); Symbol &newSymbol{MakeSymbol(name, SubprogramDetails{})}; PushScope(Scope::Kind::Subprogram, &newSymbol); newSymbol.get().set_moduleInterface(*symbol); newSymbol.attrs() |= symbol->attrs(); newSymbol.set(symbol->test(Symbol::Flag::Subroutine) ? Symbol::Flag::Subroutine : Symbol::Flag::Function); MapSubprogramToNewSymbols(*symbol, newSymbol, currScope()); } return true; } // A subprogram or interface declared with SUBROUTINE or FUNCTION bool SubprogramVisitor::BeginSubprogram(const parser::Name &name, Symbol::Flag subpFlag, bool hasModulePrefix, const parser::LanguageBindingSpec *bindingSpec, const ProgramTree::EntryStmtList *entryStmts) { if (hasModulePrefix && currScope().IsGlobal()) { // C1547 Say(name, "'%s' is a MODULE procedure which must be declared within a " "MODULE or SUBMODULE"_err_en_US); return false; } Symbol *moduleInterface{nullptr}; if (hasModulePrefix && !inInterfaceBlock()) { moduleInterface = FindSeparateModuleProcedureInterface(name); if (moduleInterface && &moduleInterface->owner() == &currScope()) { // Subprogram is MODULE FUNCTION or MODULE SUBROUTINE with an interface // previously defined in the same scope. EraseSymbol(name); } } Symbol &newSymbol{PushSubprogramScope(name, subpFlag, bindingSpec)}; if (moduleInterface) { newSymbol.get().set_moduleInterface(*moduleInterface); if (moduleInterface->attrs().test(Attr::PRIVATE)) { SetImplicitAttr(newSymbol, Attr::PRIVATE); } else if (moduleInterface->attrs().test(Attr::PUBLIC)) { SetImplicitAttr(newSymbol, Attr::PUBLIC); } } if (entryStmts) { for (const auto &ref : *entryStmts) { CreateEntry(*ref, newSymbol); } } return true; } void SubprogramVisitor::HandleLanguageBinding(Symbol *symbol, std::optional stmtSource, const std::optional *binding) { if (binding && *binding && symbol) { // Finally process the BIND(C,NAME=name) now that symbols in the name // expression will resolve to local names if needed. auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)}; auto originalStmtSource{messageHandler().currStmtSource()}; messageHandler().set_currStmtSource(stmtSource); BeginAttrs(); Walk(**binding); SetBindNameOn(*symbol); symbol->attrs() |= EndAttrs(); messageHandler().set_currStmtSource(originalStmtSource); } } void SubprogramVisitor::EndSubprogram( std::optional stmtSource, const std::optional *binding, const ProgramTree::EntryStmtList *entryStmts) { HandleLanguageBinding(currScope().symbol(), stmtSource, binding); if (entryStmts) { for (const auto &ref : *entryStmts) { const parser::EntryStmt &entryStmt{*ref}; if (const auto &suffix{ std::get>(entryStmt.t)}) { const auto &name{std::get(entryStmt.t)}; HandleLanguageBinding(name.symbol, name.source, &suffix->binding); } } } PopScope(); } bool SubprogramVisitor::HandlePreviousCalls( const parser::Name &name, Symbol &symbol, Symbol::Flag subpFlag) { // If the extant symbol is a generic, check its homonymous specific // procedure instead if it has one. if (auto *generic{symbol.detailsIf()}) { return generic->specific() && HandlePreviousCalls(name, *generic->specific(), subpFlag); } else if (const auto *proc{symbol.detailsIf()}; proc && !proc->isDummy() && !symbol.attrs().HasAny(Attrs{Attr::INTRINSIC, Attr::POINTER})) { // There's a symbol created for previous calls to this subprogram or // ENTRY's name. We have to replace that symbol in situ to avoid the // obligation to rewrite symbol pointers in the parse tree. if (!symbol.test(subpFlag)) { Say2(name, subpFlag == Symbol::Flag::Function ? "'%s' was previously called as a subroutine"_err_en_US : "'%s' was previously called as a function"_err_en_US, symbol, "Previous call of '%s'"_en_US); } EntityDetails entity; if (proc->type()) { entity.set_type(*proc->type()); } symbol.details() = std::move(entity); return true; } else { return symbol.has() || symbol.has(); } } void SubprogramVisitor::CheckExtantProc( const parser::Name &name, Symbol::Flag subpFlag) { if (auto *prev{FindSymbol(name)}) { if (IsDummy(*prev)) { } else if (auto *entity{prev->detailsIf()}; IsPointer(*prev) && entity && !entity->type()) { // POINTER attribute set before interface } else if (inInterfaceBlock() && currScope() != prev->owner()) { // Procedures in an INTERFACE block do not resolve to symbols // in scopes between the global scope and the current scope. } else if (!HandlePreviousCalls(name, *prev, subpFlag)) { SayAlreadyDeclared(name, *prev); } } } Symbol &SubprogramVisitor::PushSubprogramScope(const parser::Name &name, Symbol::Flag subpFlag, const parser::LanguageBindingSpec *bindingSpec) { Symbol *symbol{GetSpecificFromGeneric(name)}; if (!symbol) { if (bindingSpec && currScope().IsGlobal() && bindingSpec->v) { // Create this new top-level subprogram with a binding label // in a new global scope, so that its symbol's name won't clash // with another symbol that has a distinct binding label. PushScope(Scope::Kind::Global, &MakeSymbol(context().GetTempName(currScope()), Attrs{}, MiscDetails{MiscDetails::Kind::ScopeName})); } CheckExtantProc(name, subpFlag); symbol = &MakeSymbol(name, SubprogramDetails{}); } symbol->ReplaceName(name.source); symbol->set(subpFlag); PushScope(Scope::Kind::Subprogram, symbol); if (subpFlag == Symbol::Flag::Function) { funcResultStack().Push(currScope()); } if (inInterfaceBlock()) { auto &details{symbol->get()}; details.set_isInterface(); if (isAbstract()) { SetExplicitAttr(*symbol, Attr::ABSTRACT); } else { MakeExternal(*symbol); } if (isGeneric()) { Symbol &genericSymbol{GetGenericSymbol()}; if (genericSymbol.has()) { genericSymbol.get().AddSpecificProc( *symbol, name.source); } else { CHECK(context().HasError(genericSymbol)); } } set_inheritFromParent(false); } FindSymbol(name)->set(subpFlag); // PushScope() created symbol return *symbol; } void SubprogramVisitor::PushBlockDataScope(const parser::Name &name) { if (auto *prev{FindSymbol(name)}) { if (prev->attrs().test(Attr::EXTERNAL) && prev->has()) { if (prev->test(Symbol::Flag::Subroutine) || prev->test(Symbol::Flag::Function)) { Say2(name, "BLOCK DATA '%s' has been called"_err_en_US, *prev, "Previous call of '%s'"_en_US); } EraseSymbol(name); } } if (name.source.empty()) { // Don't let unnamed BLOCK DATA conflict with unnamed PROGRAM PushScope(Scope::Kind::BlockData, nullptr); } else { PushScope(Scope::Kind::BlockData, &MakeSymbol(name, SubprogramDetails{})); } } // If name is a generic, return specific subprogram with the same name. Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) { // Search for the name but don't resolve it if (auto *symbol{currScope().FindSymbol(name.source)}) { if (symbol->has()) { if (inInterfaceBlock()) { // Subtle: clear any MODULE flag so that the new interface // symbol doesn't inherit it and ruin the ability to check it. symbol->attrs().reset(Attr::MODULE); } } else if (auto *details{symbol->detailsIf()}) { // found generic, want specific procedure auto *specific{details->specific()}; if (inInterfaceBlock()) { if (specific) { // Defining an interface in a generic of the same name which is // already shadowing another procedure. In some cases, the shadowed // procedure is about to be replaced. if (specific->has() && specific->attrs().test(Attr::MODULE)) { // The shadowed procedure is a separate module procedure that is // actually defined later in this (sub)module. // Define its interface now as a new symbol. specific = nullptr; } else if (&specific->owner() != &symbol->owner()) { // The shadowed procedure was from an enclosing scope and will be // overridden by this interface definition. specific = nullptr; } if (!specific) { details->clear_specific(); } } else if (const auto *dType{details->derivedType()}) { if (&dType->owner() != &symbol->owner()) { // The shadowed derived type was from an enclosing scope and // will be overridden by this interface definition. details->clear_derivedType(); } } } if (!specific) { specific = &currScope().MakeSymbol(name.source, Attrs{}, SubprogramDetails{}); if (details->derivedType()) { // A specific procedure with the same name as a derived type SayAlreadyDeclared(name, *details->derivedType()); } else { details->set_specific(Resolve(name, *specific)); } } else if (isGeneric()) { SayAlreadyDeclared(name, *specific); } if (specific->has()) { specific->set_details(Details{SubprogramDetails{}}); } return specific; } } return nullptr; } // DeclarationVisitor implementation bool DeclarationVisitor::BeginDecl() { BeginDeclTypeSpec(); BeginArraySpec(); return BeginAttrs(); } void DeclarationVisitor::EndDecl() { EndDeclTypeSpec(); EndArraySpec(); EndAttrs(); } bool DeclarationVisitor::CheckUseError(const parser::Name &name) { const auto *details{ name.symbol ? name.symbol->detailsIf() : nullptr}; if (!details) { return false; } Message &msg{Say(name, "Reference to '%s' is ambiguous"_err_en_US)}; for (const auto &[location, module] : details->occurrences()) { msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, name.source, module->GetName().value()); } context().SetError(*name.symbol); return true; } // Report error if accessibility of symbol doesn't match isPrivate. void DeclarationVisitor::CheckAccessibility( const SourceName &name, bool isPrivate, Symbol &symbol) { if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) { Say2(name, "'%s' does not have the same accessibility as its previous declaration"_err_en_US, symbol, "Previous declaration of '%s'"_en_US); } } void DeclarationVisitor::Post(const parser::TypeDeclarationStmt &) { EndDecl(); } void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) { DeclareObjectEntity(std::get(x.t)); } void DeclarationVisitor::Post(const parser::CodimensionDecl &x) { DeclareObjectEntity(std::get(x.t)); } bool DeclarationVisitor::Pre(const parser::Initialization &) { // Defer inspection of initializers to Initialization() so that the // symbol being initialized will be available within the initialization // expression. return false; } void DeclarationVisitor::Post(const parser::EntityDecl &x) { const auto &name{std::get(x.t)}; Attrs attrs{attrs_ ? HandleSaveName(name.source, *attrs_) : Attrs{}}; Symbol &symbol{DeclareUnknownEntity(name, attrs)}; symbol.ReplaceName(name.source); if (const auto &init{std::get>(x.t)}) { ConvertToObjectEntity(symbol) || ConvertToProcEntity(symbol); Initialization(name, *init, false); } else if (attrs.test(Attr::PARAMETER)) { // C882, C883 Say(name, "Missing initialization for parameter '%s'"_err_en_US); } } void DeclarationVisitor::Post(const parser::PointerDecl &x) { const auto &name{std::get(x.t)}; if (const auto &deferredShapeSpecs{ std::get>(x.t)}) { CHECK(arraySpec().empty()); BeginArraySpec(); set_arraySpec(AnalyzeDeferredShapeSpecList(context(), *deferredShapeSpecs)); Symbol &symbol{DeclareObjectEntity(name, Attrs{Attr::POINTER})}; symbol.ReplaceName(name.source); EndArraySpec(); } else { if (const auto *symbol{FindInScope(name)}) { const auto *subp{symbol->detailsIf()}; if (!symbol->has() && // error caught elsewhere !symbol->has() && !symbol->has() && !symbol->CanReplaceDetails(ObjectEntityDetails{}) && !symbol->CanReplaceDetails(ProcEntityDetails{}) && !(subp && subp->isInterface())) { Say(name, "'%s' cannot have the POINTER attribute"_err_en_US); } } HandleAttributeStmt(Attr::POINTER, std::get(x.t)); } } bool DeclarationVisitor::Pre(const parser::BindEntity &x) { auto kind{std::get(x.t)}; auto &name{std::get(x.t)}; Symbol *symbol; if (kind == parser::BindEntity::Kind::Object) { symbol = &HandleAttributeStmt(Attr::BIND_C, name); } else { symbol = &MakeCommonBlockSymbol(name); SetExplicitAttr(*symbol, Attr::BIND_C); } // 8.6.4(1) // Some entities such as named constant or module name need to checked // elsewhere. This is to skip the ICE caused by setting Bind name for non-name // things such as data type and also checks for procedures. if (symbol->has() || symbol->has() || symbol->has()) { SetBindNameOn(*symbol); } else { Say(name, "Only variable and named common block can be in BIND statement"_err_en_US); } return false; } bool DeclarationVisitor::Pre(const parser::OldParameterStmt &x) { inOldStyleParameterStmt_ = true; Walk(x.v); inOldStyleParameterStmt_ = false; return false; } bool DeclarationVisitor::Pre(const parser::NamedConstantDef &x) { auto &name{std::get(x.t).v}; auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)}; if (!ConvertToObjectEntity(symbol) || symbol.test(Symbol::Flag::CrayPointer) || symbol.test(Symbol::Flag::CrayPointee)) { SayWithDecl( name, symbol, "PARAMETER attribute not allowed on '%s'"_err_en_US); return false; } const auto &expr{std::get(x.t)}; auto &details{symbol.get()}; if (inOldStyleParameterStmt_) { // non-standard extension PARAMETER statement (no parentheses) Walk(expr); auto folded{EvaluateExpr(expr)}; if (details.type()) { SayWithDecl(name, symbol, "Alternative style PARAMETER '%s' must not already have an explicit type"_err_en_US); } else if (folded) { auto at{expr.thing.value().source}; if (evaluate::IsActuallyConstant(*folded)) { if (const auto *type{currScope().GetType(*folded)}) { if (type->IsPolymorphic()) { Say(at, "The expression must not be polymorphic"_err_en_US); } else if (auto shape{ToArraySpec( GetFoldingContext(), evaluate::GetShape(*folded))}) { // The type of the named constant is assumed from the expression. details.set_type(*type); details.set_init(std::move(*folded)); details.set_shape(std::move(*shape)); } else { Say(at, "The expression must have constant shape"_err_en_US); } } else { Say(at, "The expression must have a known type"_err_en_US); } } else { Say(at, "The expression must be a constant of known type"_err_en_US); } } } else { // standard-conforming PARAMETER statement (with parentheses) ApplyImplicitRules(symbol); Walk(expr); if (auto converted{EvaluateNonPointerInitializer( symbol, expr, expr.thing.value().source)}) { details.set_init(std::move(*converted)); } } return false; } bool DeclarationVisitor::Pre(const parser::NamedConstant &x) { const parser::Name &name{x.v}; if (!FindSymbol(name)) { Say(name, "Named constant '%s' not found"_err_en_US); } else { CheckUseError(name); } return false; } bool DeclarationVisitor::Pre(const parser::Enumerator &enumerator) { const parser::Name &name{std::get(enumerator.t).v}; Symbol *symbol{FindSymbol(name)}; if (symbol && !symbol->has()) { // Contrary to named constants appearing in a PARAMETER statement, // enumerator names should not have their type, dimension or any other // attributes defined before they are declared in the enumerator statement, // with the exception of accessibility. // This is not explicitly forbidden by the standard, but they are scalars // which type is left for the compiler to chose, so do not let users try to // tamper with that. SayAlreadyDeclared(name, *symbol); symbol = nullptr; } else { // Enumerators are treated as PARAMETER (section 7.6 paragraph (4)) symbol = &MakeSymbol(name, Attrs{Attr::PARAMETER}, ObjectEntityDetails{}); symbol->SetType(context().MakeNumericType( TypeCategory::Integer, evaluate::CInteger::kind)); } if (auto &init{std::get>( enumerator.t)}) { Walk(*init); // Resolve names in expression before evaluation. if (auto value{EvaluateInt64(context(), *init)}) { // Cast all init expressions to C_INT so that they can then be // safely incremented (see 7.6 Note 2). enumerationState_.value = static_cast(*value); } else { Say(name, "Enumerator value could not be computed " "from the given expression"_err_en_US); // Prevent resolution of next enumerators value enumerationState_.value = std::nullopt; } } if (symbol) { if (enumerationState_.value) { symbol->get().set_init(SomeExpr{ evaluate::Expr{*enumerationState_.value}}); } else { context().SetError(*symbol); } } if (enumerationState_.value) { (*enumerationState_.value)++; } return false; } void DeclarationVisitor::Post(const parser::EnumDef &) { enumerationState_ = EnumeratorState{}; } bool DeclarationVisitor::Pre(const parser::AccessSpec &x) { Attr attr{AccessSpecToAttr(x)}; if (!NonDerivedTypeScope().IsModule()) { // C817 Say(currStmtSource().value(), "%s attribute may only appear in the specification part of a module"_err_en_US, EnumToString(attr)); } CheckAndSet(attr); return false; } bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) { return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v); } bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) { return HandleAttributeStmt(Attr::CONTIGUOUS, x.v); } bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) { HandleAttributeStmt(Attr::EXTERNAL, x.v); for (const auto &name : x.v) { auto *symbol{FindSymbol(name)}; if (!ConvertToProcEntity(DEREF(symbol))) { SayWithDecl( name, *symbol, "EXTERNAL attribute not allowed on '%s'"_err_en_US); } else if (symbol->attrs().test(Attr::INTRINSIC)) { // C840 Say(symbol->name(), "Symbol '%s' cannot have both INTRINSIC and EXTERNAL attributes"_err_en_US, symbol->name()); } } return false; } bool DeclarationVisitor::Pre(const parser::IntentStmt &x) { auto &intentSpec{std::get(x.t)}; auto &names{std::get>(x.t)}; return CheckNotInBlock("INTENT") && // C1107 HandleAttributeStmt(IntentSpecToAttr(intentSpec), names); } bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) { HandleAttributeStmt(Attr::INTRINSIC, x.v); for (const auto &name : x.v) { if (!IsIntrinsic(name.source, std::nullopt)) { Say(name.source, "'%s' is not a known intrinsic procedure"_err_en_US); } auto &symbol{DEREF(FindSymbol(name))}; if (symbol.has()) { // Generic interface is extending intrinsic; ok } else if (!ConvertToProcEntity(symbol)) { SayWithDecl( name, symbol, "INTRINSIC attribute not allowed on '%s'"_err_en_US); } else if (symbol.attrs().test(Attr::EXTERNAL)) { // C840 Say(symbol.name(), "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US, symbol.name()); } else if (symbol.GetType()) { // These warnings are worded so that they should make sense in either // order. Say(symbol.name(), "Explicit type declaration ignored for intrinsic function '%s'"_warn_en_US, symbol.name()) .Attach(name.source, "INTRINSIC statement for explicitly-typed '%s'"_en_US, name.source); } } return false; } bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) { return CheckNotInBlock("OPTIONAL") && // C1107 HandleAttributeStmt(Attr::OPTIONAL, x.v); } bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) { return HandleAttributeStmt(Attr::PROTECTED, x.v); } bool DeclarationVisitor::Pre(const parser::ValueStmt &x) { return CheckNotInBlock("VALUE") && // C1107 HandleAttributeStmt(Attr::VALUE, x.v); } bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) { return HandleAttributeStmt(Attr::VOLATILE, x.v); } // Handle a statement that sets an attribute on a list of names. bool DeclarationVisitor::HandleAttributeStmt( Attr attr, const std::list &names) { for (const auto &name : names) { HandleAttributeStmt(attr, name); } return false; } Symbol &DeclarationVisitor::HandleAttributeStmt( Attr attr, const parser::Name &name) { auto *symbol{FindInScope(name)}; if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) { // these can be set on a symbol that is host-assoc or use-assoc if (!symbol && (currScope().kind() == Scope::Kind::Subprogram || currScope().kind() == Scope::Kind::BlockConstruct)) { if (auto *hostSymbol{FindSymbol(name)}) { symbol = &MakeHostAssocSymbol(name, *hostSymbol); } } } else if (symbol && symbol->has()) { Say(currStmtSource().value(), "Cannot change %s attribute on use-associated '%s'"_err_en_US, EnumToString(attr), name.source); return *symbol; } if (!symbol) { symbol = &MakeSymbol(name, EntityDetails{}); } if (CheckDuplicatedAttr(name.source, *symbol, attr)) { SetExplicitAttr(*symbol, attr); symbol->attrs() = HandleSaveName(name.source, symbol->attrs()); } return *symbol; } // C1107 bool DeclarationVisitor::CheckNotInBlock(const char *stmt) { if (currScope().kind() == Scope::Kind::BlockConstruct) { Say(MessageFormattedText{ "%s statement is not allowed in a BLOCK construct"_err_en_US, stmt}); return false; } else { return true; } } void DeclarationVisitor::Post(const parser::ObjectDecl &x) { CHECK(objectDeclAttr_); const auto &name{std::get(x.t)}; DeclareObjectEntity(name, Attrs{*objectDeclAttr_}); } // Declare an entity not yet known to be an object or proc. Symbol &DeclarationVisitor::DeclareUnknownEntity( const parser::Name &name, Attrs attrs) { if (!arraySpec().empty() || !coarraySpec().empty()) { return DeclareObjectEntity(name, attrs); } else { Symbol &symbol{DeclareEntity(name, attrs)}; if (auto *type{GetDeclTypeSpec()}) { SetType(name, *type); } charInfo_.length.reset(); if (symbol.attrs().test(Attr::EXTERNAL)) { ConvertToProcEntity(symbol); } SetBindNameOn(symbol); return symbol; } } bool DeclarationVisitor::HasCycle( const Symbol &procSymbol, const ProcInterface &interface) { SourceOrderedSymbolSet procsInCycle; procsInCycle.insert(procSymbol); const ProcInterface *thisInterface{&interface}; bool haveInterface{true}; while (haveInterface) { haveInterface = false; if (const Symbol * interfaceSymbol{thisInterface->symbol()}) { if (procsInCycle.count(*interfaceSymbol) > 0) { for (const auto &procInCycle : procsInCycle) { Say(procInCycle->name(), "The interface for procedure '%s' is recursively " "defined"_err_en_US, procInCycle->name()); context().SetError(*procInCycle); } return true; } else if (const auto *procDetails{ interfaceSymbol->detailsIf()}) { haveInterface = true; thisInterface = &procDetails->interface(); procsInCycle.insert(*interfaceSymbol); } } } return false; } Symbol &DeclarationVisitor::DeclareProcEntity( const parser::Name &name, Attrs attrs, const ProcInterface &interface) { Symbol &symbol{DeclareEntity(name, attrs)}; if (auto *details{symbol.detailsIf()}) { if (details->IsInterfaceSet()) { SayWithDecl(name, symbol, "The interface for procedure '%s' has already been " "declared"_err_en_US); context().SetError(symbol); } else if (HasCycle(symbol, interface)) { return symbol; } else if (interface.type()) { symbol.set(Symbol::Flag::Function); } else if (interface.symbol()) { if (interface.symbol()->test(Symbol::Flag::Function)) { symbol.set(Symbol::Flag::Function); } else if (interface.symbol()->test(Symbol::Flag::Subroutine)) { symbol.set(Symbol::Flag::Subroutine); } } details->set_interface(interface); SetBindNameOn(symbol); SetPassNameOn(symbol); } return symbol; } Symbol &DeclarationVisitor::DeclareObjectEntity( const parser::Name &name, Attrs attrs) { Symbol &symbol{DeclareEntity(name, attrs)}; if (auto *details{symbol.detailsIf()}) { if (auto *type{GetDeclTypeSpec()}) { SetType(name, *type); } if (!arraySpec().empty()) { if (details->IsArray()) { if (!context().HasError(symbol)) { Say(name, "The dimensions of '%s' have already been declared"_err_en_US); context().SetError(symbol); } } else { details->set_shape(arraySpec()); } } if (!coarraySpec().empty()) { if (details->IsCoarray()) { if (!context().HasError(symbol)) { Say(name, "The codimensions of '%s' have already been declared"_err_en_US); context().SetError(symbol); } } else { details->set_coshape(coarraySpec()); } } SetBindNameOn(symbol); } ClearArraySpec(); ClearCoarraySpec(); charInfo_.length.reset(); return symbol; } void DeclarationVisitor::Post(const parser::IntegerTypeSpec &x) { SetDeclTypeSpec(MakeNumericType(TypeCategory::Integer, x.v)); } void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) { SetDeclTypeSpec(MakeNumericType(TypeCategory::Real, x.kind)); } void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) { SetDeclTypeSpec(MakeNumericType(TypeCategory::Complex, x.kind)); } void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) { SetDeclTypeSpec(MakeLogicalType(x.kind)); } void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &) { if (!charInfo_.length) { charInfo_.length = ParamValue{1, common::TypeParamAttr::Len}; } if (!charInfo_.kind) { charInfo_.kind = KindExpr{context().GetDefaultKind(TypeCategory::Character)}; } SetDeclTypeSpec(currScope().MakeCharacterType( std::move(*charInfo_.length), std::move(*charInfo_.kind))); charInfo_ = {}; } void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) { charInfo_.kind = EvaluateSubscriptIntExpr(x.kind); std::optional intKind{ToInt64(charInfo_.kind)}; if (intKind && !context().targetCharacteristics().IsTypeEnabled( TypeCategory::Character, *intKind)) { // C715, C719 Say(currStmtSource().value(), "KIND value (%jd) not valid for CHARACTER"_err_en_US, *intKind); charInfo_.kind = std::nullopt; // prevent further errors } if (x.length) { charInfo_.length = GetParamValue(*x.length, common::TypeParamAttr::Len); } } void DeclarationVisitor::Post(const parser::CharLength &x) { if (const auto *length{std::get_if(&x.u)}) { charInfo_.length = ParamValue{ static_cast(*length), common::TypeParamAttr::Len}; } else { charInfo_.length = GetParamValue( std::get(x.u), common::TypeParamAttr::Len); } } void DeclarationVisitor::Post(const parser::LengthSelector &x) { if (const auto *param{std::get_if(&x.u)}) { charInfo_.length = GetParamValue(*param, common::TypeParamAttr::Len); } } bool DeclarationVisitor::Pre(const parser::KindParam &x) { if (const auto *kind{std::get_if< parser::Scalar>>>( &x.u)}) { const parser::Name &name{kind->thing.thing.thing}; if (!FindSymbol(name)) { Say(name, "Parameter '%s' not found"_err_en_US); } } return false; } bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Type &) { CHECK(GetDeclTypeSpecCategory() == DeclTypeSpec::Category::TypeDerived); return true; } void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Type &type) { const parser::Name &derivedName{std::get(type.derived.t)}; if (const Symbol * derivedSymbol{derivedName.symbol}) { CheckForAbstractType(*derivedSymbol); // C706 } } bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Class &) { SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived); return true; } void DeclarationVisitor::Post( const parser::DeclarationTypeSpec::Class &parsedClass) { const auto &typeName{std::get(parsedClass.derived.t)}; if (auto spec{ResolveDerivedType(typeName)}; spec && !IsExtensibleType(&*spec)) { // C705 SayWithDecl(typeName, *typeName.symbol, "Non-extensible derived type '%s' may not be used with CLASS" " keyword"_err_en_US); } } void DeclarationVisitor::Post(const parser::DerivedTypeSpec &x) { const auto &typeName{std::get(x.t)}; auto spec{ResolveDerivedType(typeName)}; if (!spec) { return; } bool seenAnyName{false}; for (const auto &typeParamSpec : std::get>(x.t)) { const auto &optKeyword{ std::get>(typeParamSpec.t)}; std::optional name; if (optKeyword) { seenAnyName = true; name = optKeyword->v.source; } else if (seenAnyName) { Say(typeName.source, "Type parameter value must have a name"_err_en_US); continue; } const auto &value{std::get(typeParamSpec.t)}; // The expressions in a derived type specifier whose values define // non-defaulted type parameters are evaluated (folded) in the enclosing // scope. The KIND/LEN distinction is resolved later in // DerivedTypeSpec::CookParameters(). ParamValue param{GetParamValue(value, common::TypeParamAttr::Kind)}; if (!param.isExplicit() || param.GetExplicit()) { spec->AddRawParamValue( common::GetPtrFromOptional(optKeyword), std::move(param)); } } // The DerivedTypeSpec *spec is used initially as a search key. // If it turns out to have the same name and actual parameter // value expressions as another DerivedTypeSpec in the current // scope does, then we'll use that extant spec; otherwise, when this // spec is distinct from all derived types previously instantiated // in the current scope, this spec will be moved into that collection. const auto &dtDetails{spec->typeSymbol().get()}; auto category{GetDeclTypeSpecCategory()}; if (dtDetails.isForwardReferenced()) { DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))}; SetDeclTypeSpec(type); return; } // Normalize parameters to produce a better search key. spec->CookParameters(GetFoldingContext()); if (!spec->MightBeParameterized()) { spec->EvaluateParameters(context()); } if (const DeclTypeSpec * extant{currScope().FindInstantiatedDerivedType(*spec, category)}) { // This derived type and parameter expressions (if any) are already present // in this scope. SetDeclTypeSpec(*extant); } else { DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))}; DerivedTypeSpec &derived{type.derivedTypeSpec()}; if (derived.MightBeParameterized() && currScope().IsParameterizedDerivedType()) { // Defer instantiation; use the derived type's definition's scope. derived.set_scope(DEREF(spec->typeSymbol().scope())); } else if (&currScope() == spec->typeSymbol().scope()) { // Direct recursive use of a type in the definition of one of its // components: defer instantiation } else { auto restorer{ GetFoldingContext().messages().SetLocation(currStmtSource().value())}; derived.Instantiate(currScope()); } SetDeclTypeSpec(type); } // Capture the DerivedTypeSpec in the parse tree for use in building // structure constructor expressions. x.derivedTypeSpec = &GetDeclTypeSpec()->derivedTypeSpec(); } void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Record &rec) { const auto &typeName{rec.v}; if (auto spec{ResolveDerivedType(typeName)}) { spec->CookParameters(GetFoldingContext()); spec->EvaluateParameters(context()); if (const DeclTypeSpec * extant{currScope().FindInstantiatedDerivedType( *spec, DeclTypeSpec::TypeDerived)}) { SetDeclTypeSpec(*extant); } else { Say(typeName.source, "%s is not a known STRUCTURE"_err_en_US, typeName.source); } } } // The descendents of DerivedTypeDef in the parse tree are visited directly // in this Pre() routine so that recursive use of the derived type can be // supported in the components. bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) { auto &stmt{std::get>(x.t)}; Walk(stmt); Walk(std::get>>(x.t)); auto &scope{currScope()}; CHECK(scope.symbol()); CHECK(scope.symbol()->scope() == &scope); auto &details{scope.symbol()->get()}; details.set_isForwardReferenced(false); std::set paramNames; for (auto ¶mName : std::get>(stmt.statement.t)) { details.add_paramName(paramName.source); auto *symbol{FindInScope(scope, paramName)}; if (!symbol) { Say(paramName, "No definition found for type parameter '%s'"_err_en_US); // C742 // No symbol for a type param. Create one and mark it as containing an // error to improve subsequent semantic processing BeginAttrs(); Symbol *typeParam{MakeTypeSymbol( paramName, TypeParamDetails{common::TypeParamAttr::Len})}; context().SetError(*typeParam); EndAttrs(); } else if (!symbol->has()) { Say2(paramName, "'%s' is not defined as a type parameter"_err_en_US, *symbol, "Definition of '%s'"_en_US); // C741 } if (!paramNames.insert(paramName.source).second) { Say(paramName, "Duplicate type parameter name: '%s'"_err_en_US); // C731 } } for (const auto &[name, symbol] : currScope()) { if (symbol->has() && !paramNames.count(name)) { SayDerivedType(name, "'%s' is not a type parameter of this derived type"_err_en_US, currScope()); // C741 } } Walk(std::get>>(x.t)); const auto &componentDefs{ std::get>>(x.t)}; Walk(componentDefs); if (derivedTypeInfo_.sequence) { details.set_sequence(true); if (componentDefs.empty()) { // C740 Say(stmt.source, "A sequence type must have at least one component"_err_en_US); } if (!details.paramNames().empty()) { // C740 Say(stmt.source, "A sequence type may not have type parameters"_err_en_US); } if (derivedTypeInfo_.extends) { // C735 Say(stmt.source, "A sequence type may not have the EXTENDS attribute"_err_en_US); } } Walk(std::get>(x.t)); Walk(std::get>(x.t)); derivedTypeInfo_ = {}; PopScope(); return false; } bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &) { return BeginAttrs(); } void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) { auto &name{std::get(x.t)}; // Resolve the EXTENDS() clause before creating the derived // type's symbol to foil attempts to recursively extend a type. auto *extendsName{derivedTypeInfo_.extends}; std::optional extendsType{ ResolveExtendsType(name, extendsName)}; auto &symbol{MakeSymbol(name, GetAttrs(), DerivedTypeDetails{})}; symbol.ReplaceName(name.source); derivedTypeInfo_.type = &symbol; PushScope(Scope::Kind::DerivedType, &symbol); if (extendsType) { // Declare the "parent component"; private if the type is. // Any symbol stored in the EXTENDS() clause is temporarily // hidden so that a new symbol can be created for the parent // component without producing spurious errors about already // existing. const Symbol &extendsSymbol{extendsType->typeSymbol()}; auto restorer{common::ScopedSet(extendsName->symbol, nullptr)}; if (OkToAddComponent(*extendsName, &extendsSymbol)) { auto &comp{DeclareEntity(*extendsName, Attrs{})}; comp.attrs().set( Attr::PRIVATE, extendsSymbol.attrs().test(Attr::PRIVATE)); comp.implicitAttrs().set( Attr::PRIVATE, extendsSymbol.implicitAttrs().test(Attr::PRIVATE)); comp.set(Symbol::Flag::ParentComp); DeclTypeSpec &type{currScope().MakeDerivedType( DeclTypeSpec::TypeDerived, std::move(*extendsType))}; type.derivedTypeSpec().set_scope(*extendsSymbol.scope()); comp.SetType(type); DerivedTypeDetails &details{symbol.get()}; details.add_component(comp); } } EndAttrs(); } void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) { auto *type{GetDeclTypeSpec()}; auto attr{std::get(x.t)}; for (auto &decl : std::get>(x.t)) { auto &name{std::get(decl.t)}; if (Symbol * symbol{MakeTypeSymbol(name, TypeParamDetails{attr})}) { SetType(name, *type); if (auto &init{ std::get>(decl.t)}) { if (auto maybeExpr{EvaluateNonPointerInitializer( *symbol, *init, init->thing.thing.thing.value().source)}) { if (auto *intExpr{std::get_if(&maybeExpr->u)}) { symbol->get().set_init(std::move(*intExpr)); } } } } } EndDecl(); } bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) { if (derivedTypeInfo_.extends) { Say(currStmtSource().value(), "Attribute 'EXTENDS' cannot be used more than once"_err_en_US); } else { derivedTypeInfo_.extends = &x.v; } return false; } bool DeclarationVisitor::Pre(const parser::PrivateStmt &) { if (!currScope().parent().IsModule()) { Say("PRIVATE is only allowed in a derived type that is" " in a module"_err_en_US); // C766 } else if (derivedTypeInfo_.sawContains) { derivedTypeInfo_.privateBindings = true; } else if (!derivedTypeInfo_.privateComps) { derivedTypeInfo_.privateComps = true; } else { Say("PRIVATE may not appear more than once in" " derived type components"_warn_en_US); // C738 } return false; } bool DeclarationVisitor::Pre(const parser::SequenceStmt &) { if (derivedTypeInfo_.sequence) { Say("SEQUENCE may not appear more than once in" " derived type components"_warn_en_US); // C738 } derivedTypeInfo_.sequence = true; return false; } void DeclarationVisitor::Post(const parser::ComponentDecl &x) { const auto &name{std::get(x.t)}; auto attrs{GetAttrs()}; if (derivedTypeInfo_.privateComps && !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) { attrs.set(Attr::PRIVATE); } if (const auto *declType{GetDeclTypeSpec()}) { if (const auto *derived{declType->AsDerived()}) { if (!attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) { if (derivedTypeInfo_.type == &derived->typeSymbol()) { // C744 Say("Recursive use of the derived type requires " "POINTER or ALLOCATABLE"_err_en_US); } } // TODO: This would be more appropriate in CheckDerivedType() if (auto it{FindCoarrayUltimateComponent(*derived)}) { // C748 std::string ultimateName{it.BuildResultDesignatorName()}; // Strip off the leading "%" if (ultimateName.length() > 1) { ultimateName.erase(0, 1); if (attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) { evaluate::AttachDeclaration( Say(name.source, "A component with a POINTER or ALLOCATABLE attribute may " "not " "be of a type with a coarray ultimate component (named " "'%s')"_err_en_US, ultimateName), derived->typeSymbol()); } if (!arraySpec().empty() || !coarraySpec().empty()) { evaluate::AttachDeclaration( Say(name.source, "An array or coarray component may not be of a type with a " "coarray ultimate component (named '%s')"_err_en_US, ultimateName), derived->typeSymbol()); } } } } } if (OkToAddComponent(name)) { auto &symbol{DeclareObjectEntity(name, attrs)}; if (symbol.has()) { if (auto &init{std::get>(x.t)}) { Initialization(name, *init, true); } } currScope().symbol()->get().add_component(symbol); } ClearArraySpec(); ClearCoarraySpec(); } void DeclarationVisitor::Post(const parser::FillDecl &x) { // Replace "%FILL" with a distinct generated name const auto &name{std::get(x.t)}; const_cast(name.source) = context().GetTempName(currScope()); if (OkToAddComponent(name)) { auto &symbol{DeclareObjectEntity(name, GetAttrs())}; currScope().symbol()->get().add_component(symbol); } ClearArraySpec(); } bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &x) { CHECK(!interfaceName_); const auto &procAttrSpec{std::get>(x.t)}; for (const parser::ProcAttrSpec &procAttr : procAttrSpec) { if (auto *bindC{std::get_if(&procAttr.u)}) { if (bindC->v.has_value()) { hasBindCName_ = true; break; } } } return BeginDecl(); } void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) { interfaceName_ = nullptr; hasBindCName_ = false; EndDecl(); } bool DeclarationVisitor::Pre(const parser::DataComponentDefStmt &x) { // Overrides parse tree traversal so as to handle attributes first, // so POINTER & ALLOCATABLE enable forward references to derived types. Walk(std::get>(x.t)); set_allowForwardReferenceToDerivedType( GetAttrs().HasAny({Attr::POINTER, Attr::ALLOCATABLE})); Walk(std::get(x.t)); set_allowForwardReferenceToDerivedType(false); if (derivedTypeInfo_.sequence) { // C740 if (const auto *declType{GetDeclTypeSpec()}) { if (!declType->AsIntrinsic() && !declType->IsSequenceType() && !InModuleFile()) { if (GetAttrs().test(Attr::POINTER) && context().IsEnabled(common::LanguageFeature::PointerInSeqType)) { if (context().ShouldWarn(common::LanguageFeature::PointerInSeqType)) { Say("A sequence type data component that is a pointer to a non-sequence type is not standard"_port_en_US); } } else { Say("A sequence type data component must either be of an intrinsic type or a derived sequence type"_err_en_US); } } } } Walk(std::get>(x.t)); return false; } bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) { CHECK(!interfaceName_); return true; } void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) { interfaceName_ = nullptr; } bool DeclarationVisitor::Pre(const parser::ProcPointerInit &x) { if (auto *name{std::get_if(&x.u)}) { return !NameIsKnownOrIntrinsic(*name) && !CheckUseError(*name); } else { const auto &null{DEREF(std::get_if(&x.u))}; Walk(null); if (auto nullInit{EvaluateExpr(null)}) { if (!evaluate::IsNullPointer(*nullInit)) { Say(null.v.value().source, "Procedure pointer initializer must be a name or intrinsic NULL()"_err_en_US); } } return false; } } void DeclarationVisitor::Post(const parser::ProcInterface &x) { if (auto *name{std::get_if(&x.u)}) { interfaceName_ = name; NoteInterfaceName(*name); } } void DeclarationVisitor::Post(const parser::ProcDecl &x) { const auto &name{std::get(x.t)}; ProcInterface interface; if (interfaceName_) { interface.set_symbol(*interfaceName_->symbol); } else if (auto *type{GetDeclTypeSpec()}) { interface.set_type(*type); } auto attrs{HandleSaveName(name.source, GetAttrs())}; DerivedTypeDetails *dtDetails{nullptr}; if (Symbol * symbol{currScope().symbol()}) { dtDetails = symbol->detailsIf(); } if (!dtDetails) { attrs.set(Attr::EXTERNAL); } Symbol &symbol{DeclareProcEntity(name, attrs, interface)}; symbol.ReplaceName(name.source); if (dtDetails) { dtDetails->add_component(symbol); } if (hasBindCName_ && (IsPointer(symbol) || IsDummy(symbol))) { Say(symbol.name(), "BIND(C) procedure with NAME= specified can neither have POINTER attribute nor be a dummy procedure"_err_en_US); } } bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &) { derivedTypeInfo_.sawContains = true; return true; } // Resolve binding names from type-bound generics, saved in genericBindings_. void DeclarationVisitor::Post(const parser::TypeBoundProcedurePart &) { // track specifics seen for the current generic to detect duplicates: const Symbol *currGeneric{nullptr}; std::set specifics; for (const auto &[generic, bindingName] : genericBindings_) { if (generic != currGeneric) { currGeneric = generic; specifics.clear(); } auto [it, inserted]{specifics.insert(bindingName->source)}; if (!inserted) { Say(*bindingName, // C773 "Binding name '%s' was already specified for generic '%s'"_err_en_US, bindingName->source, generic->name()) .Attach(*it, "Previous specification of '%s'"_en_US, *it); continue; } auto *symbol{FindInTypeOrParents(*bindingName)}; if (!symbol) { Say(*bindingName, // C772 "Binding name '%s' not found in this derived type"_err_en_US); } else if (!symbol->has()) { SayWithDecl(*bindingName, *symbol, // C772 "'%s' is not the name of a specific binding of this type"_err_en_US); } else { generic->get().AddSpecificProc( *symbol, bindingName->source); } } genericBindings_.clear(); } void DeclarationVisitor::Post(const parser::ContainsStmt &) { if (derivedTypeInfo_.sequence) { Say("A sequence type may not have a CONTAINS statement"_err_en_US); // C740 } } void DeclarationVisitor::Post( const parser::TypeBoundProcedureStmt::WithoutInterface &x) { if (GetAttrs().test(Attr::DEFERRED)) { // C783 Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US); } for (auto &declaration : x.declarations) { auto &bindingName{std::get(declaration.t)}; auto &optName{std::get>(declaration.t)}; const parser::Name &procedureName{optName ? *optName : bindingName}; Symbol *procedure{FindSymbol(procedureName)}; if (!procedure) { procedure = NoteInterfaceName(procedureName); } if (procedure) { if (auto *s{ MakeTypeSymbol(bindingName, ProcBindingDetails{*procedure})}) { SetPassNameOn(*s); if (GetAttrs().test(Attr::DEFERRED)) { context().SetError(*s); } } } } } void DeclarationVisitor::CheckBindings( const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) { CHECK(currScope().IsDerivedType()); for (auto &declaration : tbps.declarations) { auto &bindingName{std::get(declaration.t)}; if (Symbol * binding{FindInScope(bindingName)}) { if (auto *details{binding->detailsIf()}) { const Symbol *procedure{FindSubprogram(details->symbol())}; if (!CanBeTypeBoundProc(procedure)) { if (details->symbol().name() != binding->name()) { Say(binding->name(), "The binding of '%s' ('%s') must be either an accessible " "module procedure or an external procedure with " "an explicit interface"_err_en_US, binding->name(), details->symbol().name()); } else { Say(binding->name(), "'%s' must be either an accessible module procedure " "or an external procedure with an explicit interface"_err_en_US, binding->name()); } context().SetError(*binding); } } } } } void DeclarationVisitor::Post( const parser::TypeBoundProcedureStmt::WithInterface &x) { if (!GetAttrs().test(Attr::DEFERRED)) { // C783 Say("DEFERRED is required when an interface-name is provided"_err_en_US); } if (Symbol * interface{NoteInterfaceName(x.interfaceName)}) { for (auto &bindingName : x.bindingNames) { if (auto *s{ MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) { SetPassNameOn(*s); if (!GetAttrs().test(Attr::DEFERRED)) { context().SetError(*s); } } } } } void DeclarationVisitor::Post(const parser::FinalProcedureStmt &x) { if (currScope().IsDerivedType() && currScope().symbol()) { if (auto *details{currScope().symbol()->detailsIf()}) { for (const auto &subrName : x.v) { if (const auto *name{ResolveName(subrName)}) { auto pair{ details->finals().emplace(name->source, DEREF(name->symbol))}; if (!pair.second) { // C787 Say(name->source, "FINAL subroutine '%s' already appeared in this derived type"_err_en_US, name->source) .Attach(pair.first->first, "earlier appearance of this FINAL subroutine"_en_US); } } } } } } bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) { const auto &accessSpec{std::get>(x.t)}; const auto &genericSpec{std::get>(x.t)}; const auto &bindingNames{std::get>(x.t)}; auto info{GenericSpecInfo{genericSpec.value()}}; SourceName symbolName{info.symbolName()}; bool isPrivate{accessSpec ? accessSpec->v == parser::AccessSpec::Kind::Private : derivedTypeInfo_.privateBindings}; auto *genericSymbol{FindInScope(symbolName)}; if (genericSymbol) { if (!genericSymbol->has()) { genericSymbol = nullptr; // MakeTypeSymbol will report the error below } } else { // look in parent types: Symbol *inheritedSymbol{nullptr}; for (const auto &name : GetAllNames(context(), symbolName)) { inheritedSymbol = currScope().FindComponent(SourceName{name}); if (inheritedSymbol) { break; } } if (inheritedSymbol && inheritedSymbol->has()) { CheckAccessibility(symbolName, isPrivate, *inheritedSymbol); // C771 } } if (genericSymbol) { CheckAccessibility(symbolName, isPrivate, *genericSymbol); // C771 } else { genericSymbol = MakeTypeSymbol(symbolName, GenericDetails{}); if (!genericSymbol) { return false; } if (isPrivate) { SetExplicitAttr(*genericSymbol, Attr::PRIVATE); } } for (const parser::Name &bindingName : bindingNames) { genericBindings_.emplace(genericSymbol, &bindingName); } info.Resolve(genericSymbol); return false; } // DEC STRUCTUREs are handled thus to allow for nested definitions. bool DeclarationVisitor::Pre(const parser::StructureDef &def) { const auto &structureStatement{ std::get>(def.t)}; auto saveDerivedTypeInfo{derivedTypeInfo_}; derivedTypeInfo_ = {}; derivedTypeInfo_.isStructure = true; derivedTypeInfo_.sequence = true; Scope *previousStructure{nullptr}; if (saveDerivedTypeInfo.isStructure) { previousStructure = &currScope(); PopScope(); } const parser::StructureStmt &structStmt{structureStatement.statement}; const auto &name{std::get>(structStmt.t)}; if (!name) { // Construct a distinct generated name for an anonymous structure auto &mutableName{const_cast &>(name)}; mutableName.emplace( parser::Name{context().GetTempName(currScope()), nullptr}); } auto &symbol{MakeSymbol(*name, DerivedTypeDetails{})}; symbol.ReplaceName(name->source); symbol.get().set_sequence(true); symbol.get().set_isDECStructure(true); derivedTypeInfo_.type = &symbol; PushScope(Scope::Kind::DerivedType, &symbol); const auto &fields{std::get>(def.t)}; Walk(fields); PopScope(); // Complete the definition DerivedTypeSpec derivedTypeSpec{symbol.name(), symbol}; derivedTypeSpec.set_scope(DEREF(symbol.scope())); derivedTypeSpec.CookParameters(GetFoldingContext()); derivedTypeSpec.EvaluateParameters(context()); DeclTypeSpec &type{currScope().MakeDerivedType( DeclTypeSpec::TypeDerived, std::move(derivedTypeSpec))}; type.derivedTypeSpec().Instantiate(currScope()); // Restore previous structure definition context, if any derivedTypeInfo_ = saveDerivedTypeInfo; if (previousStructure) { PushScope(*previousStructure); } // Handle any entity declarations on the STRUCTURE statement const auto &decls{std::get>(structStmt.t)}; if (!decls.empty()) { BeginDecl(); SetDeclTypeSpec(type); Walk(decls); EndDecl(); } return false; } bool DeclarationVisitor::Pre(const parser::Union::UnionStmt &) { Say("support for UNION"_todo_en_US); // TODO return true; } bool DeclarationVisitor::Pre(const parser::StructureField &x) { if (std::holds_alternative>( x.u)) { BeginDecl(); } return true; } void DeclarationVisitor::Post(const parser::StructureField &x) { if (std::holds_alternative>( x.u)) { EndDecl(); } } bool DeclarationVisitor::Pre(const parser::AllocateStmt &) { BeginDeclTypeSpec(); return true; } void DeclarationVisitor::Post(const parser::AllocateStmt &) { EndDeclTypeSpec(); } bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) { auto &parsedType{std::get(x.t)}; const DeclTypeSpec *type{ProcessTypeSpec(parsedType)}; if (!type) { return false; } const DerivedTypeSpec *spec{type->AsDerived()}; const Scope *typeScope{spec ? spec->scope() : nullptr}; if (!typeScope) { return false; } // N.B C7102 is implicitly enforced by having inaccessible types not // being found in resolution. // More constraints are enforced in expression.cpp so that they // can apply to structure constructors that have been converted // from misparsed function references. for (const auto &component : std::get>(x.t)) { // Visit the component spec expression, but not the keyword, since // we need to resolve its symbol in the scope of the derived type. Walk(std::get(component.t)); if (const auto &kw{std::get>(component.t)}) { FindInTypeOrParents(*typeScope, kw->v); } } return false; } bool DeclarationVisitor::Pre(const parser::BasedPointerStmt &x) { for (const parser::BasedPointer &bp : x.v) { const parser::ObjectName &pointerName{std::get<0>(bp.t)}; const parser::ObjectName &pointeeName{std::get<1>(bp.t)}; auto *pointer{FindSymbol(pointerName)}; if (!pointer) { pointer = &MakeSymbol(pointerName, ObjectEntityDetails{}); } else if (!ConvertToObjectEntity(*pointer) || IsNamedConstant(*pointer)) { SayWithDecl(pointerName, *pointer, "'%s' is not a variable"_err_en_US); } else if (pointer->Rank() > 0) { SayWithDecl(pointerName, *pointer, "Cray pointer '%s' must be a scalar"_err_en_US); } else if (pointer->test(Symbol::Flag::CrayPointee)) { Say(pointerName, "'%s' cannot be a Cray pointer as it is already a Cray pointee"_err_en_US); } pointer->set(Symbol::Flag::CrayPointer); const DeclTypeSpec &pointerType{MakeNumericType(TypeCategory::Integer, context().defaultKinds().subscriptIntegerKind())}; const auto *type{pointer->GetType()}; if (!type) { pointer->SetType(pointerType); } else if (*type != pointerType) { Say(pointerName.source, "Cray pointer '%s' must have type %s"_err_en_US, pointerName.source, pointerType.AsFortran()); } if (ResolveName(pointeeName)) { Symbol &pointee{*pointeeName.symbol}; if (pointee.has()) { Say(pointeeName, "'%s' cannot be a Cray pointee as it is use-associated"_err_en_US); continue; } else if (!ConvertToObjectEntity(pointee) || IsNamedConstant(pointee)) { Say(pointeeName, "'%s' is not a variable"_err_en_US); continue; } else if (pointee.test(Symbol::Flag::CrayPointer)) { Say(pointeeName, "'%s' cannot be a Cray pointee as it is already a Cray pointer"_err_en_US); } else if (pointee.test(Symbol::Flag::CrayPointee)) { Say(pointeeName, "'%s' was already declared as a Cray pointee"_err_en_US); } else { pointee.set(Symbol::Flag::CrayPointee); } if (const auto *pointeeType{pointee.GetType()}) { if (const auto *derived{pointeeType->AsDerived()}) { if (!derived->typeSymbol().get().sequence()) { Say(pointeeName, "Type of Cray pointee '%s' is a non-sequence derived type"_err_en_US); } } } // process the pointee array-spec, if present BeginArraySpec(); Walk(std::get>(bp.t)); const auto &spec{arraySpec()}; if (!spec.empty()) { auto &details{pointee.get()}; if (details.shape().empty()) { details.set_shape(spec); } else { SayWithDecl(pointeeName, pointee, "Array spec was already declared for '%s'"_err_en_US); } } ClearArraySpec(); currScope().add_crayPointer(pointeeName.source, *pointer); } } return false; } bool DeclarationVisitor::Pre(const parser::NamelistStmt::Group &x) { if (!CheckNotInBlock("NAMELIST")) { // C1107 return false; } const auto &groupName{std::get(x.t)}; auto *groupSymbol{FindInScope(groupName)}; if (!groupSymbol || !groupSymbol->has()) { groupSymbol = &MakeSymbol(groupName, NamelistDetails{}); groupSymbol->ReplaceName(groupName.source); } // Name resolution of group items is deferred to FinishNamelists() // so that host association is handled correctly. GetDeferredDeclarationState(true)->namelistGroups.emplace_back(&x); return false; } void DeclarationVisitor::FinishNamelists() { if (auto *deferred{GetDeferredDeclarationState()}) { for (const parser::NamelistStmt::Group *group : deferred->namelistGroups) { if (auto *groupSymbol{FindInScope(std::get(group->t))}) { if (auto *details{groupSymbol->detailsIf()}) { for (const auto &name : std::get>(group->t)) { auto *symbol{FindSymbol(name)}; if (!symbol) { symbol = &MakeSymbol(name, ObjectEntityDetails{}); ApplyImplicitRules(*symbol); } else if (!ConvertToObjectEntity(*symbol)) { SayWithDecl(name, *symbol, "'%s' is not a variable"_err_en_US); } symbol->GetUltimate().set(Symbol::Flag::InNamelist); details->add_object(*symbol); } } } } deferred->namelistGroups.clear(); } } bool DeclarationVisitor::Pre(const parser::IoControlSpec &x) { if (const auto *name{std::get_if(&x.u)}) { auto *symbol{FindSymbol(*name)}; if (!symbol) { Say(*name, "Namelist group '%s' not found"_err_en_US); } else if (!symbol->GetUltimate().has()) { SayWithDecl( *name, *symbol, "'%s' is not the name of a namelist group"_err_en_US); } } return true; } bool DeclarationVisitor::Pre(const parser::CommonStmt::Block &x) { CheckNotInBlock("COMMON"); // C1107 return true; } bool DeclarationVisitor::Pre(const parser::CommonBlockObject &) { BeginArraySpec(); return true; } void DeclarationVisitor::Post(const parser::CommonBlockObject &x) { const auto &name{std::get(x.t)}; DeclareObjectEntity(name); auto pair{specPartState_.commonBlockObjects.insert(name.source)}; if (!pair.second) { const SourceName &prev{*pair.first}; Say2(name.source, "'%s' is already in a COMMON block"_err_en_US, prev, "Previous occurrence of '%s' in a COMMON block"_en_US); } } bool DeclarationVisitor::Pre(const parser::EquivalenceStmt &x) { // save equivalence sets to be processed after specification part if (CheckNotInBlock("EQUIVALENCE")) { // C1107 for (const std::list &set : x.v) { specPartState_.equivalenceSets.push_back(&set); } } return false; // don't implicitly declare names yet } void DeclarationVisitor::CheckEquivalenceSets() { EquivalenceSets equivSets{context()}; inEquivalenceStmt_ = true; for (const auto *set : specPartState_.equivalenceSets) { const auto &source{set->front().v.value().source}; if (set->size() <= 1) { // R871 Say(source, "Equivalence set must have more than one object"_err_en_US); } for (const parser::EquivalenceObject &object : *set) { const auto &designator{object.v.value()}; // The designator was not resolved when it was encountered so do it now. // AnalyzeExpr causes array sections to be changed to substrings as needed Walk(designator); if (AnalyzeExpr(context(), designator)) { equivSets.AddToSet(designator); } } equivSets.FinishSet(source); } inEquivalenceStmt_ = false; for (auto &set : equivSets.sets()) { if (!set.empty()) { currScope().add_equivalenceSet(std::move(set)); } } specPartState_.equivalenceSets.clear(); } bool DeclarationVisitor::Pre(const parser::SaveStmt &x) { if (x.v.empty()) { specPartState_.saveInfo.saveAll = currStmtSource(); currScope().set_hasSAVE(); } else { for (const parser::SavedEntity &y : x.v) { auto kind{std::get(y.t)}; const auto &name{std::get(y.t)}; if (kind == parser::SavedEntity::Kind::Common) { MakeCommonBlockSymbol(name); AddSaveName(specPartState_.saveInfo.commons, name.source); } else { HandleAttributeStmt(Attr::SAVE, name); } } } return false; } void DeclarationVisitor::CheckSaveStmts() { for (const SourceName &name : specPartState_.saveInfo.entities) { auto *symbol{FindInScope(name)}; if (!symbol) { // error was reported } else if (specPartState_.saveInfo.saveAll) { // C889 - note that pgi, ifort, xlf do not enforce this constraint Say2(name, "Explicit SAVE of '%s' is redundant due to global SAVE statement"_warn_en_US, *specPartState_.saveInfo.saveAll, "Global SAVE statement"_en_US); } else if (auto msg{CheckSaveAttr(*symbol)}) { Say(name, std::move(*msg)); context().SetError(*symbol); } else { SetSaveAttr(*symbol); } } for (const SourceName &name : specPartState_.saveInfo.commons) { if (auto *symbol{currScope().FindCommonBlock(name)}) { auto &objects{symbol->get().objects()}; if (objects.empty()) { if (currScope().kind() != Scope::Kind::BlockConstruct) { Say(name, "'%s' appears as a COMMON block in a SAVE statement but not in" " a COMMON statement"_err_en_US); } else { // C1108 Say(name, "SAVE statement in BLOCK construct may not contain a" " common block name '%s'"_err_en_US); } } else { for (auto &object : symbol->get().objects()) { SetSaveAttr(*object); } } } } if (specPartState_.saveInfo.saveAll) { // Apply SAVE attribute to applicable symbols for (auto pair : currScope()) { auto &symbol{*pair.second}; if (!CheckSaveAttr(symbol)) { SetSaveAttr(symbol); } } } specPartState_.saveInfo = {}; } // If SAVE attribute can't be set on symbol, return error message. std::optional DeclarationVisitor::CheckSaveAttr( const Symbol &symbol) { if (IsDummy(symbol)) { return "SAVE attribute may not be applied to dummy argument '%s'"_err_en_US; } else if (symbol.IsFuncResult()) { return "SAVE attribute may not be applied to function result '%s'"_err_en_US; } else if (symbol.has() && !symbol.attrs().test(Attr::POINTER)) { return "Procedure '%s' with SAVE attribute must also have POINTER attribute"_err_en_US; } else if (IsAutomatic(symbol)) { return "SAVE attribute may not be applied to automatic data object '%s'"_err_en_US; } else { return std::nullopt; } } // Record SAVEd names in specPartState_.saveInfo.entities. Attrs DeclarationVisitor::HandleSaveName(const SourceName &name, Attrs attrs) { if (attrs.test(Attr::SAVE)) { AddSaveName(specPartState_.saveInfo.entities, name); } return attrs; } // Record a name in a set of those to be saved. void DeclarationVisitor::AddSaveName( std::set &set, const SourceName &name) { auto pair{set.insert(name)}; if (!pair.second) { Say2(name, "SAVE attribute was already specified on '%s'"_warn_en_US, *pair.first, "Previous specification of SAVE attribute"_en_US); } } // Set the SAVE attribute on symbol unless it is implicitly saved anyway. void DeclarationVisitor::SetSaveAttr(Symbol &symbol) { if (!IsSaved(symbol)) { SetImplicitAttr(symbol, Attr::SAVE); } } // Check types of common block objects, now that they are known. void DeclarationVisitor::CheckCommonBlocks() { // check for empty common blocks for (const auto &pair : currScope().commonBlocks()) { const auto &symbol{*pair.second}; if (symbol.get().objects().empty() && symbol.attrs().test(Attr::BIND_C)) { Say(symbol.name(), "'%s' appears as a COMMON block in a BIND statement but not in" " a COMMON statement"_err_en_US); } } // check objects in common blocks for (const auto &name : specPartState_.commonBlockObjects) { const auto *symbol{currScope().FindSymbol(name)}; if (!symbol) { continue; } const auto &attrs{symbol->attrs()}; if (attrs.test(Attr::ALLOCATABLE)) { Say(name, "ALLOCATABLE object '%s' may not appear in a COMMON block"_err_en_US); } else if (attrs.test(Attr::BIND_C)) { Say(name, "Variable '%s' with BIND attribute may not appear in a COMMON block"_err_en_US); } else if (IsNamedConstant(*symbol)) { Say(name, "A named constant '%s' may not appear in a COMMON block"_err_en_US); } else if (IsDummy(*symbol)) { Say(name, "Dummy argument '%s' may not appear in a COMMON block"_err_en_US); } else if (symbol->IsFuncResult()) { Say(name, "Function result '%s' may not appear in a COMMON block"_err_en_US); } else if (const DeclTypeSpec * type{symbol->GetType()}) { if (type->category() == DeclTypeSpec::ClassStar) { Say(name, "Unlimited polymorphic pointer '%s' may not appear in a COMMON block"_err_en_US); } else if (const auto *derived{type->AsDerived()}) { auto &typeSymbol{derived->typeSymbol()}; if (!typeSymbol.attrs().test(Attr::BIND_C) && !typeSymbol.get().sequence()) { Say(name, "Derived type '%s' in COMMON block must have the BIND or" " SEQUENCE attribute"_err_en_US); } CheckCommonBlockDerivedType(name, typeSymbol); } } } specPartState_.commonBlockObjects = {}; } Symbol &DeclarationVisitor::MakeCommonBlockSymbol(const parser::Name &name) { return Resolve(name, currScope().MakeCommonBlock(name.source)); } Symbol &DeclarationVisitor::MakeCommonBlockSymbol( const std::optional &name) { if (name) { return MakeCommonBlockSymbol(*name); } else { return MakeCommonBlockSymbol(parser::Name{}); } } bool DeclarationVisitor::NameIsKnownOrIntrinsic(const parser::Name &name) { return FindSymbol(name) || HandleUnrestrictedSpecificIntrinsicFunction(name); } // Check if this derived type can be in a COMMON block. void DeclarationVisitor::CheckCommonBlockDerivedType( const SourceName &name, const Symbol &typeSymbol) { if (const auto *scope{typeSymbol.scope()}) { for (const auto &pair : *scope) { const Symbol &component{*pair.second}; if (component.attrs().test(Attr::ALLOCATABLE)) { Say2(name, "Derived type variable '%s' may not appear in a COMMON block" " due to ALLOCATABLE component"_err_en_US, component.name(), "Component with ALLOCATABLE attribute"_en_US); return; } const auto *details{component.detailsIf()}; if (component.test(Symbol::Flag::InDataStmt) || (details && details->init())) { Say2(name, "Derived type variable '%s' may not appear in a COMMON block due to component with default initialization"_err_en_US, component.name(), "Component with default initialization"_en_US); return; } if (details) { if (const auto *type{details->type()}) { if (const auto *derived{type->AsDerived()}) { CheckCommonBlockDerivedType(name, derived->typeSymbol()); } } } } } } bool DeclarationVisitor::HandleUnrestrictedSpecificIntrinsicFunction( const parser::Name &name) { if (auto interface{context().intrinsics().IsSpecificIntrinsicFunction( name.source.ToString())}) { // Unrestricted specific intrinsic function names (e.g., "cos") // are acceptable as procedure interfaces. The presence of the // INTRINSIC flag will cause this symbol to have a complete interface // recreated for it later on demand, but capturing its result type here // will make GetType() return a correct result without having to // probe the intrinsics table again. Symbol &symbol{ MakeSymbol(InclusiveScope(), name.source, Attrs{Attr::INTRINSIC})}; CHECK(interface->functionResult.has_value()); evaluate::DynamicType dyType{ DEREF(interface->functionResult->GetTypeAndShape()).type()}; CHECK(common::IsNumericTypeCategory(dyType.category())); const DeclTypeSpec &typeSpec{ MakeNumericType(dyType.category(), dyType.kind())}; ProcEntityDetails details; ProcInterface procInterface; procInterface.set_type(typeSpec); details.set_interface(procInterface); symbol.set_details(std::move(details)); symbol.set(Symbol::Flag::Function); if (interface->IsElemental()) { SetExplicitAttr(symbol, Attr::ELEMENTAL); } if (interface->IsPure()) { SetExplicitAttr(symbol, Attr::PURE); } Resolve(name, symbol); return true; } else { return false; } } // Checks for all locality-specs: LOCAL, LOCAL_INIT, and SHARED bool DeclarationVisitor::PassesSharedLocalityChecks( const parser::Name &name, Symbol &symbol) { if (!IsVariableName(symbol)) { SayLocalMustBeVariable(name, symbol); // C1124 return false; } if (symbol.owner() == currScope()) { // C1125 and C1126 SayAlreadyDeclared(name, symbol); return false; } return true; } // Checks for locality-specs LOCAL and LOCAL_INIT bool DeclarationVisitor::PassesLocalityChecks( const parser::Name &name, Symbol &symbol) { if (IsAllocatable(symbol)) { // C1128 SayWithDecl(name, symbol, "ALLOCATABLE variable '%s' not allowed in a locality-spec"_err_en_US); return false; } if (IsOptional(symbol)) { // C1128 SayWithDecl(name, symbol, "OPTIONAL argument '%s' not allowed in a locality-spec"_err_en_US); return false; } if (IsIntentIn(symbol)) { // C1128 SayWithDecl(name, symbol, "INTENT IN argument '%s' not allowed in a locality-spec"_err_en_US); return false; } if (IsFinalizable(symbol)) { // C1128 SayWithDecl(name, symbol, "Finalizable variable '%s' not allowed in a locality-spec"_err_en_US); return false; } if (evaluate::IsCoarray(symbol)) { // C1128 SayWithDecl( name, symbol, "Coarray '%s' not allowed in a locality-spec"_err_en_US); return false; } if (const DeclTypeSpec * type{symbol.GetType()}) { if (type->IsPolymorphic() && IsDummy(symbol) && !IsPointer(symbol)) { // C1128 SayWithDecl(name, symbol, "Nonpointer polymorphic argument '%s' not allowed in a " "locality-spec"_err_en_US); return false; } } if (IsAssumedSizeArray(symbol)) { // C1128 SayWithDecl(name, symbol, "Assumed size array '%s' not allowed in a locality-spec"_err_en_US); return false; } if (std::optional whyNot{WhyNotDefinable( name.source, currScope(), DefinabilityFlags{}, symbol)}) { SayWithReason(name, symbol, "'%s' may not appear in a locality-spec because it is not " "definable"_err_en_US, std::move(*whyNot)); return false; } return PassesSharedLocalityChecks(name, symbol); } Symbol &DeclarationVisitor::FindOrDeclareEnclosingEntity( const parser::Name &name) { Symbol *prev{FindSymbol(name)}; if (!prev) { // Declare the name as an object in the enclosing scope so that // the name can't be repurposed there later as something else. prev = &MakeSymbol(InclusiveScope(), name.source, Attrs{}); ConvertToObjectEntity(*prev); ApplyImplicitRules(*prev); } return *prev; } Symbol *DeclarationVisitor::DeclareLocalEntity(const parser::Name &name) { Symbol &prev{FindOrDeclareEnclosingEntity(name)}; if (!PassesLocalityChecks(name, prev)) { return nullptr; } return &MakeHostAssocSymbol(name, prev); } Symbol *DeclarationVisitor::DeclareStatementEntity( const parser::DoVariable &doVar, const std::optional &type) { const parser::Name &name{doVar.thing.thing}; const DeclTypeSpec *declTypeSpec{nullptr}; if (auto *prev{FindSymbol(name)}) { if (prev->owner() == currScope()) { SayAlreadyDeclared(name, *prev); return nullptr; } name.symbol = nullptr; declTypeSpec = prev->GetType(); } Symbol &symbol{DeclareEntity(name, {})}; if (!symbol.has()) { return nullptr; // error was reported in DeclareEntity } if (type) { declTypeSpec = ProcessTypeSpec(*type); } if (declTypeSpec) { // Subtlety: Don't let a "*length" specifier (if any is pending) affect the // declaration of this implied DO loop control variable. auto restorer{ common::ScopedSet(charInfo_.length, std::optional{})}; SetType(name, *declTypeSpec); } else { ApplyImplicitRules(symbol); } Symbol *result{Resolve(name, &symbol)}; AnalyzeExpr(context(), doVar); // enforce INTEGER type return result; } // Set the type of an entity or report an error. void DeclarationVisitor::SetType( const parser::Name &name, const DeclTypeSpec &type) { CHECK(name.symbol); auto &symbol{*name.symbol}; if (charInfo_.length) { // Declaration has "*length" (R723) auto length{std::move(*charInfo_.length)}; charInfo_.length.reset(); if (type.category() == DeclTypeSpec::Character) { auto kind{type.characterTypeSpec().kind()}; // Recurse with correct type. SetType(name, currScope().MakeCharacterType(std::move(length), std::move(kind))); return; } else { // C753 Say(name, "A length specifier cannot be used to declare the non-character entity '%s'"_err_en_US); } } auto *prevType{symbol.GetType()}; if (!prevType) { symbol.SetType(type); } else if (symbol.has()) { // error recovery case, redeclaration of use-associated name } else if (HadForwardRef(symbol)) { // error recovery after use of host-associated name } else if (!symbol.test(Symbol::Flag::Implicit)) { SayWithDecl( name, symbol, "The type of '%s' has already been declared"_err_en_US); context().SetError(symbol); } else if (type != *prevType) { SayWithDecl(name, symbol, "The type of '%s' has already been implicitly declared"_err_en_US); context().SetError(symbol); } else { symbol.set(Symbol::Flag::Implicit, false); } } std::optional DeclarationVisitor::ResolveDerivedType( const parser::Name &name) { Scope &outer{NonDerivedTypeScope()}; Symbol *symbol{FindSymbol(outer, name)}; Symbol *ultimate{symbol ? &symbol->GetUltimate() : nullptr}; auto *generic{ultimate ? ultimate->detailsIf() : nullptr}; if (generic) { if (Symbol * genDT{generic->derivedType()}) { symbol = genDT; generic = nullptr; } } if (!symbol || symbol->has() || (generic && &ultimate->owner() == &outer)) { if (allowForwardReferenceToDerivedType()) { if (!symbol) { symbol = &MakeSymbol(outer, name.source, Attrs{}); Resolve(name, *symbol); } else if (generic) { // forward ref to type with later homonymous generic symbol = &outer.MakeSymbol(name.source, Attrs{}, UnknownDetails{}); generic->set_derivedType(*symbol); name.symbol = symbol; } DerivedTypeDetails details; details.set_isForwardReferenced(true); symbol->set_details(std::move(details)); } else { // C732 Say(name, "Derived type '%s' not found"_err_en_US); return std::nullopt; } } if (CheckUseError(name)) { return std::nullopt; } symbol = &symbol->GetUltimate(); if (symbol->has()) { return DerivedTypeSpec{name.source, *symbol}; } else { Say(name, "'%s' is not a derived type"_err_en_US); return std::nullopt; } } std::optional DeclarationVisitor::ResolveExtendsType( const parser::Name &typeName, const parser::Name *extendsName) { if (!extendsName) { return std::nullopt; } else if (typeName.source == extendsName->source) { Say(extendsName->source, "Derived type '%s' cannot extend itself"_err_en_US); return std::nullopt; } else { return ResolveDerivedType(*extendsName); } } Symbol *DeclarationVisitor::NoteInterfaceName(const parser::Name &name) { // The symbol is checked later by CheckExplicitInterface() and // CheckBindings(). It can be a forward reference. if (!NameIsKnownOrIntrinsic(name)) { Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})}; Resolve(name, symbol); } return name.symbol; } void DeclarationVisitor::CheckExplicitInterface(const parser::Name &name) { if (const Symbol * symbol{name.symbol}) { const Symbol &ultimate{symbol->GetUltimate()}; if (!context().HasError(*symbol) && !context().HasError(ultimate) && !ultimate.HasExplicitInterface()) { Say(name, "'%s' must be an abstract interface or a procedure with " "an explicit interface"_err_en_US, symbol->name()); } } } // Create a symbol for a type parameter, component, or procedure binding in // the current derived type scope. Return false on error. Symbol *DeclarationVisitor::MakeTypeSymbol( const parser::Name &name, Details &&details) { return Resolve(name, MakeTypeSymbol(name.source, std::move(details))); } Symbol *DeclarationVisitor::MakeTypeSymbol( const SourceName &name, Details &&details) { Scope &derivedType{currScope()}; CHECK(derivedType.IsDerivedType()); if (auto *symbol{FindInScope(derivedType, name)}) { // C742 Say2(name, "Type parameter, component, or procedure binding '%s'" " already defined in this type"_err_en_US, *symbol, "Previous definition of '%s'"_en_US); return nullptr; } else { auto attrs{GetAttrs()}; // Apply binding-private-stmt if present and this is a procedure binding if (derivedTypeInfo_.privateBindings && !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) && std::holds_alternative(details)) { attrs.set(Attr::PRIVATE); } Symbol &result{MakeSymbol(name, attrs, std::move(details))}; if (result.has()) { derivedType.symbol()->get().add_paramDecl(result); } return &result; } } // Return true if it is ok to declare this component in the current scope. // Otherwise, emit an error and return false. bool DeclarationVisitor::OkToAddComponent( const parser::Name &name, const Symbol *extends) { for (const Scope *scope{&currScope()}; scope;) { CHECK(scope->IsDerivedType()); if (auto *prev{FindInScope(*scope, name.source)}) { std::optional msg; if (context().HasError(*prev)) { // don't pile on } else if (extends) { msg = "Type cannot be extended as it has a component named" " '%s'"_err_en_US; } else if (CheckAccessibleSymbol(currScope(), *prev)) { // inaccessible component -- redeclaration is ok msg = "Component '%s' is inaccessibly declared in or as a " "parent of this derived type"_warn_en_US; } else if (prev->test(Symbol::Flag::ParentComp)) { msg = "'%s' is a parent type of this type and so cannot be" " a component"_err_en_US; } else if (scope == &currScope()) { msg = "Component '%s' is already declared in this" " derived type"_err_en_US; } else { msg = "Component '%s' is already declared in a parent of this" " derived type"_err_en_US; } if (msg) { Say2( name, std::move(*msg), *prev, "Previous declaration of '%s'"_en_US); if (msg->severity() == parser::Severity::Error) { Resolve(name, *prev); return false; } } } if (scope == &currScope() && extends) { // The parent component has not yet been added to the scope. scope = extends->scope(); } else { scope = scope->GetDerivedTypeParent(); } } return true; } ParamValue DeclarationVisitor::GetParamValue( const parser::TypeParamValue &x, common::TypeParamAttr attr) { return common::visit( common::visitors{ [=](const parser::ScalarIntExpr &x) { // C704 return ParamValue{EvaluateIntExpr(x), attr}; }, [=](const parser::Star &) { return ParamValue::Assumed(attr); }, [=](const parser::TypeParamValue::Deferred &) { return ParamValue::Deferred(attr); }, }, x.u); } // ConstructVisitor implementation void ConstructVisitor::ResolveIndexName( const parser::ConcurrentControl &control) { const parser::Name &name{std::get(control.t)}; auto *prev{FindSymbol(name)}; if (prev) { if (prev->owner().kind() == Scope::Kind::Forall || prev->owner() == currScope()) { SayAlreadyDeclared(name, *prev); return; } name.symbol = nullptr; } auto &symbol{DeclareObjectEntity(name)}; if (symbol.GetType()) { // type came from explicit type-spec } else if (!prev) { ApplyImplicitRules(symbol); } else { const Symbol &prevRoot{prev->GetUltimate()}; // prev could be host- use- or construct-associated with another symbol if (!prevRoot.has() && !prevRoot.has()) { Say2(name, "Index name '%s' conflicts with existing identifier"_err_en_US, *prev, "Previous declaration of '%s'"_en_US); context().SetError(symbol); return; } else { if (const auto *type{prevRoot.GetType()}) { symbol.SetType(*type); } if (prevRoot.IsObjectArray()) { SayWithDecl(name, *prev, "Index variable '%s' is not scalar"_err_en_US); return; } } } EvaluateExpr(parser::Scalar{parser::Integer{common::Clone(name)}}); } // We need to make sure that all of the index-names get declared before the // expressions in the loop control are evaluated so that references to the // index-names in the expressions are correctly detected. bool ConstructVisitor::Pre(const parser::ConcurrentHeader &header) { BeginDeclTypeSpec(); Walk(std::get>(header.t)); const auto &controls{ std::get>(header.t)}; for (const auto &control : controls) { ResolveIndexName(control); } Walk(controls); Walk(std::get>(header.t)); EndDeclTypeSpec(); return false; } bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) { for (auto &name : x.v) { if (auto *symbol{DeclareLocalEntity(name)}) { symbol->set(Symbol::Flag::LocalityLocal); } } return false; } bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) { for (auto &name : x.v) { if (auto *symbol{DeclareLocalEntity(name)}) { symbol->set(Symbol::Flag::LocalityLocalInit); } } return false; } bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) { for (const auto &name : x.v) { if (!FindSymbol(name)) { Say(name, "Variable '%s' with SHARED locality implicitly declared"_warn_en_US); } Symbol &prev{FindOrDeclareEnclosingEntity(name)}; if (PassesSharedLocalityChecks(name, prev)) { MakeHostAssocSymbol(name, prev).set(Symbol::Flag::LocalityShared); } } return false; } bool ConstructVisitor::Pre(const parser::AcSpec &x) { ProcessTypeSpec(x.type); Walk(x.values); return false; } // Section 19.4, paragraph 5 says that each ac-do-variable has the scope of the // enclosing ac-implied-do bool ConstructVisitor::Pre(const parser::AcImpliedDo &x) { auto &values{std::get>(x.t)}; auto &control{std::get(x.t)}; auto &type{std::get>(control.t)}; auto &bounds{std::get(control.t)}; // F'2018 has the scope of the implied DO variable covering the entire // implied DO production (19.4(5)), which seems wrong in cases where the name // of the implied DO variable appears in one of the bound expressions. Thus // this extension, which shrinks the scope of the variable to exclude the // expressions in the bounds. auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)}; Walk(bounds.lower); Walk(bounds.upper); Walk(bounds.step); EndCheckOnIndexUseInOwnBounds(restore); PushScope(Scope::Kind::ImpliedDos, nullptr); DeclareStatementEntity(bounds.name, type); Walk(values); PopScope(); return false; } bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) { auto &objects{std::get>(x.t)}; auto &type{std::get>(x.t)}; auto &bounds{std::get(x.t)}; // See comment in Pre(AcImpliedDo) above. auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)}; Walk(bounds.lower); Walk(bounds.upper); Walk(bounds.step); EndCheckOnIndexUseInOwnBounds(restore); bool pushScope{currScope().kind() != Scope::Kind::ImpliedDos}; if (pushScope) { PushScope(Scope::Kind::ImpliedDos, nullptr); } DeclareStatementEntity(bounds.name, type); Walk(objects); if (pushScope) { PopScope(); } return false; } // Sets InDataStmt flag on a variable (or misidentified function) in a DATA // statement so that the predicate IsInitialized() will be true // during semantic analysis before the symbol's initializer is constructed. bool ConstructVisitor::Pre(const parser::DataIDoObject &x) { common::visit( common::visitors{ [&](const parser::Scalar> &y) { Walk(y.thing.value()); const parser::Name &first{parser::GetFirstName(y.thing.value())}; if (first.symbol) { first.symbol->set(Symbol::Flag::InDataStmt); } }, [&](const Indirection &y) { Walk(y.value()); }, }, x.u); return false; } bool ConstructVisitor::Pre(const parser::DataStmtObject &x) { // Subtle: DATA statements may appear in both the specification and // execution parts, but should be treated as if in the execution part // for purposes of implicit variable declaration vs. host association. // When a name first appears as an object in a DATA statement, it should // be implicitly declared locally as if it had been assigned. auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)}; common::visit(common::visitors{ [&](const Indirection &y) { Walk(y.value()); const parser::Name &first{ parser::GetFirstName(y.value())}; if (first.symbol) { first.symbol->set(Symbol::Flag::InDataStmt); } }, [&](const parser::DataImpliedDo &y) { PushScope(Scope::Kind::ImpliedDos, nullptr); Walk(y); PopScope(); }, }, x.u); return false; } bool ConstructVisitor::Pre(const parser::DataStmtValue &x) { const auto &data{std::get(x.t)}; auto &mutableData{const_cast(data)}; if (auto *elem{parser::Unwrap(mutableData)}) { if (const auto *name{std::get_if(&elem->base.u)}) { if (const Symbol * symbol{FindSymbol(*name)}) { const Symbol &ultimate{symbol->GetUltimate()}; if (ultimate.has()) { mutableData.u = elem->ConvertToStructureConstructor( DerivedTypeSpec{name->source, ultimate}); } } } } return true; } bool ConstructVisitor::Pre(const parser::DoConstruct &x) { if (x.IsDoConcurrent()) { PushScope(Scope::Kind::OtherConstruct, nullptr); } return true; } void ConstructVisitor::Post(const parser::DoConstruct &x) { if (x.IsDoConcurrent()) { PopScope(); } } bool ConstructVisitor::Pre(const parser::ForallConstruct &) { PushScope(Scope::Kind::Forall, nullptr); return true; } void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); } bool ConstructVisitor::Pre(const parser::ForallStmt &) { PushScope(Scope::Kind::Forall, nullptr); return true; } void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); } bool ConstructVisitor::Pre(const parser::BlockStmt &x) { CheckDef(x.v); PushScope(Scope::Kind::BlockConstruct, nullptr); return false; } bool ConstructVisitor::Pre(const parser::EndBlockStmt &x) { PopScope(); CheckRef(x.v); return false; } void ConstructVisitor::Post(const parser::Selector &x) { GetCurrentAssociation().selector = ResolveSelector(x); } void ConstructVisitor::Post(const parser::AssociateStmt &x) { CheckDef(x.t); PushScope(Scope::Kind::OtherConstruct, nullptr); const auto assocCount{std::get>(x.t).size()}; for (auto nthLastAssoc{assocCount}; nthLastAssoc > 0; --nthLastAssoc) { SetCurrentAssociation(nthLastAssoc); if (auto *symbol{MakeAssocEntity()}) { if (ExtractCoarrayRef(GetCurrentAssociation().selector.expr)) { // C1103 Say("Selector must not be a coindexed object"_err_en_US); } SetTypeFromAssociation(*symbol); SetAttrsFromAssociation(*symbol); } } PopAssociation(assocCount); } void ConstructVisitor::Post(const parser::EndAssociateStmt &x) { PopScope(); CheckRef(x.v); } bool ConstructVisitor::Pre(const parser::Association &x) { PushAssociation(); const auto &name{std::get(x.t)}; GetCurrentAssociation().name = &name; return true; } bool ConstructVisitor::Pre(const parser::ChangeTeamStmt &x) { CheckDef(x.t); PushScope(Scope::Kind::OtherConstruct, nullptr); PushAssociation(); return true; } void ConstructVisitor::Post(const parser::CoarrayAssociation &x) { const auto &decl{std::get(x.t)}; const auto &name{std::get(decl.t)}; if (auto *symbol{FindInScope(name)}) { const auto &selector{std::get(x.t)}; if (auto sel{ResolveSelector(selector)}) { const Symbol *whole{UnwrapWholeSymbolDataRef(sel.expr)}; if (!whole || whole->Corank() == 0) { Say(sel.source, // C1116 "Selector in coarray association must name a coarray"_err_en_US); } else if (auto dynType{sel.expr->GetType()}) { if (!symbol->GetType()) { symbol->SetType(ToDeclTypeSpec(std::move(*dynType))); } } } } } void ConstructVisitor::Post(const parser::EndChangeTeamStmt &x) { PopAssociation(); PopScope(); CheckRef(x.t); } bool ConstructVisitor::Pre(const parser::SelectTypeConstruct &) { PushAssociation(); return true; } void ConstructVisitor::Post(const parser::SelectTypeConstruct &) { PopAssociation(); } void ConstructVisitor::Post(const parser::SelectTypeStmt &x) { auto &association{GetCurrentAssociation()}; if (const std::optional &name{std::get<1>(x.t)}) { // This isn't a name in the current scope, it is in each TypeGuardStmt MakePlaceholder(*name, MiscDetails::Kind::SelectTypeAssociateName); association.name = &*name; auto exprType{association.selector.expr->GetType()}; if (ExtractCoarrayRef(association.selector.expr)) { // C1103 Say("Selector must not be a coindexed object"_err_en_US); } if (exprType && !exprType->IsPolymorphic()) { // C1159 Say(association.selector.source, "Selector '%s' in SELECT TYPE statement must be " "polymorphic"_err_en_US); } } else { if (const Symbol * whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) { ConvertToObjectEntity(const_cast(*whole)); if (!IsVariableName(*whole)) { Say(association.selector.source, // C901 "Selector is not a variable"_err_en_US); association = {}; } if (const DeclTypeSpec * type{whole->GetType()}) { if (!type->IsPolymorphic()) { // C1159 Say(association.selector.source, "Selector '%s' in SELECT TYPE statement must be " "polymorphic"_err_en_US); } } } else { Say(association.selector.source, // C1157 "Selector is not a named variable: 'associate-name =>' is required"_err_en_US); association = {}; } } } void ConstructVisitor::Post(const parser::SelectRankStmt &x) { auto &association{GetCurrentAssociation()}; if (const std::optional &name{std::get<1>(x.t)}) { // This isn't a name in the current scope, it is in each SelectRankCaseStmt MakePlaceholder(*name, MiscDetails::Kind::SelectRankAssociateName); association.name = &*name; } } bool ConstructVisitor::Pre(const parser::SelectTypeConstruct::TypeCase &) { PushScope(Scope::Kind::OtherConstruct, nullptr); return true; } void ConstructVisitor::Post(const parser::SelectTypeConstruct::TypeCase &) { PopScope(); } bool ConstructVisitor::Pre(const parser::SelectRankConstruct::RankCase &) { PushScope(Scope::Kind::OtherConstruct, nullptr); return true; } void ConstructVisitor::Post(const parser::SelectRankConstruct::RankCase &) { PopScope(); } bool ConstructVisitor::Pre(const parser::TypeGuardStmt::Guard &x) { if (std::holds_alternative(x.u)) { // CLASS IS (t) SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived); } return true; } void ConstructVisitor::Post(const parser::TypeGuardStmt::Guard &x) { if (auto *symbol{MakeAssocEntity()}) { if (std::holds_alternative(x.u)) { SetTypeFromAssociation(*symbol); } else if (const auto *type{GetDeclTypeSpec()}) { symbol->SetType(*type); } SetAttrsFromAssociation(*symbol); } } void ConstructVisitor::Post(const parser::SelectRankCaseStmt::Rank &x) { if (auto *symbol{MakeAssocEntity()}) { SetTypeFromAssociation(*symbol); SetAttrsFromAssociation(*symbol); if (const auto *init{std::get_if(&x.u)}) { if (auto val{EvaluateInt64(context(), *init)}) { auto &details{symbol->get()}; details.set_rank(*val); } } } } bool ConstructVisitor::Pre(const parser::SelectRankConstruct &) { PushAssociation(); return true; } void ConstructVisitor::Post(const parser::SelectRankConstruct &) { PopAssociation(); } bool ConstructVisitor::CheckDef(const std::optional &x) { if (x) { MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName}); } return true; } void ConstructVisitor::CheckRef(const std::optional &x) { if (x) { // Just add an occurrence of this name; checking is done in ValidateLabels FindSymbol(*x); } } // Make a symbol for the associating entity of the current association. Symbol *ConstructVisitor::MakeAssocEntity() { Symbol *symbol{nullptr}; auto &association{GetCurrentAssociation()}; if (association.name) { symbol = &MakeSymbol(*association.name, UnknownDetails{}); if (symbol->has() && symbol->owner() == currScope()) { Say(*association.name, // C1102 "The associate name '%s' is already used in this associate statement"_err_en_US); return nullptr; } } else if (const Symbol * whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) { symbol = &MakeSymbol(whole->name()); } else { return nullptr; } if (auto &expr{association.selector.expr}) { symbol->set_details(AssocEntityDetails{common::Clone(*expr)}); } else { symbol->set_details(AssocEntityDetails{}); } return symbol; } // Set the type of symbol based on the current association selector. void ConstructVisitor::SetTypeFromAssociation(Symbol &symbol) { auto &details{symbol.get()}; const MaybeExpr *pexpr{&details.expr()}; if (!*pexpr) { pexpr = &GetCurrentAssociation().selector.expr; } if (*pexpr) { const SomeExpr &expr{**pexpr}; if (std::optional type{expr.GetType()}) { if (const auto *charExpr{ evaluate::UnwrapExpr>( expr)}) { symbol.SetType(ToDeclTypeSpec(std::move(*type), FoldExpr(common::visit( [](const auto &kindChar) { return kindChar.LEN(); }, charExpr->u)))); } else { symbol.SetType(ToDeclTypeSpec(std::move(*type))); } } else { // BOZ literals, procedure designators, &c. are not acceptable Say(symbol.name(), "Associate name '%s' must have a type"_err_en_US); } } } // If current selector is a variable, set some of its attributes on symbol. void ConstructVisitor::SetAttrsFromAssociation(Symbol &symbol) { Attrs attrs{evaluate::GetAttrs(GetCurrentAssociation().selector.expr)}; symbol.attrs() |= attrs & Attrs{Attr::TARGET, Attr::ASYNCHRONOUS, Attr::VOLATILE, Attr::CONTIGUOUS}; if (attrs.test(Attr::POINTER)) { SetImplicitAttr(symbol, Attr::TARGET); } } ConstructVisitor::Selector ConstructVisitor::ResolveSelector( const parser::Selector &x) { return common::visit(common::visitors{ [&](const parser::Expr &expr) { return Selector{expr.source, EvaluateExpr(x)}; }, [&](const parser::Variable &var) { return Selector{var.GetSource(), EvaluateExpr(x)}; }, }, x.u); } // Set the current association to the nth to the last association on the // association stack. The top of the stack is at n = 1. This allows access // to the interior of a list of associations at the top of the stack. void ConstructVisitor::SetCurrentAssociation(std::size_t n) { CHECK(n > 0 && n <= associationStack_.size()); currentAssociation_ = &associationStack_[associationStack_.size() - n]; } ConstructVisitor::Association &ConstructVisitor::GetCurrentAssociation() { CHECK(currentAssociation_); return *currentAssociation_; } void ConstructVisitor::PushAssociation() { associationStack_.emplace_back(Association{}); currentAssociation_ = &associationStack_.back(); } void ConstructVisitor::PopAssociation(std::size_t count) { CHECK(count > 0 && count <= associationStack_.size()); associationStack_.resize(associationStack_.size() - count); currentAssociation_ = associationStack_.empty() ? nullptr : &associationStack_.back(); } const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec( evaluate::DynamicType &&type) { switch (type.category()) { SWITCH_COVERS_ALL_CASES case common::TypeCategory::Integer: case common::TypeCategory::Real: case common::TypeCategory::Complex: return context().MakeNumericType(type.category(), type.kind()); case common::TypeCategory::Logical: return context().MakeLogicalType(type.kind()); case common::TypeCategory::Derived: if (type.IsAssumedType()) { return currScope().MakeTypeStarType(); } else if (type.IsUnlimitedPolymorphic()) { return currScope().MakeClassStarType(); } else { return currScope().MakeDerivedType( type.IsPolymorphic() ? DeclTypeSpec::ClassDerived : DeclTypeSpec::TypeDerived, common::Clone(type.GetDerivedTypeSpec()) ); } case common::TypeCategory::Character: CRASH_NO_CASE; } } const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec( evaluate::DynamicType &&type, MaybeSubscriptIntExpr &&length) { CHECK(type.category() == common::TypeCategory::Character); if (length) { return currScope().MakeCharacterType( ParamValue{SomeIntExpr{*std::move(length)}, common::TypeParamAttr::Len}, KindExpr{type.kind()}); } else { return currScope().MakeCharacterType( ParamValue::Deferred(common::TypeParamAttr::Len), KindExpr{type.kind()}); } } // ResolveNamesVisitor implementation bool ResolveNamesVisitor::Pre(const parser::FunctionReference &x) { HandleCall(Symbol::Flag::Function, x.v); return false; } bool ResolveNamesVisitor::Pre(const parser::CallStmt &x) { HandleCall(Symbol::Flag::Subroutine, x.v); return false; } bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) { auto &scope{currScope()}; // Check C896 and C899: where IMPORT statements are allowed switch (scope.kind()) { case Scope::Kind::Module: if (scope.IsModule()) { Say("IMPORT is not allowed in a module scoping unit"_err_en_US); return false; } else if (x.kind == common::ImportKind::None) { Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US); return false; } break; case Scope::Kind::MainProgram: Say("IMPORT is not allowed in a main program scoping unit"_err_en_US); return false; case Scope::Kind::Subprogram: if (scope.parent().IsGlobal()) { Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US); return false; } break; case Scope::Kind::BlockData: // C1415 (in part) Say("IMPORT is not allowed in a BLOCK DATA subprogram"_err_en_US); return false; default:; } if (auto error{scope.SetImportKind(x.kind)}) { Say(std::move(*error)); } for (auto &name : x.names) { if (FindSymbol(scope.parent(), name)) { scope.add_importName(name.source); } else { Say(name, "'%s' not found in host scope"_err_en_US); } } prevImportStmt_ = currStmtSource(); return false; } const parser::Name *DeclarationVisitor::ResolveStructureComponent( const parser::StructureComponent &x) { return FindComponent(ResolveDataRef(x.base), x.component); } const parser::Name *DeclarationVisitor::ResolveDesignator( const parser::Designator &x) { return common::visit( common::visitors{ [&](const parser::DataRef &x) { return ResolveDataRef(x); }, [&](const parser::Substring &x) { Walk(std::get(x.t).t); return ResolveDataRef(std::get(x.t)); }, }, x.u); } const parser::Name *DeclarationVisitor::ResolveDataRef( const parser::DataRef &x) { return common::visit( common::visitors{ [=](const parser::Name &y) { return ResolveName(y); }, [=](const Indirection &y) { return ResolveStructureComponent(y.value()); }, [&](const Indirection &y) { Walk(y.value().subscripts); const parser::Name *name{ResolveDataRef(y.value().base)}; if (name && name->symbol) { if (!IsProcedure(*name->symbol)) { ConvertToObjectEntity(*name->symbol); } else if (!context().HasError(*name->symbol)) { SayWithDecl(*name, *name->symbol, "Cannot reference function '%s' as data"_err_en_US); } } return name; }, [&](const Indirection &y) { Walk(y.value().imageSelector); return ResolveDataRef(y.value().base); }, }, x.u); } // If implicit types are allowed, ensure name is in the symbol table. // Otherwise, report an error if it hasn't been declared. const parser::Name *DeclarationVisitor::ResolveName(const parser::Name &name) { FindSymbol(name); if (CheckForHostAssociatedImplicit(name)) { NotePossibleBadForwardRef(name); return &name; } if (Symbol * symbol{name.symbol}) { if (CheckUseError(name)) { return nullptr; // reported an error } NotePossibleBadForwardRef(name); symbol->set(Symbol::Flag::ImplicitOrError, false); if (IsUplevelReference(*symbol)) { MakeHostAssocSymbol(name, *symbol); } else if (IsDummy(*symbol) || (!symbol->GetType() && FindCommonBlockContaining(*symbol))) { ConvertToObjectEntity(*symbol); ApplyImplicitRules(*symbol); } if (checkIndexUseInOwnBounds_ && *checkIndexUseInOwnBounds_ == name.source && !InModuleFile()) { Say(name, "Implied DO index '%s' uses an object of the same name in its bounds expressions"_port_en_US, name.source); } return &name; } if (isImplicitNoneType()) { Say(name, "No explicit type declared for '%s'"_err_en_US); return nullptr; } // Create the symbol then ensure it is accessible if (checkIndexUseInOwnBounds_ && *checkIndexUseInOwnBounds_ == name.source) { Say(name, "Implied DO index '%s' uses itself in its own bounds expressions"_err_en_US, name.source); } MakeSymbol(InclusiveScope(), name.source, Attrs{}); auto *symbol{FindSymbol(name)}; if (!symbol) { Say(name, "'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US); return nullptr; } ConvertToObjectEntity(*symbol); ApplyImplicitRules(*symbol); NotePossibleBadForwardRef(name); return &name; } // A specification expression may refer to a symbol in the host procedure that // is implicitly typed. Because specification parts are processed before // execution parts, this may be the first time we see the symbol. It can't be a // local in the current scope (because it's in a specification expression) so // either it is implicitly declared in the host procedure or it is an error. // We create a symbol in the host assuming it is the former; if that proves to // be wrong we report an error later in CheckDeclarations(). bool DeclarationVisitor::CheckForHostAssociatedImplicit( const parser::Name &name) { if (!inSpecificationPart_) { return false; } if (name.symbol) { ApplyImplicitRules(*name.symbol, true); } Symbol *hostSymbol; Scope *host{GetHostProcedure()}; if (!host || isImplicitNoneType(*host)) { return false; } if (!name.symbol) { hostSymbol = &MakeSymbol(*host, name.source, Attrs{}); ConvertToObjectEntity(*hostSymbol); ApplyImplicitRules(*hostSymbol); hostSymbol->set(Symbol::Flag::ImplicitOrError); } else if (name.symbol->test(Symbol::Flag::ImplicitOrError)) { hostSymbol = name.symbol; } else { return false; } Symbol &symbol{MakeHostAssocSymbol(name, *hostSymbol)}; if (isImplicitNoneType()) { symbol.get().implicitOrExplicitTypeError = true; } else { symbol.get().implicitOrSpecExprError = true; } return true; } bool DeclarationVisitor::IsUplevelReference(const Symbol &symbol) { const Scope &symbolUnit{GetProgramUnitContaining(symbol)}; if (symbolUnit == GetProgramUnitContaining(currScope())) { return false; } else { Scope::Kind kind{symbolUnit.kind()}; return kind == Scope::Kind::Subprogram || kind == Scope::Kind::MainProgram; } } // base is a part-ref of a derived type; find the named component in its type. // Also handles intrinsic type parameter inquiries (%kind, %len) and // COMPLEX component references (%re, %im). const parser::Name *DeclarationVisitor::FindComponent( const parser::Name *base, const parser::Name &component) { if (!base || !base->symbol) { return nullptr; } if (auto *misc{base->symbol->detailsIf()}) { if (component.source == "kind") { if (misc->kind() == MiscDetails::Kind::ComplexPartRe || misc->kind() == MiscDetails::Kind::ComplexPartIm || misc->kind() == MiscDetails::Kind::KindParamInquiry || misc->kind() == MiscDetails::Kind::LenParamInquiry) { // x%{re,im,kind,len}%kind MakePlaceholder(component, MiscDetails::Kind::KindParamInquiry); return &component; } } } auto &symbol{base->symbol->GetUltimate()}; if (!symbol.has() && !ConvertToObjectEntity(symbol)) { SayWithDecl(*base, symbol, "'%s' is an invalid base for a component reference"_err_en_US); return nullptr; } auto *type{symbol.GetType()}; if (!type) { return nullptr; // should have already reported error } if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) { auto category{intrinsic->category()}; MiscDetails::Kind miscKind{MiscDetails::Kind::None}; if (component.source == "kind") { miscKind = MiscDetails::Kind::KindParamInquiry; } else if (category == TypeCategory::Character) { if (component.source == "len") { miscKind = MiscDetails::Kind::LenParamInquiry; } } else if (category == TypeCategory::Complex) { if (component.source == "re") { miscKind = MiscDetails::Kind::ComplexPartRe; } else if (component.source == "im") { miscKind = MiscDetails::Kind::ComplexPartIm; } } if (miscKind != MiscDetails::Kind::None) { MakePlaceholder(component, miscKind); return &component; } } else if (DerivedTypeSpec * derived{type->AsDerived()}) { derived->Instantiate(currScope()); // in case of forward referenced type if (const Scope * scope{derived->scope()}) { if (Resolve(component, scope->FindComponent(component.source))) { if (auto msg{CheckAccessibleSymbol(currScope(), *component.symbol)}) { context().Say(component.source, *msg); } return &component; } else { SayDerivedType(component.source, "Component '%s' not found in derived type '%s'"_err_en_US, *scope); } } return nullptr; } if (symbol.test(Symbol::Flag::Implicit)) { Say(*base, "'%s' is not an object of derived type; it is implicitly typed"_err_en_US); } else { SayWithDecl( *base, symbol, "'%s' is not an object of derived type"_err_en_US); } return nullptr; } void DeclarationVisitor::Initialization(const parser::Name &name, const parser::Initialization &init, bool inComponentDecl) { // Traversal of the initializer was deferred to here so that the // symbol being declared can be available for use in the expression, e.g.: // real, parameter :: x = tiny(x) if (!name.symbol) { return; } Symbol &ultimate{name.symbol->GetUltimate()}; if (IsAllocatable(ultimate)) { Say(name, "Allocatable object '%s' cannot be initialized"_err_en_US); return; } // TODO: check C762 - all bounds and type parameters of component // are colons or constant expressions if component is initialized common::visit( common::visitors{ [&](const parser::ConstantExpr &expr) { NonPointerInitialization(name, expr); }, [&](const parser::NullInit &null) { // => NULL() Walk(null); if (auto nullInit{EvaluateExpr(null)}) { if (!evaluate::IsNullPointer(*nullInit)) { // C813 Say(null.v.value().source, "Pointer initializer must be intrinsic NULL()"_err_en_US); } else if (IsPointer(ultimate)) { if (auto *object{ultimate.detailsIf()}) { object->set_init(std::move(*nullInit)); } else if (auto *procPtr{ ultimate.detailsIf()}) { procPtr->set_init(nullptr); } } else { Say(name, "Non-pointer component '%s' initialized with null pointer"_err_en_US); } } }, [&](const parser::InitialDataTarget &) { // Defer analysis to the end of the specification part // so that forward references and attribute checks like SAVE // work better. ultimate.set(Symbol::Flag::InDataStmt); }, [&](const std::list> &values) { // Handled later in data-to-inits conversion ultimate.set(Symbol::Flag::InDataStmt); Walk(values); }, }, init.u); } void DeclarationVisitor::PointerInitialization( const parser::Name &name, const parser::InitialDataTarget &target) { if (name.symbol) { Symbol &ultimate{name.symbol->GetUltimate()}; if (!context().HasError(ultimate)) { if (IsPointer(ultimate)) { if (auto *details{ultimate.detailsIf()}) { CHECK(!details->init()); Walk(target); if (MaybeExpr expr{EvaluateExpr(target)}) { // Validation is done in declaration checking. details->set_init(std::move(*expr)); } } } else { Say(name, "'%s' is not a pointer but is initialized like one"_err_en_US); context().SetError(ultimate); } } } } void DeclarationVisitor::PointerInitialization( const parser::Name &name, const parser::ProcPointerInit &target) { if (name.symbol) { Symbol &ultimate{name.symbol->GetUltimate()}; if (!context().HasError(ultimate)) { if (IsProcedurePointer(ultimate)) { auto &details{ultimate.get()}; CHECK(!details.init()); if (const auto *targetName{std::get_if(&target.u)}) { Walk(target); if (!CheckUseError(*targetName) && targetName->symbol) { // Validation is done in declaration checking. details.set_init(*targetName->symbol); } } else { // explicit NULL details.set_init(nullptr); } } else { Say(name, "'%s' is not a procedure pointer but is initialized " "like one"_err_en_US); context().SetError(ultimate); } } } } void DeclarationVisitor::NonPointerInitialization( const parser::Name &name, const parser::ConstantExpr &expr) { if (name.symbol) { Symbol &ultimate{name.symbol->GetUltimate()}; if (!context().HasError(ultimate) && !context().HasError(name.symbol)) { if (IsPointer(ultimate)) { Say(name, "'%s' is a pointer but is not initialized like one"_err_en_US); } else if (auto *details{ultimate.detailsIf()}) { CHECK(!details->init()); Walk(expr); if (ultimate.owner().IsParameterizedDerivedType()) { // Save the expression for per-instantiation analysis. details->set_unanalyzedPDTComponentInit(&expr.thing.value()); } else { if (MaybeExpr folded{EvaluateNonPointerInitializer( ultimate, expr, expr.thing.value().source)}) { details->set_init(std::move(*folded)); } } } } } } void ResolveNamesVisitor::HandleCall( Symbol::Flag procFlag, const parser::Call &call) { common::visit( common::visitors{ [&](const parser::Name &x) { HandleProcedureName(procFlag, x); }, [&](const parser::ProcComponentRef &x) { Walk(x); const parser::Name &name{x.v.thing.component}; if (Symbol * symbol{name.symbol}) { if (IsProcedure(*symbol)) { SetProcFlag(name, *symbol, procFlag); } } }, }, std::get(call.t).u); Walk(std::get>(call.t)); } void ResolveNamesVisitor::HandleProcedureName( Symbol::Flag flag, const parser::Name &name) { CHECK(flag == Symbol::Flag::Function || flag == Symbol::Flag::Subroutine); auto *symbol{FindSymbol(NonDerivedTypeScope(), name)}; if (!symbol) { if (IsIntrinsic(name.source, flag)) { symbol = &MakeSymbol(InclusiveScope(), name.source, Attrs{Attr::INTRINSIC}); } else { symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{}); } Resolve(name, *symbol); if (!symbol->attrs().test(Attr::INTRINSIC)) { if (CheckImplicitNoneExternal(name.source, *symbol)) { MakeExternal(*symbol); } } ConvertToProcEntity(*symbol); SetProcFlag(name, *symbol, flag); } else if (CheckUseError(name)) { // error was reported } else { auto &nonUltimateSymbol{*symbol}; symbol = &Resolve(name, symbol)->GetUltimate(); bool convertedToProcEntity{ConvertToProcEntity(*symbol)}; if (convertedToProcEntity && !symbol->attrs().test(Attr::EXTERNAL) && IsIntrinsic(symbol->name(), flag) && !IsDummy(*symbol)) { AcquireIntrinsicProcedureFlags(*symbol); } if (!SetProcFlag(name, *symbol, flag)) { return; // reported error } if (!symbol->has()) { CheckImplicitNoneExternal(name.source, *symbol); } if (IsProcedure(*symbol) || symbol->has() || symbol->has()) { // Symbols with DerivedTypeDetails and AssocEntityDetails are accepted // here as procedure-designators because this means the related // FunctionReference are mis-parsed structure constructors or array // references that will be fixed later when analyzing expressions. } else if (symbol->has()) { // Symbols with ObjectEntityDetails are also accepted because this can be // a mis-parsed array references that will be fixed later. Ensure that if // this is a symbol from a host procedure, a symbol with HostAssocDetails // is created for the current scope. // Operate on non ultimate symbol so that HostAssocDetails are also // created for symbols used associated in the host procedure. if (IsUplevelReference(nonUltimateSymbol)) { MakeHostAssocSymbol(name, nonUltimateSymbol); } } else if (symbol->test(Symbol::Flag::Implicit)) { Say(name, "Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US); } else { SayWithDecl(name, *symbol, "Use of '%s' as a procedure conflicts with its declaration"_err_en_US); } } } bool ResolveNamesVisitor::CheckImplicitNoneExternal( const SourceName &name, const Symbol &symbol) { if (isImplicitNoneExternal() && !symbol.attrs().test(Attr::EXTERNAL) && !symbol.attrs().test(Attr::INTRINSIC) && !symbol.HasExplicitInterface()) { Say(name, "'%s' is an external procedure without the EXTERNAL" " attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US); return false; } return true; } // Variant of HandleProcedureName() for use while skimming the executable // part of a subprogram to catch calls to dummy procedures that are part // of the subprogram's interface, and to mark as procedures any symbols // that might otherwise have been miscategorized as objects. void ResolveNamesVisitor::NoteExecutablePartCall( Symbol::Flag flag, const parser::Call &call) { auto &designator{std::get(call.t)}; if (const auto *name{std::get_if(&designator.u)}) { // Subtlety: The symbol pointers in the parse tree are not set, because // they might end up resolving elsewhere (e.g., construct entities in // SELECT TYPE). if (Symbol * symbol{currScope().FindSymbol(name->source)}) { Symbol::Flag other{flag == Symbol::Flag::Subroutine ? Symbol::Flag::Function : Symbol::Flag::Subroutine}; if (!symbol->test(other)) { ConvertToProcEntity(*symbol); if (symbol->has()) { symbol->set(flag); if (IsDummy(*symbol)) { SetImplicitAttr(*symbol, Attr::EXTERNAL); } ApplyImplicitRules(*symbol); } } } } } static bool IsLocallyImplicitGlobalSymbol( const Symbol &symbol, const parser::Name &localName) { return symbol.owner().IsGlobal() && (!symbol.scope() || !symbol.scope()->sourceRange().Contains(localName.source)); } static bool TypesMismatchIfNonNull( const DeclTypeSpec *type1, const DeclTypeSpec *type2) { return type1 && type2 && *type1 != *type2; } // Check and set the Function or Subroutine flag on symbol; false on error. bool ResolveNamesVisitor::SetProcFlag( const parser::Name &name, Symbol &symbol, Symbol::Flag flag) { if (symbol.test(Symbol::Flag::Function) && flag == Symbol::Flag::Subroutine) { SayWithDecl( name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US); return false; } else if (symbol.test(Symbol::Flag::Subroutine) && flag == Symbol::Flag::Function) { SayWithDecl( name, symbol, "Cannot call subroutine '%s' like a function"_err_en_US); return false; } else if (flag == Symbol::Flag::Function && IsLocallyImplicitGlobalSymbol(symbol, name) && TypesMismatchIfNonNull(symbol.GetType(), GetImplicitType(symbol))) { SayWithDecl(name, symbol, "Implicit declaration of function '%s' has a different result type than in previous declaration"_err_en_US); return false; } else if (symbol.has()) { symbol.set(flag); // in case it hasn't been set yet if (flag == Symbol::Flag::Function) { ApplyImplicitRules(symbol); } if (symbol.attrs().test(Attr::INTRINSIC)) { AcquireIntrinsicProcedureFlags(symbol); } } else if (symbol.GetType() && flag == Symbol::Flag::Subroutine) { SayWithDecl( name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US); } else if (symbol.attrs().test(Attr::INTRINSIC)) { AcquireIntrinsicProcedureFlags(symbol); } return true; } bool ModuleVisitor::Pre(const parser::AccessStmt &x) { Attr accessAttr{AccessSpecToAttr(std::get(x.t))}; if (!currScope().IsModule()) { // C869 Say(currStmtSource().value(), "%s statement may only appear in the specification part of a module"_err_en_US, EnumToString(accessAttr)); return false; } const auto &accessIds{std::get>(x.t)}; if (accessIds.empty()) { if (prevAccessStmt_) { // C869 Say("The default accessibility of this module has already been declared"_err_en_US) .Attach(*prevAccessStmt_, "Previous declaration"_en_US); } prevAccessStmt_ = currStmtSource(); defaultAccess_ = accessAttr; } else { for (const auto &accessId : accessIds) { GenericSpecInfo info{accessId.v.value()}; auto *symbol{FindInScope(info.symbolName())}; if (!symbol && !info.kind().IsName()) { symbol = &MakeSymbol(info.symbolName(), Attrs{}, GenericDetails{}); } info.Resolve(&SetAccess(info.symbolName(), accessAttr, symbol)); } } return false; } // Set the access specification for this symbol. Symbol &ModuleVisitor::SetAccess( const SourceName &name, Attr attr, Symbol *symbol) { if (!symbol) { symbol = &MakeSymbol(name); } Attrs &attrs{symbol->attrs()}; if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) { // PUBLIC/PRIVATE already set: make it a fatal error if it changed Attr prev = attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE; Say(name, WithSeverity( "The accessibility of '%s' has already been specified as %s"_warn_en_US, attr != prev ? parser::Severity::Error : parser::Severity::Warning), MakeOpName(name), EnumToString(prev)); } else { attrs.set(attr); } return *symbol; } static bool NeedsExplicitType(const Symbol &symbol) { if (symbol.has()) { return true; } else if (const auto *details{symbol.detailsIf()}) { return !details->type(); } else if (const auto *details{symbol.detailsIf()}) { return !details->type(); } else if (const auto *details{symbol.detailsIf()}) { return !details->interface().symbol() && !details->interface().type(); } else { return false; } } bool ResolveNamesVisitor::Pre(const parser::SpecificationPart &x) { const auto &[accDecls, ompDecls, compilerDirectives, useStmts, importStmts, implicitPart, decls] = x.t; auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)}; auto stateRestorer{ common::ScopedSet(specPartState_, SpecificationPartState{})}; Walk(accDecls); Walk(ompDecls); Walk(compilerDirectives); Walk(useStmts); ClearUseRenames(); ClearUseOnly(); ClearExplicitIntrinsicUses(); Walk(importStmts); Walk(implicitPart); for (const auto &decl : decls) { if (const auto *spec{ std::get_if(&decl.u)}) { PreSpecificationConstruct(*spec); } } Walk(decls); FinishSpecificationPart(decls); return false; } // Initial processing on specification constructs, before visiting them. void ResolveNamesVisitor::PreSpecificationConstruct( const parser::SpecificationConstruct &spec) { common::visit( common::visitors{ [&](const parser::Statement> &y) { CreateGeneric(std::get(y.statement.value().t)); }, [&](const Indirection &y) { const auto &stmt{std::get>( y.value().t)}; if (const auto *spec{parser::Unwrap(stmt)}) { CreateGeneric(*spec); } }, [&](const parser::Statement &y) { if (const auto *commonStmt{parser::Unwrap(y)}) { CreateCommonBlockSymbols(*commonStmt); } }, [&](const auto &) {}, }, spec.u); } void ResolveNamesVisitor::CreateCommonBlockSymbols( const parser::CommonStmt &commonStmt) { for (const parser::CommonStmt::Block &block : commonStmt.blocks) { const auto &[name, objects] = block.t; Symbol &commonBlock{MakeCommonBlockSymbol(name)}; for (const auto &object : objects) { Symbol &obj{DeclareObjectEntity(std::get(object.t))}; if (auto *details{obj.detailsIf()}) { details->set_commonBlock(commonBlock); commonBlock.get().add_object(obj); } } } } void ResolveNamesVisitor::CreateGeneric(const parser::GenericSpec &x) { auto info{GenericSpecInfo{x}}; SourceName symbolName{info.symbolName()}; if (IsLogicalConstant(context(), symbolName)) { Say(symbolName, "Logical constant '%s' may not be used as a defined operator"_err_en_US); return; } GenericDetails genericDetails; Symbol *existing{nullptr}; // Check all variants of names, e.g. "operator(.ne.)" for "operator(/=)" for (const std::string &n : GetAllNames(context(), symbolName)) { existing = currScope().FindSymbol(SourceName{n}); if (existing) { break; } } if (existing) { Symbol &ultimate{existing->GetUltimate()}; if (auto *existingGeneric{ultimate.detailsIf()}) { if (const auto *existingUse{existing->detailsIf()}) { // Create a local copy of a use associated generic so that // it can be locally extended without corrupting the original. genericDetails.CopyFrom(*existingGeneric); if (existingGeneric->specific()) { genericDetails.set_specific(*existingGeneric->specific()); } AddGenericUse(genericDetails, existing->name(), existingUse->symbol()); } else if (&existing->owner() == &currScope()) { if (existing == &ultimate) { // Extending an extant generic in the same scope info.Resolve(existing); return; } else { // Host association of a generic is handled elsewhere CHECK(existing->has()); } } } else if (ultimate.has() || ultimate.has()) { genericDetails.set_specific(*existing); } else if (ultimate.has()) { genericDetails.set_derivedType(*existing); } else if (&existing->owner() == &currScope()) { SayAlreadyDeclared(symbolName, *existing); return; } if (&existing->owner() == &currScope()) { EraseSymbol(*existing); } } info.Resolve(&MakeSymbol(symbolName, Attrs{}, std::move(genericDetails))); } void ResolveNamesVisitor::FinishSpecificationPart( const std::list &decls) { badStmtFuncFound_ = false; funcResultStack().CompleteFunctionResultType(); CheckImports(); bool inModule{currScope().kind() == Scope::Kind::Module}; for (auto &pair : currScope()) { auto &symbol{*pair.second}; if (NeedsExplicitType(symbol)) { ApplyImplicitRules(symbol); } if (IsDummy(symbol) && isImplicitNoneType() && symbol.test(Symbol::Flag::Implicit) && !context().HasError(symbol)) { Say(symbol.name(), "No explicit type declared for dummy argument '%s'"_err_en_US); context().SetError(symbol); } if (symbol.has()) { CheckGenericProcedures(symbol); } if (inModule && symbol.attrs().test(Attr::EXTERNAL) && !symbol.test(Symbol::Flag::Function) && !symbol.test(Symbol::Flag::Subroutine)) { // in a module, external proc without return type is subroutine symbol.set( symbol.GetType() ? Symbol::Flag::Function : Symbol::Flag::Subroutine); } if (!symbol.has()) { CheckPossibleBadForwardRef(symbol); } } currScope().InstantiateDerivedTypes(); for (const auto &decl : decls) { if (const auto *statement{std::get_if< parser::Statement>>( &decl.u)}) { AnalyzeStmtFunctionStmt(statement->statement.value()); } } // TODO: what about instantiations in BLOCK? CheckSaveStmts(); CheckCommonBlocks(); if (!inInterfaceBlock()) { // TODO: warn for the case where the EQUIVALENCE statement is in a // procedure declaration in an interface block CheckEquivalenceSets(); } } // Analyze the bodies of statement functions now that the symbols in this // specification part have been fully declared and implicitly typed. // (Statement function references are not allowed in specification // expressions, so it's safe to defer processing their definitions.) void ResolveNamesVisitor::AnalyzeStmtFunctionStmt( const parser::StmtFunctionStmt &stmtFunc) { Symbol *symbol{std::get(stmtFunc.t).symbol}; auto *details{symbol ? symbol->detailsIf() : nullptr}; if (!details || !symbol->scope()) { return; } // Resolve the symbols on the RHS of the statement function. PushScope(*symbol->scope()); const auto &parsedExpr{std::get>(stmtFunc.t)}; Walk(parsedExpr); PopScope(); if (auto expr{AnalyzeExpr(context(), stmtFunc)}) { if (auto type{evaluate::DynamicType::From(*symbol)}) { if (auto converted{ConvertToType(*type, std::move(*expr))}) { details->set_stmtFunction(std::move(*converted)); } } else { details->set_stmtFunction(std::move(*expr)); } } if (!details->stmtFunction()) { context().SetError(*symbol); } } void ResolveNamesVisitor::CheckImports() { auto &scope{currScope()}; switch (scope.GetImportKind()) { case common::ImportKind::None: break; case common::ImportKind::All: // C8102: all entities in host must not be hidden for (const auto &pair : scope.parent()) { auto &name{pair.first}; std::optional scopeName{scope.GetName()}; if (!scopeName || name != *scopeName) { CheckImport(prevImportStmt_.value(), name); } } break; case common::ImportKind::Default: case common::ImportKind::Only: // C8102: entities named in IMPORT must not be hidden for (auto &name : scope.importNames()) { CheckImport(name, name); } break; } } void ResolveNamesVisitor::CheckImport( const SourceName &location, const SourceName &name) { if (auto *symbol{FindInScope(name)}) { const Symbol &ultimate{symbol->GetUltimate()}; if (&ultimate.owner() == &currScope()) { Say(location, "'%s' from host is not accessible"_err_en_US, name) .Attach(symbol->name(), "'%s' is hidden by this entity"_en_US, symbol->name()); } } } bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) { return CheckNotInBlock("IMPLICIT") && // C1107 ImplicitRulesVisitor::Pre(x); } void ResolveNamesVisitor::Post(const parser::PointerObject &x) { common::visit(common::visitors{ [&](const parser::Name &x) { ResolveName(x); }, [&](const parser::StructureComponent &x) { ResolveStructureComponent(x); }, }, x.u); } void ResolveNamesVisitor::Post(const parser::AllocateObject &x) { common::visit(common::visitors{ [&](const parser::Name &x) { ResolveName(x); }, [&](const parser::StructureComponent &x) { ResolveStructureComponent(x); }, }, x.u); } bool ResolveNamesVisitor::Pre(const parser::PointerAssignmentStmt &x) { const auto &dataRef{std::get(x.t)}; const auto &bounds{std::get(x.t)}; const auto &expr{std::get(x.t)}; ResolveDataRef(dataRef); Walk(bounds); // Resolve unrestricted specific intrinsic procedures as in "p => cos". if (const parser::Name * name{parser::Unwrap(expr)}) { if (NameIsKnownOrIntrinsic(*name)) { // If the name is known because it is an object entity from a host // procedure, create a host associated symbol. if (Symbol * symbol{name->symbol}; symbol && symbol->GetUltimate().has() && IsUplevelReference(*symbol)) { MakeHostAssocSymbol(*name, *symbol); } return false; } } Walk(expr); return false; } void ResolveNamesVisitor::Post(const parser::Designator &x) { ResolveDesignator(x); } void ResolveNamesVisitor::Post(const parser::SubstringInquiry &x) { Walk(std::get(x.v.t).t); ResolveDataRef(std::get(x.v.t)); } void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) { ResolveStructureComponent(x.v.thing); } void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) { DeclTypeSpecVisitor::Post(x); ConstructVisitor::Post(x); } bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) { CheckNotInBlock("STATEMENT FUNCTION"); // C1107 if (HandleStmtFunction(x)) { return false; } else { // This is an array element assignment: resolve names of indices const auto &names{std::get>(x.t)}; for (auto &name : names) { ResolveName(name); } return true; } } bool ResolveNamesVisitor::Pre(const parser::DefinedOpName &x) { const parser::Name &name{x.v}; if (FindSymbol(name)) { // OK } else if (IsLogicalConstant(context(), name.source)) { Say(name, "Logical constant '%s' may not be used as a defined operator"_err_en_US); } else { // Resolved later in expression semantics MakePlaceholder(name, MiscDetails::Kind::TypeBoundDefinedOp); } return false; } void ResolveNamesVisitor::Post(const parser::AssignStmt &x) { if (auto *name{ResolveName(std::get(x.t))}) { ConvertToObjectEntity(DEREF(name->symbol)); } } void ResolveNamesVisitor::Post(const parser::AssignedGotoStmt &x) { if (auto *name{ResolveName(std::get(x.t))}) { ConvertToObjectEntity(DEREF(name->symbol)); } } bool ResolveNamesVisitor::Pre(const parser::ProgramUnit &x) { if (std::holds_alternative>( x.u)) { // TODO: global directives return true; } auto root{ProgramTree::Build(x)}; SetScope(topScope_); ResolveSpecificationParts(root); FinishSpecificationParts(root); ResolveExecutionParts(root); ResolveAccParts(context(), x); ResolveOmpParts(context(), x); return false; } // References to procedures need to record that their symbols are known // to be procedures, so that they don't get converted to objects by default. class ExecutionPartSkimmer { public: explicit ExecutionPartSkimmer(ResolveNamesVisitor &resolver) : resolver_{resolver} {} void Walk(const parser::ExecutionPart *exec) { if (exec) { parser::Walk(*exec, *this); } } template bool Pre(const A &) { return true; } template void Post(const A &) {} void Post(const parser::FunctionReference &fr) { resolver_.NoteExecutablePartCall(Symbol::Flag::Function, fr.v); } void Post(const parser::CallStmt &cs) { resolver_.NoteExecutablePartCall(Symbol::Flag::Subroutine, cs.v); } private: ResolveNamesVisitor &resolver_; }; // Build the scope tree and resolve names in the specification parts of this // node and its children void ResolveNamesVisitor::ResolveSpecificationParts(ProgramTree &node) { if (node.isSpecificationPartResolved()) { return; // been here already } node.set_isSpecificationPartResolved(); if (!BeginScopeForNode(node)) { return; // an error prevented scope from being created } Scope &scope{currScope()}; node.set_scope(scope); AddSubpNames(node); common::visit( [&](const auto *x) { if (x) { Walk(*x); } }, node.stmt()); Walk(node.spec()); // If this is a function, convert result to an object. This is to prevent the // result from being converted later to a function symbol if it is called // inside the function. // If the result is function pointer, then ConvertToObjectEntity will not // convert the result to an object, and calling the symbol inside the function // will result in calls to the result pointer. // A function cannot be called recursively if RESULT was not used to define a // distinct result name (15.6.2.2 point 4.). if (Symbol * symbol{scope.symbol()}) { if (auto *details{symbol->detailsIf()}) { if (details->isFunction()) { ConvertToObjectEntity(const_cast(details->result())); } } } if (node.IsModule()) { ApplyDefaultAccess(); } for (auto &child : node.children()) { ResolveSpecificationParts(child); } ExecutionPartSkimmer{*this}.Walk(node.exec()); EndScopeForNode(node); // Ensure that every object entity has a type. for (auto &pair : *node.scope()) { ApplyImplicitRules(*pair.second); } } // Add SubprogramNameDetails symbols for module and internal subprograms and // their ENTRY statements. void ResolveNamesVisitor::AddSubpNames(ProgramTree &node) { auto kind{ node.IsModule() ? SubprogramKind::Module : SubprogramKind::Internal}; for (auto &child : node.children()) { auto &symbol{MakeSymbol(child.name(), SubprogramNameDetails{kind, child})}; if (child.HasModulePrefix()) { SetExplicitAttr(symbol, Attr::MODULE); } auto childKind{child.GetKind()}; if (childKind == ProgramTree::Kind::Function) { symbol.set(Symbol::Flag::Function); } else if (childKind == ProgramTree::Kind::Subroutine) { symbol.set(Symbol::Flag::Subroutine); } else { continue; // make ENTRY symbols only where valid } for (const auto &entryStmt : child.entryStmts()) { SubprogramNameDetails details{kind, child}; auto &symbol{ MakeSymbol(std::get(entryStmt->t), std::move(details))}; symbol.set(child.GetSubpFlag()); if (child.HasModulePrefix()) { SetExplicitAttr(symbol, Attr::MODULE); } } } for (const auto &generic : node.genericSpecs()) { if (const auto *name{std::get_if(&generic->u)}) { if (currScope().find(name->source) != currScope().end()) { // If this scope has both a generic interface and a contained // subprogram with the same name, create the generic's symbol // now so that any other generics of the same name that are pulled // into scope later via USE association will properly merge instead // of raising a bogus error due a conflict with the subprogram. CreateGeneric(*generic); } } } } // Push a new scope for this node or return false on error. bool ResolveNamesVisitor::BeginScopeForNode(const ProgramTree &node) { switch (node.GetKind()) { SWITCH_COVERS_ALL_CASES case ProgramTree::Kind::Program: PushScope(Scope::Kind::MainProgram, &MakeSymbol(node.name(), MainProgramDetails{})); return true; case ProgramTree::Kind::Function: case ProgramTree::Kind::Subroutine: return BeginSubprogram(node.name(), node.GetSubpFlag(), node.HasModulePrefix(), node.bindingSpec(), &node.entryStmts()); case ProgramTree::Kind::MpSubprogram: return BeginMpSubprogram(node.name()); case ProgramTree::Kind::Module: BeginModule(node.name(), false); return true; case ProgramTree::Kind::Submodule: return BeginSubmodule(node.name(), node.GetParentId()); case ProgramTree::Kind::BlockData: PushBlockDataScope(node.name()); return true; } } void ResolveNamesVisitor::EndScopeForNode(const ProgramTree &node) { std::optional stmtSource; const std::optional *binding{nullptr}; common::visit( common::visitors{ [&](const parser::Statement *stmt) { if (stmt) { stmtSource = stmt->source; if (const auto &maybeSuffix{ std::get>( stmt->statement.t)}) { binding = &maybeSuffix->binding; } } }, [&](const parser::Statement *stmt) { if (stmt) { stmtSource = stmt->source; binding = &std::get>( stmt->statement.t); } }, [](const auto *) {}, }, node.stmt()); EndSubprogram(stmtSource, binding, &node.entryStmts()); } // Some analyses and checks, such as the processing of initializers of // pointers, are deferred until all of the pertinent specification parts // have been visited. This deferred processing enables the use of forward // references in these circumstances. class DeferredCheckVisitor { public: explicit DeferredCheckVisitor(ResolveNamesVisitor &resolver) : resolver_{resolver} {} template void Walk(const A &x) { parser::Walk(x, *this); } template bool Pre(const A &) { return true; } template void Post(const A &) {} void Post(const parser::DerivedTypeStmt &x) { const auto &name{std::get(x.t)}; if (Symbol * symbol{name.symbol}) { if (Scope * scope{symbol->scope()}) { if (scope->IsDerivedType()) { resolver_.PushScope(*scope); pushedScope_ = true; } } } } void Post(const parser::EndTypeStmt &) { if (pushedScope_) { resolver_.PopScope(); pushedScope_ = false; } } void Post(const parser::ProcInterface &pi) { if (const auto *name{std::get_if(&pi.u)}) { resolver_.CheckExplicitInterface(*name); } } bool Pre(const parser::EntityDecl &decl) { Init(std::get(decl.t), std::get>(decl.t)); return false; } bool Pre(const parser::ComponentDecl &decl) { Init(std::get(decl.t), std::get>(decl.t)); return false; } bool Pre(const parser::ProcDecl &decl) { if (const auto &init{ std::get>(decl.t)}) { resolver_.PointerInitialization(std::get(decl.t), *init); } return false; } void Post(const parser::TypeBoundProcedureStmt::WithInterface &tbps) { resolver_.CheckExplicitInterface(tbps.interfaceName); } void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) { if (pushedScope_) { resolver_.CheckBindings(tbps); } } bool Pre(const parser::StmtFunctionStmt &stmtFunc) { return false; } private: void Init(const parser::Name &name, const std::optional &init) { if (init) { if (const auto *target{ std::get_if(&init->u)}) { resolver_.PointerInitialization(name, *target); } } } ResolveNamesVisitor &resolver_; bool pushedScope_{false}; }; // Perform checks and completions that need to happen after all of // the specification parts but before any of the execution parts. void ResolveNamesVisitor::FinishSpecificationParts(const ProgramTree &node) { if (!node.scope()) { return; // error occurred creating scope } SetScope(*node.scope()); // The initializers of pointers, the default initializers of pointer // components, non-deferred type-bound procedure bindings have not // yet been traversed. // We do that now, when any (formerly) forward references that appear // in those initializers will resolve to the right symbols without // incurring spurious errors with IMPLICIT NONE. DeferredCheckVisitor{*this}.Walk(node.spec()); DeferredCheckVisitor{*this}.Walk(node.exec()); // for BLOCK for (Scope &childScope : currScope().children()) { if (childScope.IsParameterizedDerivedTypeInstantiation()) { FinishDerivedTypeInstantiation(childScope); } } for (const auto &child : node.children()) { FinishSpecificationParts(child); } } // Duplicate and fold component object pointer default initializer designators // using the actual type parameter values of each particular instantiation. // Validation is done later in declaration checking. void ResolveNamesVisitor::FinishDerivedTypeInstantiation(Scope &scope) { CHECK(scope.IsDerivedType() && !scope.symbol()); if (DerivedTypeSpec * spec{scope.derivedTypeSpec()}) { spec->Instantiate(currScope()); const Symbol &origTypeSymbol{spec->typeSymbol()}; if (const Scope * origTypeScope{origTypeSymbol.scope()}) { CHECK(origTypeScope->IsDerivedType() && origTypeScope->symbol() == &origTypeSymbol); auto &foldingContext{GetFoldingContext()}; auto restorer{foldingContext.WithPDTInstance(*spec)}; for (auto &pair : scope) { Symbol &comp{*pair.second}; const Symbol &origComp{DEREF(FindInScope(*origTypeScope, comp.name()))}; if (IsPointer(comp)) { if (auto *details{comp.detailsIf()}) { auto origDetails{origComp.get()}; if (const MaybeExpr & init{origDetails.init()}) { SomeExpr newInit{*init}; MaybeExpr folded{ evaluate::Fold(foldingContext, std::move(newInit))}; details->set_init(std::move(folded)); } } } } } } } // Resolve names in the execution part of this node and its children void ResolveNamesVisitor::ResolveExecutionParts(const ProgramTree &node) { if (!node.scope()) { return; // error occurred creating scope } SetScope(*node.scope()); if (const auto *exec{node.exec()}) { Walk(*exec); } FinishNamelists(); PopScope(); // converts unclassified entities into objects for (const auto &child : node.children()) { ResolveExecutionParts(child); } } void ResolveNamesVisitor::Post(const parser::Program &) { // ensure that all temps were deallocated CHECK(!attrs_); CHECK(!GetDeclTypeSpec()); } // A singleton instance of the scope -> IMPLICIT rules mapping is // shared by all instances of ResolveNamesVisitor and accessed by this // pointer when the visitors (other than the top-level original) are // constructed. static ImplicitRulesMap *sharedImplicitRulesMap{nullptr}; bool ResolveNames( SemanticsContext &context, const parser::Program &program, Scope &top) { ImplicitRulesMap implicitRulesMap; auto restorer{common::ScopedSet(sharedImplicitRulesMap, &implicitRulesMap)}; ResolveNamesVisitor{context, implicitRulesMap, top}.Walk(program); return !context.AnyFatalError(); } // Processes a module (but not internal) function when it is referenced // in a specification expression in a sibling procedure. void ResolveSpecificationParts( SemanticsContext &context, const Symbol &subprogram) { auto originalLocation{context.location()}; ImplicitRulesMap implicitRulesMap; bool localImplicitRulesMap{false}; if (!sharedImplicitRulesMap) { sharedImplicitRulesMap = &implicitRulesMap; localImplicitRulesMap = true; } ResolveNamesVisitor visitor{ context, *sharedImplicitRulesMap, context.globalScope()}; const auto &details{subprogram.get()}; ProgramTree &node{details.node()}; const Scope &moduleScope{subprogram.owner()}; if (localImplicitRulesMap) { visitor.BeginScope(const_cast(moduleScope)); } else { visitor.SetScope(const_cast(moduleScope)); } visitor.ResolveSpecificationParts(node); context.set_location(std::move(originalLocation)); if (localImplicitRulesMap) { sharedImplicitRulesMap = nullptr; } } } // namespace Fortran::semantics