//===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This provides Objective-C code generation targetting the Apple runtime. // //===----------------------------------------------------------------------===// #include "CGObjCRuntime.h" #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/Basic/LangOptions.h" #include "llvm/Module.h" #include "llvm/ADT/DenseSet.h" #include "llvm/Target/TargetData.h" #include using namespace clang; using namespace CodeGen; namespace { typedef std::vector ConstantVector; // FIXME: We should find a nicer way to make the labels for // metadata, string concatenation is lame. /// ObjCTypesHelper - Helper class that encapsulates lazy /// construction of varies types used during ObjC generation. class ObjCTypesHelper { private: CodeGen::CodeGenModule &CGM; llvm::Function *MessageSendFn, *MessageSendStretFn, *MessageSendFpretFn; llvm::Function *MessageSendSuperFn, *MessageSendSuperStretFn, *MessageSendSuperFpretFn; public: const llvm::Type *ShortTy, *IntTy, *LongTy; const llvm::Type *Int8PtrTy; /// ObjectPtrTy - LLVM type for object handles (typeof(id)) const llvm::Type *ObjectPtrTy; /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) const llvm::Type *SelectorPtrTy; /// ProtocolPtrTy - LLVM type for external protocol handles /// (typeof(Protocol)) const llvm::Type *ExternalProtocolPtrTy; // SuperCTy - clang type for struct objc_super. QualType SuperCTy; // SuperPtrCTy - clang type for struct objc_super *. QualType SuperPtrCTy; /// SuperTy - LLVM type for struct objc_super. const llvm::StructType *SuperTy; /// SuperPtrTy - LLVM type for struct objc_super *. const llvm::Type *SuperPtrTy; /// SymtabTy - LLVM type for struct objc_symtab. const llvm::StructType *SymtabTy; /// SymtabPtrTy - LLVM type for struct objc_symtab *. const llvm::Type *SymtabPtrTy; /// ModuleTy - LLVM type for struct objc_module. const llvm::StructType *ModuleTy; /// ProtocolTy - LLVM type for struct objc_protocol. const llvm::StructType *ProtocolTy; /// ProtocolPtrTy - LLVM type for struct objc_protocol *. const llvm::Type *ProtocolPtrTy; /// ProtocolExtensionTy - LLVM type for struct /// objc_protocol_extension. const llvm::StructType *ProtocolExtensionTy; /// ProtocolExtensionTy - LLVM type for struct /// objc_protocol_extension *. const llvm::Type *ProtocolExtensionPtrTy; /// MethodDescriptionTy - LLVM type for struct /// objc_method_description. const llvm::StructType *MethodDescriptionTy; /// MethodDescriptionListTy - LLVM type for struct /// objc_method_description_list. const llvm::StructType *MethodDescriptionListTy; /// MethodDescriptionListPtrTy - LLVM type for struct /// objc_method_description_list *. const llvm::Type *MethodDescriptionListPtrTy; /// PropertyTy - LLVM type for struct objc_property (struct _prop_t /// in GCC parlance). const llvm::StructType *PropertyTy; /// PropertyListTy - LLVM type for struct objc_property_list /// (_prop_list_t in GCC parlance). const llvm::StructType *PropertyListTy; /// PropertyListPtrTy - LLVM type for struct objc_property_list*. const llvm::Type *PropertyListPtrTy; /// ProtocolListTy - LLVM type for struct objc_property_list. const llvm::Type *ProtocolListTy; /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. const llvm::Type *ProtocolListPtrTy; /// CategoryTy - LLVM type for struct objc_category. const llvm::StructType *CategoryTy; /// ClassTy - LLVM type for struct objc_class. const llvm::StructType *ClassTy; /// ClassPtrTy - LLVM type for struct objc_class *. const llvm::Type *ClassPtrTy; /// ClassExtensionTy - LLVM type for struct objc_class_ext. const llvm::StructType *ClassExtensionTy; /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. const llvm::Type *ClassExtensionPtrTy; /// CacheTy - LLVM type for struct objc_cache. const llvm::Type *CacheTy; /// CachePtrTy - LLVM type for struct objc_cache *. const llvm::Type *CachePtrTy; // IvarTy - LLVM type for struct objc_ivar. const llvm::StructType *IvarTy; /// IvarListTy - LLVM type for struct objc_ivar_list. const llvm::Type *IvarListTy; /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. const llvm::Type *IvarListPtrTy; // MethodTy - LLVM type for struct objc_method. const llvm::StructType *MethodTy; /// MethodListTy - LLVM type for struct objc_method_list. const llvm::Type *MethodListTy; /// MethodListPtrTy - LLVM type for struct objc_method_list *. const llvm::Type *MethodListPtrTy; llvm::Function *GetPropertyFn, *SetPropertyFn; llvm::Function *EnumerationMutationFn; /// ExceptionDataTy - LLVM type for struct _objc_exception_data. const llvm::Type *ExceptionDataTy; /// ExceptionThrowFn - LLVM objc_exception_throw function. llvm::Function *ExceptionThrowFn; /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. llvm::Function *ExceptionTryEnterFn; /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. llvm::Function *ExceptionTryExitFn; /// ExceptionExtractFn - LLVM objc_exception_extract function. llvm::Function *ExceptionExtractFn; /// ExceptionMatchFn - LLVM objc_exception_match function. llvm::Function *ExceptionMatchFn; /// SetJmpFn - LLVM _setjmp function. llvm::Function *SetJmpFn; public: ObjCTypesHelper(CodeGen::CodeGenModule &cgm); ~ObjCTypesHelper(); llvm::Function *getSendFn(bool IsSuper) { return IsSuper ? MessageSendSuperFn : MessageSendFn; } llvm::Function *getSendStretFn(bool IsSuper) { return IsSuper ? MessageSendSuperStretFn : MessageSendStretFn; } llvm::Function *getSendFpretFn(bool IsSuper) { return IsSuper ? MessageSendSuperFpretFn : MessageSendFpretFn; } }; class CGObjCMac : public CodeGen::CGObjCRuntime { private: CodeGen::CodeGenModule &CGM; ObjCTypesHelper ObjCTypes; /// ObjCABI - FIXME: Not sure yet. unsigned ObjCABI; /// LazySymbols - Symbols to generate a lazy reference for. See /// DefinedSymbols and FinishModule(). std::set LazySymbols; /// DefinedSymbols - External symbols which are defined by this /// module. The symbols in this list and LazySymbols are used to add /// special linker symbols which ensure that Objective-C modules are /// linked properly. std::set DefinedSymbols; /// ClassNames - uniqued class names. llvm::DenseMap ClassNames; /// MethodVarNames - uniqued method variable names. llvm::DenseMap MethodVarNames; /// MethodVarTypes - uniqued method type signatures. We have to use /// a StringMap here because have no other unique reference. llvm::StringMap MethodVarTypes; /// MethodDefinitions - map of methods which have been defined in /// this translation unit. llvm::DenseMap MethodDefinitions; /// PropertyNames - uniqued method variable names. llvm::DenseMap PropertyNames; /// ClassReferences - uniqued class references. llvm::DenseMap ClassReferences; /// SelectorReferences - uniqued selector references. llvm::DenseMap SelectorReferences; /// Protocols - Protocols for which an objc_protocol structure has /// been emitted. Forward declarations are handled by creating an /// empty structure whose initializer is filled in when/if defined. llvm::DenseMap Protocols; /// DefinedProtocols - Protocols which have actually been /// defined. We should not need this, see FIXME in GenerateProtocol. llvm::DenseSet DefinedProtocols; /// DefinedClasses - List of defined classes. std::vector DefinedClasses; /// DefinedCategories - List of defined categories. std::vector DefinedCategories; /// UsedGlobals - List of globals to pack into the llvm.used metadata /// to prevent them from being clobbered. std::vector UsedGlobals; /// EmitImageInfo - Emit the image info marker used to encode some module /// level information. void EmitImageInfo(); /// EmitModuleInfo - Another marker encoding module level /// information. void EmitModuleInfo(); /// EmitModuleSymols - Emit module symbols, the list of defined /// classes and categories. The result has type SymtabPtrTy. llvm::Constant *EmitModuleSymbols(); /// FinishModule - Write out global data structures at the end of /// processing a translation unit. void FinishModule(); /// EmitClassExtension - Generate the class extension structure used /// to store the weak ivar layout and properties. The return value /// has type ClassExtensionPtrTy. llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID); /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, /// for the given class. llvm::Value *EmitClassRef(CGBuilderTy &Builder, const ObjCInterfaceDecl *ID); CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, QualType ResultType, Selector Sel, llvm::Value *Arg0, QualType Arg0Ty, bool IsSuper, const CallArgList &CallArgs); /// EmitIvarList - Emit the ivar list for the given /// implementation. If ForClass is true the list of class ivars /// (i.e. metaclass ivars) is emitted, otherwise the list of /// interface ivars will be emitted. The return value has type /// IvarListPtrTy. llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, bool ForClass, const llvm::Type *InterfaceTy); /// EmitMetaClass - Emit a forward reference to the class structure /// for the metaclass of the given interface. The return value has /// type ClassPtrTy. llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); /// EmitMetaClass - Emit a class structure for the metaclass of the /// given implementation. The return value has type ClassPtrTy. llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, llvm::Constant *Protocols, const llvm::Type *InterfaceTy, const ConstantVector &Methods); llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); /// EmitMethodList - Emit the method list for the given /// implementation. The return value has type MethodListPtrTy. llvm::Constant *EmitMethodList(const std::string &Name, const char *Section, const ConstantVector &Methods); /// EmitMethodDescList - Emit a method description list for a list of /// method declarations. /// - TypeName: The name for the type containing the methods. /// - IsProtocol: True iff these methods are for a protocol. /// - ClassMethds: True iff these are class methods. /// - Required: When true, only "required" methods are /// listed. Similarly, when false only "optional" methods are /// listed. For classes this should always be true. /// - begin, end: The method list to output. /// /// The return value has type MethodDescriptionListPtrTy. llvm::Constant *EmitMethodDescList(const std::string &Name, const char *Section, const ConstantVector &Methods); /// EmitPropertyList - Emit the given property list. The return /// value has type PropertyListPtrTy. llvm::Constant *EmitPropertyList(const std::string &Name, const Decl *Container, ObjCPropertyDecl * const *begin, ObjCPropertyDecl * const *end); /// GetOrEmitProtocol - Get the protocol object for the given /// declaration, emitting it if necessary. The return value has type /// ProtocolPtrTy. llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD); /// GetOrEmitProtocolRef - Get a forward reference to the protocol /// object for the given declaration, emitting it if needed. These /// forward references will be filled in with empty bodies if no /// definition is seen. The return value has type ProtocolPtrTy. llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD); /// EmitProtocolExtension - Generate the protocol extension /// structure used to store optional instance and class methods, and /// protocol properties. The return value has type /// ProtocolExtensionPtrTy. llvm::Constant * EmitProtocolExtension(const ObjCProtocolDecl *PD, const ConstantVector &OptInstanceMethods, const ConstantVector &OptClassMethods); /// EmitProtocolList - Generate the list of referenced /// protocols. The return value has type ProtocolListPtrTy. llvm::Constant *EmitProtocolList(const std::string &Name, ObjCProtocolDecl::protocol_iterator begin, ObjCProtocolDecl::protocol_iterator end); /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, /// for the given selector. llvm::Value *EmitSelector(CGBuilderTy &Builder, Selector Sel); /// GetProtocolRef - Return a reference to the internal protocol /// description, creating an empty one if it has not been /// defined. The return value has type ProtocolPtrTy. llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); /// GetClassName - Return a unique constant for the given selector's /// name. The return value has type char *. llvm::Constant *GetClassName(IdentifierInfo *Ident); /// GetMethodVarName - Return a unique constant for the given /// selector's name. The return value has type char *. llvm::Constant *GetMethodVarName(Selector Sel); llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); llvm::Constant *GetMethodVarName(const std::string &Name); /// GetMethodVarType - Return a unique constant for the given /// selector's name. The return value has type char *. // FIXME: This is a horrible name. llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D); llvm::Constant *GetMethodVarType(const std::string &Name); /// GetPropertyName - Return a unique constant for the given /// name. The return value has type char *. llvm::Constant *GetPropertyName(IdentifierInfo *Ident); // FIXME: This can be dropped once string functions are unified. llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, const Decl *Container); /// GetNameForMethod - Return a name for the given method. /// \param[out] NameOut - The return value. void GetNameForMethod(const ObjCMethodDecl *OMD, std::string &NameOut); public: CGObjCMac(CodeGen::CodeGenModule &cgm); virtual llvm::Constant *GenerateConstantString(const std::string &String); virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, QualType ResultType, Selector Sel, llvm::Value *Receiver, bool IsClassMessage, const CallArgList &CallArgs); virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, llvm::Value *Receiver, bool IsClassMessage, const CallArgList &CallArgs); virtual llvm::Value *GetClass(CGBuilderTy &Builder, const ObjCInterfaceDecl *ID); virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel); virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD); virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder, const ObjCProtocolDecl *PD); virtual void GenerateProtocol(const ObjCProtocolDecl *PD); virtual llvm::Function *ModuleInitFunction(); virtual llvm::Function *GetPropertyGetFunction(); virtual llvm::Function *GetPropertySetFunction(); virtual llvm::Function *EnumerationMutationFunction(); virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S); virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S); }; } // end anonymous namespace /* *** Helper Functions *** */ /// getConstantGEP() - Help routine to construct simple GEPs. static llvm::Constant *getConstantGEP(llvm::Constant *C, unsigned idx0, unsigned idx1) { llvm::Value *Idxs[] = { llvm::ConstantInt::get(llvm::Type::Int32Ty, idx0), llvm::ConstantInt::get(llvm::Type::Int32Ty, idx1) }; return llvm::ConstantExpr::getGetElementPtr(C, Idxs, 2); } /* *** CGObjCMac Public Interface *** */ CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGM(cgm), ObjCTypes(cgm), ObjCABI(1) { // FIXME: How does this get set in GCC? And what does it even mean? if (ObjCTypes.LongTy != CGM.getTypes().ConvertType(CGM.getContext().IntTy)) ObjCABI = 2; EmitImageInfo(); } /// GetClass - Return a reference to the class for the given interface /// decl. llvm::Value *CGObjCMac::GetClass(CGBuilderTy &Builder, const ObjCInterfaceDecl *ID) { return EmitClassRef(Builder, ID); } /// GetSelector - Return the pointer to the unique'd string for this selector. llvm::Value *CGObjCMac::GetSelector(CGBuilderTy &Builder, Selector Sel) { return EmitSelector(Builder, Sel); } /// Generate a constant CFString object. /* struct __builtin_CFString { const int *isa; // point to __CFConstantStringClassReference int flags; const char *str; long length; }; */ llvm::Constant *CGObjCMac::GenerateConstantString(const std::string &String) { return CGM.GetAddrOfConstantCFString(String); } /// Generates a message send where the super is the receiver. This is /// a message send to self with special delivery semantics indicating /// which class's method should be called. CodeGen::RValue CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, llvm::Value *Receiver, bool IsClassMessage, const CodeGen::CallArgList &CallArgs) { // Create and init a super structure; this is a (receiver, class) // pair we will pass to objc_msgSendSuper. llvm::Value *ObjCSuper = CGF.Builder.CreateAlloca(ObjCTypes.SuperTy, 0, "objc_super"); llvm::Value *ReceiverAsObject = CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); CGF.Builder.CreateStore(ReceiverAsObject, CGF.Builder.CreateStructGEP(ObjCSuper, 0)); // If this is a class message the metaclass is passed as the target. llvm::Value *Target; if (IsClassMessage) { llvm::Value *MetaClassPtr = EmitMetaClassRef(Class); llvm::Value *SuperPtr = CGF.Builder.CreateStructGEP(MetaClassPtr, 1); llvm::Value *Super = CGF.Builder.CreateLoad(SuperPtr); Target = Super; } else { Target = EmitClassRef(CGF.Builder, Class->getSuperClass()); } // FIXME: We shouldn't need to do this cast, rectify the ASTContext // and ObjCTypes types. const llvm::Type *ClassTy = CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); Target = CGF.Builder.CreateBitCast(Target, ClassTy); CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); return EmitMessageSend(CGF, ResultType, Sel, ObjCSuper, ObjCTypes.SuperPtrCTy, true, CallArgs); } /// Generate code for a message send expression. CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, QualType ResultType, Selector Sel, llvm::Value *Receiver, bool IsClassMessage, const CallArgList &CallArgs) { llvm::Value *Arg0 = CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy, "tmp"); return EmitMessageSend(CGF, ResultType, Sel, Arg0, CGF.getContext().getObjCIdType(), false, CallArgs); } CodeGen::RValue CGObjCMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, QualType ResultType, Selector Sel, llvm::Value *Arg0, QualType Arg0Ty, bool IsSuper, const CallArgList &CallArgs) { CallArgList ActualArgs; ActualArgs.push_back(std::make_pair(RValue::get(Arg0), Arg0Ty)); ActualArgs.push_back(std::make_pair(RValue::get(EmitSelector(CGF.Builder, Sel)), CGF.getContext().getObjCSelType())); ActualArgs.insert(ActualArgs.end(), CallArgs.begin(), CallArgs.end()); const llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(CGCallInfo(ResultType, ActualArgs), false); llvm::Constant *Fn; if (CGM.ReturnTypeUsesSret(ResultType)) { Fn = ObjCTypes.getSendStretFn(IsSuper); } else if (ResultType->isFloatingType()) { // FIXME: Sadly, this is wrong. This actually depends on the // architecture. This happens to be right for x86-32 though. Fn = ObjCTypes.getSendFpretFn(IsSuper); } else { Fn = ObjCTypes.getSendFn(IsSuper); } Fn = llvm::ConstantExpr::getBitCast(Fn, llvm::PointerType::getUnqual(FTy)); return CGF.EmitCall(Fn, ResultType, ActualArgs); } llvm::Value *CGObjCMac::GenerateProtocolRef(CGBuilderTy &Builder, const ObjCProtocolDecl *PD) { // FIXME: I don't understand why gcc generates this, or where it is // resolved. Investigate. Its also wasteful to look this up over and // over. LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), ObjCTypes.ExternalProtocolPtrTy); } void CGObjCMac::GenerateProtocol(const ObjCProtocolDecl *PD) { // FIXME: We shouldn't need this, the protocol decl should contain // enough information to tell us whether this was a declaration or a // definition. DefinedProtocols.insert(PD->getIdentifier()); // If we have generated a forward reference to this protocol, emit // it now. Otherwise do nothing, the protocol objects are lazily // emitted. if (Protocols.count(PD->getIdentifier())) GetOrEmitProtocol(PD); } llvm::Constant *CGObjCMac::GetProtocolRef(const ObjCProtocolDecl *PD) { if (DefinedProtocols.count(PD->getIdentifier())) return GetOrEmitProtocol(PD); return GetOrEmitProtocolRef(PD); } /* // APPLE LOCAL radar 4585769 - Objective-C 1.0 extensions struct _objc_protocol { struct _objc_protocol_extension *isa; char *protocol_name; struct _objc_protocol_list *protocol_list; struct _objc__method_prototype_list *instance_methods; struct _objc__method_prototype_list *class_methods }; See EmitProtocolExtension(). */ llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; // Early exit if a defining object has already been generated. if (Entry && Entry->hasInitializer()) return Entry; // FIXME: I don't understand why gcc generates this, or where it is // resolved. Investigate. Its also wasteful to look this up over and // over. LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); const char *ProtocolName = PD->getName(); // Construct method lists. std::vector InstanceMethods, ClassMethods; std::vector OptInstanceMethods, OptClassMethods; for (ObjCProtocolDecl::instmeth_iterator i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) { ObjCMethodDecl *MD = *i; llvm::Constant *C = GetMethodDescriptionConstant(MD); if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { OptInstanceMethods.push_back(C); } else { InstanceMethods.push_back(C); } } for (ObjCProtocolDecl::classmeth_iterator i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) { ObjCMethodDecl *MD = *i; llvm::Constant *C = GetMethodDescriptionConstant(MD); if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { OptClassMethods.push_back(C); } else { ClassMethods.push_back(C); } } std::vector Values(5); Values[0] = EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods); Values[1] = GetClassName(PD->getIdentifier()); Values[2] = EmitProtocolList(std::string("\01L_OBJC_PROTOCOL_REFS_")+PD->getName(), PD->protocol_begin(), PD->protocol_end()); Values[3] = EmitMethodDescList(std::string("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_") + PD->getName(), "__OBJC,__cat_inst_meth,regular,no_dead_strip", InstanceMethods); Values[4] = EmitMethodDescList(std::string("\01L_OBJC_PROTOCOL_CLASS_METHODS_") + PD->getName(), "__OBJC,__cat_cls_meth,regular,no_dead_strip", ClassMethods); llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, Values); if (Entry) { // Already created, fix the linkage and update the initializer. Entry->setLinkage(llvm::GlobalValue::InternalLinkage); Entry->setInitializer(Init); } else { Entry = new llvm::GlobalVariable(ObjCTypes.ProtocolTy, false, llvm::GlobalValue::InternalLinkage, Init, std::string("\01L_OBJC_PROTOCOL_")+ProtocolName, &CGM.getModule()); Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); UsedGlobals.push_back(Entry); // FIXME: Is this necessary? Why only for protocol? Entry->setAlignment(4); } return Entry; } llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; if (!Entry) { // We use the initializer as a marker of whether this is a forward // reference or not. At module finalization we add the empty // contents for protocols which were referenced but never defined. Entry = new llvm::GlobalVariable(ObjCTypes.ProtocolTy, false, llvm::GlobalValue::ExternalLinkage, 0, std::string("\01L_OBJC_PROTOCOL_")+PD->getName(), &CGM.getModule()); Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); UsedGlobals.push_back(Entry); // FIXME: Is this necessary? Why only for protocol? Entry->setAlignment(4); } return Entry; } /* struct _objc_protocol_extension { uint32_t size; struct objc_method_description_list *optional_instance_methods; struct objc_method_description_list *optional_class_methods; struct objc_property_list *instance_properties; }; */ llvm::Constant * CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, const ConstantVector &OptInstanceMethods, const ConstantVector &OptClassMethods) { uint64_t Size = CGM.getTargetData().getABITypeSize(ObjCTypes.ProtocolExtensionTy); std::vector Values(4); Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); Values[1] = EmitMethodDescList(std::string("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_OPT_") + PD->getName(), "__OBJC,__cat_inst_meth,regular,no_dead_strip", OptInstanceMethods); Values[2] = EmitMethodDescList(std::string("\01L_OBJC_PROTOCOL_CLASS_METHODS_OPT_") + PD->getName(), "__OBJC,__cat_cls_meth,regular,no_dead_strip", OptClassMethods); Values[3] = EmitPropertyList(std::string("\01L_OBJC_$_PROP_PROTO_LIST_") + PD->getName(), 0, PD->classprop_begin(), PD->classprop_end()); // Return null if no extension bits are used. if (Values[1]->isNullValue() && Values[2]->isNullValue() && Values[3]->isNullValue()) return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(ObjCTypes.ProtocolExtensionTy, false, llvm::GlobalValue::InternalLinkage, Init, (std::string("\01L_OBJC_PROTOCOLEXT_") + PD->getName()), &CGM.getModule()); // No special section, but goes in llvm.used UsedGlobals.push_back(GV); return GV; } /* struct objc_protocol_list { struct objc_protocol_list *next; long count; Protocol *list[]; }; */ llvm::Constant * CGObjCMac::EmitProtocolList(const std::string &Name, ObjCProtocolDecl::protocol_iterator begin, ObjCProtocolDecl::protocol_iterator end) { std::vector ProtocolRefs; for (; begin != end; ++begin) ProtocolRefs.push_back(GetProtocolRef(*begin)); // Just return null for empty protocol lists if (ProtocolRefs.empty()) return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); // This list is null terminated. ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); std::vector Values(3); // This field is only used by the runtime. Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); Values[2] = llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, ProtocolRefs.size()), ProtocolRefs); llvm::Constant *Init = llvm::ConstantStruct::get(Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(Init->getType(), false, llvm::GlobalValue::InternalLinkage, Init, Name, &CGM.getModule()); GV->setSection("__OBJC,__cat_cls_meth,regular,no_dead_strip"); return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); } /* struct _objc_property { const char * const name; const char * const attributes; }; struct _objc_property_list { uint32_t entsize; // sizeof (struct _objc_property) uint32_t prop_count; struct _objc_property[prop_count]; }; */ llvm::Constant *CGObjCMac::EmitPropertyList(const std::string &Name, const Decl *Container, ObjCPropertyDecl * const *begin, ObjCPropertyDecl * const *end) { std::vector Properties, Prop(2); for (; begin != end; ++begin) { const ObjCPropertyDecl *PD = *begin; Prop[0] = GetPropertyName(PD->getIdentifier()); Prop[1] = GetPropertyTypeString(PD, Container); Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); } // Return null for empty list. if (Properties.empty()) return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); unsigned PropertySize = CGM.getTargetData().getABITypeSize(ObjCTypes.PropertyTy); std::vector Values(3); Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, Properties.size()); Values[2] = llvm::ConstantArray::get(AT, Properties); llvm::Constant *Init = llvm::ConstantStruct::get(Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(Init->getType(), false, llvm::GlobalValue::InternalLinkage, Init, Name, &CGM.getModule()); // No special section on property lists? UsedGlobals.push_back(GV); return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); } /* struct objc_method_description_list { int count; struct objc_method_description list[]; }; */ llvm::Constant * CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { std::vector Desc(2); Desc[0] = llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), ObjCTypes.SelectorPtrTy); Desc[1] = GetMethodVarType(MD); return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, Desc); } llvm::Constant *CGObjCMac::EmitMethodDescList(const std::string &Name, const char *Section, const ConstantVector &Methods) { // Return null for empty list. if (Methods.empty()) return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); std::vector Values(2); Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, Methods.size()); Values[1] = llvm::ConstantArray::get(AT, Methods); llvm::Constant *Init = llvm::ConstantStruct::get(Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(Init->getType(), false, llvm::GlobalValue::InternalLinkage, Init, Name, &CGM.getModule()); GV->setSection(Section); UsedGlobals.push_back(GV); return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodDescriptionListPtrTy); } /* struct _objc_category { char *category_name; char *class_name; struct _objc_method_list *instance_methods; struct _objc_method_list *class_methods; struct _objc_protocol_list *protocols; uint32_t size; // struct _objc_property_list *instance_properties; }; */ void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { unsigned Size = CGM.getTargetData().getABITypeSize(ObjCTypes.CategoryTy); // FIXME: This is poor design, the OCD should have a pointer to the // category decl. Additionally, note that Category can be null for // the @implementation w/o an @interface case. Sema should just // create one for us as it does for @implementation so everyone else // can live life under a clear blue sky. const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); const ObjCCategoryDecl *Category = Interface->FindCategoryDeclaration(OCD->getIdentifier()); std::string ExtName(std::string(Interface->getName()) + "_" + OCD->getName()); std::vector InstanceMethods, ClassMethods; for (ObjCCategoryImplDecl::instmeth_iterator i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) { // Instance methods should always be defined. InstanceMethods.push_back(GetMethodConstant(*i)); } for (ObjCCategoryImplDecl::classmeth_iterator i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) { // Class methods should always be defined. ClassMethods.push_back(GetMethodConstant(*i)); } std::vector Values(7); Values[0] = GetClassName(OCD->getIdentifier()); Values[1] = GetClassName(Interface->getIdentifier()); Values[2] = EmitMethodList(std::string("\01L_OBJC_CATEGORY_INSTANCE_METHODS_") + ExtName, "__OBJC,__cat_inst_meth,regular,no_dead_strip", InstanceMethods); Values[3] = EmitMethodList(std::string("\01L_OBJC_CATEGORY_CLASS_METHODS_") + ExtName, "__OBJC,__cat_class_meth,regular,no_dead_strip", ClassMethods); if (Category) { Values[4] = EmitProtocolList(std::string("\01L_OBJC_CATEGORY_PROTOCOLS_") + ExtName, Category->protocol_begin(), Category->protocol_end()); } else { Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); } Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); // If there is no category @interface then there can be no properties. if (Category) { Values[6] = EmitPropertyList(std::string("\01L_OBJC_$_PROP_LIST_") + ExtName, OCD, Category->classprop_begin(), Category->classprop_end()); } else { Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); } llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(ObjCTypes.CategoryTy, false, llvm::GlobalValue::InternalLinkage, Init, std::string("\01L_OBJC_CATEGORY_")+ExtName, &CGM.getModule()); GV->setSection("__OBJC,__category,regular,no_dead_strip"); UsedGlobals.push_back(GV); DefinedCategories.push_back(GV); } // FIXME: Get from somewhere? enum ClassFlags { eClassFlags_Factory = 0x00001, eClassFlags_Meta = 0x00002, // eClassFlags_HasCXXStructors = 0x02000, eClassFlags_Hidden = 0x20000, eClassFlags_ABI2_Hidden = 0x00010, eClassFlags_ABI2_HasCXXStructors = 0x00004 // }; // static bool IsClassHidden(const ObjCInterfaceDecl *ID) { if (const VisibilityAttr *attr = ID->getAttr()) { // FIXME: Support -fvisibility switch (attr->getVisibility()) { default: assert(0 && "Unknown visibility"); return false; case VisibilityAttr::DefaultVisibility: case VisibilityAttr::ProtectedVisibility: // FIXME: What do we do here? return false; case VisibilityAttr::HiddenVisibility: return true; } } else { return false; // FIXME: Support -fvisibility } } /* struct _objc_class { Class isa; Class super_class; const char *name; long version; long info; long instance_size; struct _objc_ivar_list *ivars; struct _objc_method_list *methods; struct _objc_cache *cache; struct _objc_protocol_list *protocols; // Objective-C 1.0 extensions () const char *ivar_layout; struct _objc_class_ext *ext; }; See EmitClassExtension(); */ void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { DefinedSymbols.insert(ID->getIdentifier()); const char *ClassName = ID->getName(); // FIXME: Gross ObjCInterfaceDecl *Interface = const_cast(ID->getClassInterface()); llvm::Constant *Protocols = EmitProtocolList(std::string("\01L_OBJC_CLASS_PROTOCOLS_") + ID->getName(), Interface->protocol_begin(), Interface->protocol_end()); const llvm::Type *InterfaceTy = CGM.getTypes().ConvertType(CGM.getContext().getObjCInterfaceType(Interface)); unsigned Flags = eClassFlags_Factory; unsigned Size = CGM.getTargetData().getABITypeSize(InterfaceTy); // FIXME: Set CXX-structors flag. if (IsClassHidden(ID->getClassInterface())) Flags |= eClassFlags_Hidden; std::vector InstanceMethods, ClassMethods; for (ObjCImplementationDecl::instmeth_iterator i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) { // Instance methods should always be defined. InstanceMethods.push_back(GetMethodConstant(*i)); } for (ObjCImplementationDecl::classmeth_iterator i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) { // Class methods should always be defined. ClassMethods.push_back(GetMethodConstant(*i)); } for (ObjCImplementationDecl::propimpl_iterator i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { ObjCPropertyDecl *PD = PID->getPropertyDecl(); if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) if (llvm::Constant *C = GetMethodConstant(MD)) InstanceMethods.push_back(C); if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) if (llvm::Constant *C = GetMethodConstant(MD)) InstanceMethods.push_back(C); } } std::vector Values(12); Values[ 0] = EmitMetaClass(ID, Protocols, InterfaceTy, ClassMethods); if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { // Record a reference to the super class. LazySymbols.insert(Super->getIdentifier()); Values[ 1] = llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()), ObjCTypes.ClassPtrTy); } else { Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); } Values[ 2] = GetClassName(ID->getIdentifier()); // Version is always 0. Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); Values[ 6] = EmitIvarList(ID, false, InterfaceTy); Values[ 7] = EmitMethodList(std::string("\01L_OBJC_INSTANCE_METHODS_") + ID->getName(), "__OBJC,__inst_meth,regular,no_dead_strip", InstanceMethods); // cache is always NULL. Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); Values[ 9] = Protocols; // FIXME: Set ivar_layout Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); Values[11] = EmitClassExtension(ID); llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(ObjCTypes.ClassTy, false, llvm::GlobalValue::InternalLinkage, Init, std::string("\01L_OBJC_CLASS_")+ClassName, &CGM.getModule()); GV->setSection("__OBJC,__class,regular,no_dead_strip"); UsedGlobals.push_back(GV); // FIXME: Why? GV->setAlignment(32); DefinedClasses.push_back(GV); } llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, llvm::Constant *Protocols, const llvm::Type *InterfaceTy, const ConstantVector &Methods) { const char *ClassName = ID->getName(); unsigned Flags = eClassFlags_Meta; unsigned Size = CGM.getTargetData().getABITypeSize(ObjCTypes.ClassTy); if (IsClassHidden(ID->getClassInterface())) Flags |= eClassFlags_Hidden; std::vector Values(12); // The isa for the metaclass is the root of the hierarchy. const ObjCInterfaceDecl *Root = ID->getClassInterface(); while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) Root = Super; Values[ 0] = llvm::ConstantExpr::getBitCast(GetClassName(Root->getIdentifier()), ObjCTypes.ClassPtrTy); // The super class for the metaclass is emitted as the name of the // super class. The runtime fixes this up to point to the // *metaclass* for the super class. if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { Values[ 1] = llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()), ObjCTypes.ClassPtrTy); } else { Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); } Values[ 2] = GetClassName(ID->getIdentifier()); // Version is always 0. Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); Values[ 6] = EmitIvarList(ID, true, InterfaceTy); Values[ 7] = EmitMethodList(std::string("\01L_OBJC_CLASS_METHODS_") + ID->getName(), "__OBJC,__inst_meth,regular,no_dead_strip", Methods); // cache is always NULL. Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); Values[ 9] = Protocols; // ivar_layout for metaclass is always NULL. Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); // The class extension is always unused for metaclasses. Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, Values); std::string Name("\01L_OBJC_METACLASS_"); Name += ClassName; // Check for a forward reference. llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); if (GV) { assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && "Forward metaclass reference has incorrect type."); GV->setLinkage(llvm::GlobalValue::InternalLinkage); GV->setInitializer(Init); } else { GV = new llvm::GlobalVariable(ObjCTypes.ClassTy, false, llvm::GlobalValue::InternalLinkage, Init, Name, &CGM.getModule()); } GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); UsedGlobals.push_back(GV); // FIXME: Why? GV->setAlignment(32); return GV; } llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { std::string Name("\01L_OBJC_METACLASS_"); Name += ID->getName(); // FIXME: Should we look these up somewhere other than the // module. Its a bit silly since we only generate these while // processing an implementation, so exactly one pointer would work // if know when we entered/exitted an implementation block. // Check for an existing forward reference. if (llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name)) { assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && "Forward metaclass reference has incorrect type."); return GV; } else { // Generate as an external reference to keep a consistent // module. This will be patched up when we emit the metaclass. return new llvm::GlobalVariable(ObjCTypes.ClassTy, false, llvm::GlobalValue::ExternalLinkage, 0, Name, &CGM.getModule()); } } /* struct objc_class_ext { uint32_t size; const char *weak_ivar_layout; struct _objc_property_list *properties; }; */ llvm::Constant * CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID) { uint64_t Size = CGM.getTargetData().getABITypeSize(ObjCTypes.ClassExtensionTy); std::vector Values(3); Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); // FIXME: Output weak_ivar_layout string. Values[1] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); Values[2] = EmitPropertyList(std::string("\01L_OBJC_$_PROP_LIST_") + ID->getName(), ID, ID->getClassInterface()->classprop_begin(), ID->getClassInterface()->classprop_end()); // Return null if no extension bits are used. if (Values[1]->isNullValue() && Values[2]->isNullValue()) return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(ObjCTypes.ClassExtensionTy, false, llvm::GlobalValue::InternalLinkage, Init, (std::string("\01L_OBJC_CLASSEXT_") + ID->getName()), &CGM.getModule()); // No special section, but goes in llvm.used UsedGlobals.push_back(GV); return GV; } /* struct objc_ivar { char *ivar_name; char *ivar_type; int ivar_offset; }; struct objc_ivar_list { int ivar_count; struct objc_ivar list[count]; }; */ llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, bool ForClass, const llvm::Type *InterfaceTy) { std::vector Ivars, Ivar(3); // When emitting the root class GCC emits ivar entries for the // actual class structure. It is not clear if we need to follow this // behavior; for now lets try and get away with not doing it. If so, // the cleanest solution would be to make up an ObjCInterfaceDecl // for the class. if (ForClass) return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); const llvm::StructLayout *Layout = CGM.getTargetData().getStructLayout(cast(InterfaceTy)); for (ObjCInterfaceDecl::ivar_iterator i = ID->getClassInterface()->ivar_begin(), e = ID->getClassInterface()->ivar_end(); i != e; ++i) { ObjCIvarDecl *V = *i; unsigned Offset = Layout->getElementOffset(CGM.getTypes().getLLVMFieldNo(V)); std::string TypeStr; Ivar[0] = GetMethodVarName(V->getIdentifier()); CGM.getContext().getObjCEncodingForType(V->getType(), TypeStr, true); Ivar[1] = GetMethodVarType(TypeStr); Ivar[2] = llvm::ConstantInt::get(ObjCTypes.IntTy, Offset); Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); } // Return null for empty list. if (Ivars.empty()) return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); std::vector Values(2); Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, Ivars.size()); Values[1] = llvm::ConstantArray::get(AT, Ivars); llvm::Constant *Init = llvm::ConstantStruct::get(Values); const char *Prefix = (ForClass ? "\01L_OBJC_CLASS_VARIABLES_" : "\01L_OBJC_INSTANCE_VARIABLES_"); llvm::GlobalVariable *GV = new llvm::GlobalVariable(Init->getType(), false, llvm::GlobalValue::InternalLinkage, Init, std::string(Prefix) + ID->getName(), &CGM.getModule()); if (ForClass) { GV->setSection("__OBJC,__cls_vars,regular,no_dead_strip"); // FIXME: Why is this only here? GV->setAlignment(32); } else { GV->setSection("__OBJC,__instance_vars,regular,no_dead_strip"); } UsedGlobals.push_back(GV); return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); } /* struct objc_method { SEL method_name; char *method_types; void *method; }; struct objc_method_list { struct objc_method_list *obsolete; int count; struct objc_method methods_list[count]; }; */ /// GetMethodConstant - Return a struct objc_method constant for the /// given method if it has been defined. The result is null if the /// method has not been defined. The return value has type MethodPtrTy. llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { // FIXME: Use DenseMap::lookup llvm::Function *Fn = MethodDefinitions[MD]; if (!Fn) return 0; std::vector Method(3); Method[0] = llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), ObjCTypes.SelectorPtrTy); Method[1] = GetMethodVarType(MD); Method[2] = llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy); return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); } llvm::Constant *CGObjCMac::EmitMethodList(const std::string &Name, const char *Section, const ConstantVector &Methods) { // Return null for empty list. if (Methods.empty()) return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); std::vector Values(3); Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, Methods.size()); Values[2] = llvm::ConstantArray::get(AT, Methods); llvm::Constant *Init = llvm::ConstantStruct::get(Values); llvm::GlobalVariable *GV = new llvm::GlobalVariable(Init->getType(), false, llvm::GlobalValue::InternalLinkage, Init, Name, &CGM.getModule()); GV->setSection(Section); UsedGlobals.push_back(GV); return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); } llvm::Function *CGObjCMac::GenerateMethod(const ObjCMethodDecl *OMD) { std::string Name; GetNameForMethod(OMD, Name); const llvm::FunctionType *MethodTy = CGM.getTypes().GetFunctionType(CGFunctionInfo(OMD, CGM.getContext())); llvm::Function *Method = llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); MethodDefinitions.insert(std::make_pair(OMD, Method)); return Method; } llvm::Function *CGObjCMac::ModuleInitFunction() { // Abuse this interface function as a place to finalize. FinishModule(); return NULL; } llvm::Function *CGObjCMac::GetPropertyGetFunction() { return ObjCTypes.GetPropertyFn; } llvm::Function *CGObjCMac::GetPropertySetFunction() { return ObjCTypes.SetPropertyFn; } llvm::Function *CGObjCMac::EnumerationMutationFunction() { return ObjCTypes.EnumerationMutationFn; } /* Objective-C setjmp-longjmp (sjlj) Exception Handling -- The basic framework for a @try-catch-finally is as follows: { objc_exception_data d; id _rethrow = null; objc_exception_try_enter(&d); if (!setjmp(d.jmp_buf)) { ... try body ... } else { // exception path id _caught = objc_exception_extract(&d); // enter new try scope for handlers if (!setjmp(d.jmp_buf)) { ... match exception and execute catch blocks ... // fell off end, rethrow. _rethrow = _caught; ... jump-through-finally to finally_rethrow ... } else { // exception in catch block _rethrow = objc_exception_extract(&d); ... jump-through-finally_no_exit to finally_rethrow ... } } ... jump-through-finally to finally_end ... finally: // match either the initial try_enter or the catch try_enter, // depending on the path followed. objc_exception_try_exit(&d); finally_no_exit: ... finally block .... ... dispatch to finally destination ... finally_rethrow: objc_exception_throw(_rethrow); finally_end: } This framework differs slightly from the one gcc uses, in that gcc uses _rethrow to determine if objc_exception_try_exit should be called and if the object should be rethrown. This breaks in the face of throwing nil and introduces unnecessary branches. We specialize this framework for a few particular circumstances: - If there are no catch blocks, then we avoid emitting the second exception handling context. - If there is a catch-all catch block (i.e. @catch(...) or @catch(id e)) we avoid emitting the code to rethrow an uncaught exception. - FIXME: If there is no @finally block we can do a few more simplifications. Rethrows and Jumps-Through-Finally -- Support for implicit rethrows and jumping through the finally block is handled by storing the current exception-handling context in ObjCEHStack. In order to implement proper @finally semantics, we support one basic mechanism for jumping through the finally block to an arbitrary destination. Constructs which generate exits from a @try or @catch block use this mechanism to implement the proper semantics by chaining jumps, as necessary. This mechanism works like the one used for indirect goto: we arbitrarily assign an ID to each destination and store the ID for the destination in a variable prior to entering the finally block. At the end of the finally block we simply create a switch to the proper destination. */ void CGObjCMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S) { // Create various blocks we refer to for handling @finally. llvm::BasicBlock *FinallyBlock = CGF.createBasicBlock("finally"); llvm::BasicBlock *FinallyNoExit = CGF.createBasicBlock("finally.noexit"); llvm::BasicBlock *FinallyRethrow = CGF.createBasicBlock("finally.throw"); llvm::BasicBlock *FinallyEnd = CGF.createBasicBlock("finally.end"); llvm::Value *DestCode = CGF.CreateTempAlloca(llvm::Type::Int32Ty, "finally.dst"); // Generate jump code. Done here so we can directly add things to // the switch instruction. llvm::BasicBlock *FinallyJump = CGF.createBasicBlock("finally.jump"); llvm::SwitchInst *FinallySwitch = llvm::SwitchInst::Create(new llvm::LoadInst(DestCode, "", FinallyJump), FinallyEnd, 10, FinallyJump); // Push an EH context entry, used for handling rethrows and jumps // through finally. CodeGenFunction::ObjCEHEntry EHEntry(FinallyBlock, FinallyNoExit, FinallySwitch, DestCode); CGF.ObjCEHStack.push_back(&EHEntry); // Allocate memory for the exception data and rethrow pointer. llvm::Value *ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, "exceptiondata.ptr"); llvm::Value *RethrowPtr = CGF.CreateTempAlloca(ObjCTypes.ObjectPtrTy, "_rethrow"); // Enter a new try block and call setjmp. CGF.Builder.CreateCall(ObjCTypes.ExceptionTryEnterFn, ExceptionData); llvm::Value *JmpBufPtr = CGF.Builder.CreateStructGEP(ExceptionData, 0, "jmpbufarray"); JmpBufPtr = CGF.Builder.CreateStructGEP(JmpBufPtr, 0, "tmp"); llvm::Value *SetJmpResult = CGF.Builder.CreateCall(ObjCTypes.SetJmpFn, JmpBufPtr, "result"); llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(SetJmpResult, "threw"), TryHandler, TryBlock); // Emit the @try block. CGF.EmitBlock(TryBlock); CGF.EmitStmt(S.getTryBody()); CGF.EmitJumpThroughFinally(&EHEntry, FinallyEnd); // Emit the "exception in @try" block. CGF.EmitBlock(TryHandler); // Retrieve the exception object. We may emit multiple blocks but // nothing can cross this so the value is already in SSA form. llvm::Value *Caught = CGF.Builder.CreateCall(ObjCTypes.ExceptionExtractFn, ExceptionData, "caught"); EHEntry.Exception = Caught; if (const ObjCAtCatchStmt* CatchStmt = S.getCatchStmts()) { // Enter a new exception try block (in case a @catch block throws // an exception). CGF.Builder.CreateCall(ObjCTypes.ExceptionTryEnterFn, ExceptionData); llvm::Value *SetJmpResult = CGF.Builder.CreateCall(ObjCTypes.SetJmpFn, JmpBufPtr, "result"); llvm::Value *Threw = CGF.Builder.CreateIsNotNull(SetJmpResult, "threw"); llvm::BasicBlock *CatchBlock = CGF.createBasicBlock("catch"); llvm::BasicBlock *CatchHandler = CGF.createBasicBlock("catch.handler"); CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); CGF.EmitBlock(CatchBlock); // Handle catch list. As a special case we check if everything is // matched and avoid generating code for falling off the end if // so. bool AllMatched = false; for (; CatchStmt; CatchStmt = CatchStmt->getNextCatchStmt()) { llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch"); const DeclStmt *CatchParam = cast_or_null(CatchStmt->getCatchParamStmt()); const VarDecl *VD = 0; const PointerType *PT = 0; // catch(...) always matches. if (!CatchParam) { AllMatched = true; } else { VD = cast(CatchParam->getSolitaryDecl()); PT = VD->getType()->getAsPointerType(); // catch(id e) always matches. // FIXME: For the time being we also match id; this should // be rejected by Sema instead. if ((PT && CGF.getContext().isObjCIdType(PT->getPointeeType())) || VD->getType()->isObjCQualifiedIdType()) AllMatched = true; } if (AllMatched) { if (CatchParam) { CGF.EmitStmt(CatchParam); CGF.Builder.CreateStore(Caught, CGF.GetAddrOfLocalVar(VD)); } CGF.EmitStmt(CatchStmt->getCatchBody()); CGF.EmitJumpThroughFinally(&EHEntry, FinallyEnd); break; } assert(PT && "Unexpected non-pointer type in @catch"); QualType T = PT->getPointeeType(); const ObjCInterfaceType *ObjCType = T->getAsObjCInterfaceType(); assert(ObjCType && "Catch parameter must have Objective-C type!"); // Check if the @catch block matches the exception object. llvm::Value *Class = EmitClassRef(CGF.Builder, ObjCType->getDecl()); llvm::Value *Match = CGF.Builder.CreateCall2(ObjCTypes.ExceptionMatchFn, Class, Caught, "match"); llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("matched"); CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), MatchedBlock, NextCatchBlock); // Emit the @catch block. CGF.EmitBlock(MatchedBlock); CGF.EmitStmt(CatchParam); llvm::Value *Tmp = CGF.Builder.CreateBitCast(Caught, CGF.ConvertType(VD->getType()), "tmp"); CGF.Builder.CreateStore(Tmp, CGF.GetAddrOfLocalVar(VD)); CGF.EmitStmt(CatchStmt->getCatchBody()); CGF.EmitJumpThroughFinally(&EHEntry, FinallyEnd); CGF.EmitBlock(NextCatchBlock); } if (!AllMatched) { // None of the handlers caught the exception, so store it to be // rethrown at the end of the @finally block. CGF.Builder.CreateStore(Caught, RethrowPtr); CGF.EmitJumpThroughFinally(&EHEntry, FinallyRethrow); } // Emit the exception handler for the @catch blocks. CGF.EmitBlock(CatchHandler); CGF.Builder.CreateStore(CGF.Builder.CreateCall(ObjCTypes.ExceptionExtractFn, ExceptionData), RethrowPtr); CGF.EmitJumpThroughFinally(&EHEntry, FinallyRethrow, false); } else { CGF.Builder.CreateStore(Caught, RethrowPtr); CGF.EmitJumpThroughFinally(&EHEntry, FinallyRethrow, false); } // Pop the exception-handling stack entry. It is important to do // this now, because the code in the @finally block is not in this // context. CGF.ObjCEHStack.pop_back(); // Emit the @finally block. CGF.EmitBlock(FinallyBlock); CGF.Builder.CreateCall(ObjCTypes.ExceptionTryExitFn, ExceptionData); CGF.EmitBlock(FinallyNoExit); if (const ObjCAtFinallyStmt* FinallyStmt = S.getFinallyStmt()) CGF.EmitStmt(FinallyStmt->getFinallyBody()); CGF.EmitBlock(FinallyJump); CGF.EmitBlock(FinallyRethrow); CGF.Builder.CreateCall(ObjCTypes.ExceptionThrowFn, CGF.Builder.CreateLoad(RethrowPtr)); CGF.Builder.CreateUnreachable(); CGF.EmitBlock(FinallyEnd); } void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S) { llvm::Value *ExceptionAsObject; if (const Expr *ThrowExpr = S.getThrowExpr()) { llvm::Value *Exception = CGF.EmitScalarExpr(ThrowExpr); ExceptionAsObject = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy, "tmp"); } else { assert((!CGF.ObjCEHStack.empty() && CGF.ObjCEHStack.back()->Exception) && "Unexpected rethrow outside @catch block."); ExceptionAsObject = CGF.ObjCEHStack.back()->Exception; } CGF.Builder.CreateCall(ObjCTypes.ExceptionThrowFn, ExceptionAsObject); CGF.Builder.CreateUnreachable(); CGF.EmitBlock(CGF.createBasicBlock("bb")); } void CodeGenFunction::EmitJumpThroughFinally(ObjCEHEntry *E, llvm::BasicBlock *Dst, bool ExecuteTryExit) { llvm::BasicBlock *Src = Builder.GetInsertBlock(); if (isDummyBlock(Src)) return; // Find the destination code for this block. We always use 0 for the // fallthrough block (default destination). llvm::SwitchInst *SI = E->FinallySwitch; llvm::ConstantInt *ID; if (Dst == SI->getDefaultDest()) { ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); } else { ID = SI->findCaseDest(Dst); if (!ID) { // No code found, get a new unique one by just using the number // of switch successors. ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, SI->getNumSuccessors()); SI->addCase(ID, Dst); } } // Set the destination code and branch. Builder.CreateStore(ID, E->DestCode); Builder.CreateBr(ExecuteTryExit ? E->FinallyBlock : E->FinallyNoExit); } /* *** Private Interface *** */ /// EmitImageInfo - Emit the image info marker used to encode some module /// level information. /// /// See: /// struct IMAGE_INFO { /// unsigned version; /// unsigned flags; /// }; enum ImageInfoFlags { eImageInfo_FixAndContinue = (1 << 0), // FIXME: Not sure what this implies eImageInfo_GarbageCollected = (1 << 1), eImageInfo_GCOnly = (1 << 2) }; void CGObjCMac::EmitImageInfo() { unsigned version = 0; // Version is unused? unsigned flags = 0; // FIXME: Fix and continue? if (CGM.getLangOptions().getGCMode() != LangOptions::NonGC) flags |= eImageInfo_GarbageCollected; if (CGM.getLangOptions().getGCMode() == LangOptions::GCOnly) flags |= eImageInfo_GCOnly; // Emitted as int[2]; llvm::Constant *values[2] = { llvm::ConstantInt::get(llvm::Type::Int32Ty, version), llvm::ConstantInt::get(llvm::Type::Int32Ty, flags) }; llvm::ArrayType *AT = llvm::ArrayType::get(llvm::Type::Int32Ty, 2); llvm::GlobalVariable *GV = new llvm::GlobalVariable(AT, true, llvm::GlobalValue::InternalLinkage, llvm::ConstantArray::get(AT, values, 2), "\01L_OBJC_IMAGE_INFO", &CGM.getModule()); if (ObjCABI == 1) { GV->setSection("__OBJC, __image_info,regular"); } else { GV->setSection("__DATA, __objc_imageinfo, regular, no_dead_strip"); } UsedGlobals.push_back(GV); } // struct objc_module { // unsigned long version; // unsigned long size; // const char *name; // Symtab symtab; // }; // FIXME: Get from somewhere static const int ModuleVersion = 7; void CGObjCMac::EmitModuleInfo() { uint64_t Size = CGM.getTargetData().getABITypeSize(ObjCTypes.ModuleTy); std::vector Values(4); Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion); Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); // This used to be the filename, now it is unused. Values[2] = GetClassName(&CGM.getContext().Idents.get("")); Values[3] = EmitModuleSymbols(); llvm::GlobalVariable *GV = new llvm::GlobalVariable(ObjCTypes.ModuleTy, false, llvm::GlobalValue::InternalLinkage, llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), "\01L_OBJC_MODULES", &CGM.getModule()); GV->setSection("__OBJC,__module_info,regular,no_dead_strip"); UsedGlobals.push_back(GV); } llvm::Constant *CGObjCMac::EmitModuleSymbols() { unsigned NumClasses = DefinedClasses.size(); unsigned NumCategories = DefinedCategories.size(); // Return null if no symbols were defined. if (!NumClasses && !NumCategories) return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); std::vector Values(5); Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); // The runtime expects exactly the list of defined classes followed // by the list of defined categories, in a single array. std::vector Symbols(NumClasses + NumCategories); for (unsigned i=0; igetType(), false, llvm::GlobalValue::InternalLinkage, Init, "\01L_OBJC_SYMBOLS", &CGM.getModule()); GV->setSection("__OBJC,__symbols,regular,no_dead_strip"); UsedGlobals.push_back(GV); return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); } llvm::Value *CGObjCMac::EmitClassRef(CGBuilderTy &Builder, const ObjCInterfaceDecl *ID) { LazySymbols.insert(ID->getIdentifier()); llvm::GlobalVariable *&Entry = ClassReferences[ID->getIdentifier()]; if (!Entry) { llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(GetClassName(ID->getIdentifier()), ObjCTypes.ClassPtrTy); Entry = new llvm::GlobalVariable(ObjCTypes.ClassPtrTy, false, llvm::GlobalValue::InternalLinkage, Casted, "\01L_OBJC_CLASS_REFERENCES_", &CGM.getModule()); Entry->setSection("__OBJC,__cls_refs,literal_pointers,no_dead_strip"); UsedGlobals.push_back(Entry); } return Builder.CreateLoad(Entry, false, "tmp"); } llvm::Value *CGObjCMac::EmitSelector(CGBuilderTy &Builder, Selector Sel) { llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; if (!Entry) { llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), ObjCTypes.SelectorPtrTy); Entry = new llvm::GlobalVariable(ObjCTypes.SelectorPtrTy, false, llvm::GlobalValue::InternalLinkage, Casted, "\01L_OBJC_SELECTOR_REFERENCES_", &CGM.getModule()); Entry->setSection("__OBJC,__message_refs,literal_pointers,no_dead_strip"); UsedGlobals.push_back(Entry); } return Builder.CreateLoad(Entry, false, "tmp"); } llvm::Constant *CGObjCMac::GetClassName(IdentifierInfo *Ident) { llvm::GlobalVariable *&Entry = ClassNames[Ident]; if (!Entry) { llvm::Constant *C = llvm::ConstantArray::get(Ident->getName()); Entry = new llvm::GlobalVariable(C->getType(), false, llvm::GlobalValue::InternalLinkage, C, "\01L_OBJC_CLASS_NAME_", &CGM.getModule()); Entry->setSection("__TEXT,__cstring,cstring_literals"); UsedGlobals.push_back(Entry); } return getConstantGEP(Entry, 0, 0); } llvm::Constant *CGObjCMac::GetMethodVarName(Selector Sel) { llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; if (!Entry) { llvm::Constant *C = llvm::ConstantArray::get(Sel.getName()); Entry = new llvm::GlobalVariable(C->getType(), false, llvm::GlobalValue::InternalLinkage, C, "\01L_OBJC_METH_VAR_NAME_", &CGM.getModule()); Entry->setSection("__TEXT,__cstring,cstring_literals"); UsedGlobals.push_back(Entry); } return getConstantGEP(Entry, 0, 0); } // FIXME: Merge into a single cstring creation function. llvm::Constant *CGObjCMac::GetMethodVarName(IdentifierInfo *ID) { return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); } // FIXME: Merge into a single cstring creation function. llvm::Constant *CGObjCMac::GetMethodVarName(const std::string &Name) { return GetMethodVarName(&CGM.getContext().Idents.get(Name)); } llvm::Constant *CGObjCMac::GetMethodVarType(const std::string &Name) { llvm::GlobalVariable *&Entry = MethodVarTypes[Name]; if (!Entry) { llvm::Constant *C = llvm::ConstantArray::get(Name); Entry = new llvm::GlobalVariable(C->getType(), false, llvm::GlobalValue::InternalLinkage, C, "\01L_OBJC_METH_VAR_TYPE_", &CGM.getModule()); Entry->setSection("__TEXT,__cstring,cstring_literals"); UsedGlobals.push_back(Entry); } return getConstantGEP(Entry, 0, 0); } // FIXME: Merge into a single cstring creation function. llvm::Constant *CGObjCMac::GetMethodVarType(const ObjCMethodDecl *D) { std::string TypeStr; CGM.getContext().getObjCEncodingForMethodDecl(const_cast(D), TypeStr); return GetMethodVarType(TypeStr); } // FIXME: Merge into a single cstring creation function. llvm::Constant *CGObjCMac::GetPropertyName(IdentifierInfo *Ident) { llvm::GlobalVariable *&Entry = PropertyNames[Ident]; if (!Entry) { llvm::Constant *C = llvm::ConstantArray::get(Ident->getName()); Entry = new llvm::GlobalVariable(C->getType(), false, llvm::GlobalValue::InternalLinkage, C, "\01L_OBJC_PROP_NAME_ATTR_", &CGM.getModule()); Entry->setSection("__TEXT,__cstring,cstring_literals"); UsedGlobals.push_back(Entry); } return getConstantGEP(Entry, 0, 0); } // FIXME: Merge into a single cstring creation function. // FIXME: This Decl should be more precise. llvm::Constant *CGObjCMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, const Decl *Container) { std::string TypeStr; CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); } void CGObjCMac::GetNameForMethod(const ObjCMethodDecl *D, std::string &NameOut) { // FIXME: Find the mangling GCC uses. std::stringstream s; s << (D->isInstance() ? "-" : "+"); s << "["; s << D->getClassInterface()->getName(); s << " "; s << D->getSelector().getName(); s << "]"; NameOut = s.str(); } void CGObjCMac::FinishModule() { EmitModuleInfo(); // Emit the dummy bodies for any protocols which were referenced but // never defined. for (llvm::DenseMap::iterator i = Protocols.begin(), e = Protocols.end(); i != e; ++i) { if (i->second->hasInitializer()) continue; std::vector Values(5); Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); Values[1] = GetClassName(i->first); Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); Values[3] = Values[4] = llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); i->second->setLinkage(llvm::GlobalValue::InternalLinkage); i->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, Values)); } std::vector Used; for (std::vector::iterator i = UsedGlobals.begin(), e = UsedGlobals.end(); i != e; ++i) { Used.push_back(llvm::ConstantExpr::getBitCast(*i, ObjCTypes.Int8PtrTy)); } llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, Used.size()); llvm::GlobalValue *GV = new llvm::GlobalVariable(AT, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(AT, Used), "llvm.used", &CGM.getModule()); GV->setSection("llvm.metadata"); // Add assembler directives to add lazy undefined symbol references // for classes which are referenced but not defined. This is // important for correct linker interaction. // FIXME: Uh, this isn't particularly portable. std::stringstream s; for (std::set::iterator i = LazySymbols.begin(), e = LazySymbols.end(); i != e; ++i) { s << "\t.lazy_reference .objc_class_name_" << (*i)->getName() << "\n"; } for (std::set::iterator i = DefinedSymbols.begin(), e = DefinedSymbols.end(); i != e; ++i) { s << "\t.objc_class_name_" << (*i)->getName() << "=0\n" << "\t.globl .objc_class_name_" << (*i)->getName() << "\n"; } CGM.getModule().appendModuleInlineAsm(s.str()); } /* *** */ ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) : CGM(cgm) { CodeGen::CodeGenTypes &Types = CGM.getTypes(); ASTContext &Ctx = CGM.getContext(); ShortTy = Types.ConvertType(Ctx.ShortTy); IntTy = Types.ConvertType(Ctx.IntTy); LongTy = Types.ConvertType(Ctx.LongTy); Int8PtrTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); // FIXME: It would be nice to unify this with the opaque type, so // that the IR comes out a bit cleaner. const llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); MethodDescriptionTy = llvm::StructType::get(SelectorPtrTy, Int8PtrTy, NULL); CGM.getModule().addTypeName("struct._objc_method_description", MethodDescriptionTy); MethodDescriptionListTy = llvm::StructType::get(IntTy, llvm::ArrayType::get(MethodDescriptionTy, 0), NULL); CGM.getModule().addTypeName("struct._objc_method_description_list", MethodDescriptionListTy); MethodDescriptionListPtrTy = llvm::PointerType::getUnqual(MethodDescriptionListTy); PropertyTy = llvm::StructType::get(Int8PtrTy, Int8PtrTy, NULL); CGM.getModule().addTypeName("struct._objc_property", PropertyTy); PropertyListTy = llvm::StructType::get(IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0), NULL); CGM.getModule().addTypeName("struct._objc_property_list", PropertyListTy); PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); // Protocol description structures ProtocolExtensionTy = llvm::StructType::get(Types.ConvertType(Ctx.IntTy), llvm::PointerType::getUnqual(MethodDescriptionListTy), llvm::PointerType::getUnqual(MethodDescriptionListTy), PropertyListPtrTy, NULL); CGM.getModule().addTypeName("struct._objc_protocol_extension", ProtocolExtensionTy); ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); // Handle recursive construction of Protocol and ProtocolList types llvm::PATypeHolder ProtocolTyHolder = llvm::OpaqueType::get(); llvm::PATypeHolder ProtocolListTyHolder = llvm::OpaqueType::get(); T = llvm::StructType::get(llvm::PointerType::getUnqual(ProtocolListTyHolder), LongTy, llvm::ArrayType::get(ProtocolTyHolder, 0), NULL); cast(ProtocolListTyHolder.get())->refineAbstractTypeTo(T); T = llvm::StructType::get(llvm::PointerType::getUnqual(ProtocolExtensionTy), Int8PtrTy, llvm::PointerType::getUnqual(ProtocolListTyHolder), MethodDescriptionListPtrTy, MethodDescriptionListPtrTy, NULL); cast(ProtocolTyHolder.get())->refineAbstractTypeTo(T); ProtocolListTy = cast(ProtocolListTyHolder.get()); CGM.getModule().addTypeName("struct._objc_protocol_list", ProtocolListTy); ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); ProtocolTy = cast(ProtocolTyHolder.get()); CGM.getModule().addTypeName("struct.__objc_protocol", ProtocolTy); ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); // Class description structures IvarTy = llvm::StructType::get(Int8PtrTy, Int8PtrTy, IntTy, NULL); CGM.getModule().addTypeName("struct._objc_ivar", IvarTy); IvarListTy = llvm::OpaqueType::get(); CGM.getModule().addTypeName("struct._objc_ivar_list", IvarListTy); IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); MethodTy = llvm::StructType::get(SelectorPtrTy, Int8PtrTy, Int8PtrTy, NULL); CGM.getModule().addTypeName("struct._objc_method", MethodTy); MethodListTy = llvm::OpaqueType::get(); CGM.getModule().addTypeName("struct._objc_method_list", MethodListTy); MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); CacheTy = llvm::OpaqueType::get(); CGM.getModule().addTypeName("struct._objc_cache", CacheTy); CachePtrTy = llvm::PointerType::getUnqual(CacheTy); ClassExtensionTy = llvm::StructType::get(IntTy, Int8PtrTy, PropertyListPtrTy, NULL); CGM.getModule().addTypeName("struct._objc_class_extension", ClassExtensionTy); ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); llvm::PATypeHolder ClassTyHolder = llvm::OpaqueType::get(); T = llvm::StructType::get(llvm::PointerType::getUnqual(ClassTyHolder), llvm::PointerType::getUnqual(ClassTyHolder), Int8PtrTy, LongTy, LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy, NULL); cast(ClassTyHolder.get())->refineAbstractTypeTo(T); ClassTy = cast(ClassTyHolder.get()); CGM.getModule().addTypeName("struct._objc_class", ClassTy); ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); CategoryTy = llvm::StructType::get(Int8PtrTy, Int8PtrTy, MethodListPtrTy, MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, NULL); CGM.getModule().addTypeName("struct._objc_category", CategoryTy); // I'm not sure I like this. The implicit coordination is a bit // gross. We should solve this in a reasonable fashion because this // is a pretty common task (match some runtime data structure with // an LLVM data structure). // FIXME: This is leaked. // FIXME: Merge with rewriter code? RecordDecl *RD = RecordDecl::Create(Ctx, TagDecl::TK_struct, 0, SourceLocation(), &Ctx.Idents.get("_objc_super")); FieldDecl *FieldDecls[2]; FieldDecls[0] = FieldDecl::Create(Ctx, SourceLocation(), 0, Ctx.getObjCIdType()); FieldDecls[1] = FieldDecl::Create(Ctx, SourceLocation(), 0, Ctx.getObjCClassType()); RD->defineBody(Ctx, FieldDecls, 2); SuperCTy = Ctx.getTagDeclType(RD); SuperPtrCTy = Ctx.getPointerType(SuperCTy); SuperTy = cast(Types.ConvertType(SuperCTy)); SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); // Global metadata structures SymtabTy = llvm::StructType::get(LongTy, SelectorPtrTy, ShortTy, ShortTy, llvm::ArrayType::get(Int8PtrTy, 0), NULL); CGM.getModule().addTypeName("struct._objc_symtab", SymtabTy); SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); ModuleTy = llvm::StructType::get(LongTy, LongTy, Int8PtrTy, SymtabPtrTy, NULL); CGM.getModule().addTypeName("struct._objc_module", ModuleTy); // Message send functions. std::vector Params; Params.push_back(ObjectPtrTy); Params.push_back(SelectorPtrTy); MessageSendFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, Params, true), "objc_msgSend"); Params.clear(); Params.push_back(Int8PtrTy); Params.push_back(ObjectPtrTy); Params.push_back(SelectorPtrTy); MessageSendStretFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, true), "objc_msgSend_stret"); Params.clear(); Params.push_back(ObjectPtrTy); Params.push_back(SelectorPtrTy); // FIXME: This should be long double on x86_64? MessageSendFpretFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::DoubleTy, Params, true), "objc_msgSend_fpret"); Params.clear(); Params.push_back(SuperPtrTy); Params.push_back(SelectorPtrTy); MessageSendSuperFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, Params, true), "objc_msgSendSuper"); Params.clear(); Params.push_back(Int8PtrTy); Params.push_back(SuperPtrTy); Params.push_back(SelectorPtrTy); MessageSendSuperStretFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, true), "objc_msgSendSuper_stret"); // There is no objc_msgSendSuper_fpret? How can that work? MessageSendSuperFpretFn = MessageSendSuperFn; // Property manipulation functions. Params.clear(); Params.push_back(ObjectPtrTy); Params.push_back(SelectorPtrTy); Params.push_back(LongTy); Params.push_back(Types.ConvertTypeForMem(Ctx.BoolTy)); GetPropertyFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, Params, false), "objc_getProperty"); Params.clear(); Params.push_back(ObjectPtrTy); Params.push_back(SelectorPtrTy); Params.push_back(LongTy); Params.push_back(ObjectPtrTy); Params.push_back(Types.ConvertTypeForMem(Ctx.BoolTy)); Params.push_back(Types.ConvertTypeForMem(Ctx.BoolTy)); SetPropertyFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, false), "objc_setProperty"); // Enumeration mutation. Params.clear(); Params.push_back(ObjectPtrTy); EnumerationMutationFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, false), "objc_enumerationMutation"); // FIXME: This is the size of the setjmp buffer and should be // target specific. 18 is what's used on 32-bit X86. uint64_t SetJmpBufferSize = 18; // Exceptions const llvm::Type *StackPtrTy = llvm::ArrayType::get(llvm::PointerType::getUnqual(llvm::Type::Int8Ty), 4); ExceptionDataTy = llvm::StructType::get(llvm::ArrayType::get(llvm::Type::Int32Ty, SetJmpBufferSize), StackPtrTy, NULL); CGM.getModule().addTypeName("struct._objc_exception_data", ExceptionDataTy); Params.clear(); Params.push_back(ObjectPtrTy); ExceptionThrowFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, false), "objc_exception_throw"); Params.clear(); Params.push_back(llvm::PointerType::getUnqual(ExceptionDataTy)); ExceptionTryEnterFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, false), "objc_exception_try_enter"); ExceptionTryExitFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::VoidTy, Params, false), "objc_exception_try_exit"); ExceptionExtractFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, Params, false), "objc_exception_extract"); Params.clear(); Params.push_back(ClassPtrTy); Params.push_back(ObjectPtrTy); ExceptionMatchFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::Int32Ty, Params, false), "objc_exception_match"); Params.clear(); Params.push_back(llvm::PointerType::getUnqual(llvm::Type::Int32Ty)); SetJmpFn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::Int32Ty, Params, false), "_setjmp"); } ObjCTypesHelper::~ObjCTypesHelper() { } /* *** */ CodeGen::CGObjCRuntime * CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { return new CGObjCMac(CGM); }