//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/BuiltinAttributes.h" #include "AttributeDetail.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/DialectResourceBlobManager.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/Operation.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Types.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include #define DEBUG_TYPE "builtinattributes" using namespace mlir; using namespace mlir::detail; //===----------------------------------------------------------------------===// /// Tablegen Attribute Definitions //===----------------------------------------------------------------------===// #define GET_ATTRDEF_CLASSES #include "mlir/IR/BuiltinAttributes.cpp.inc" //===----------------------------------------------------------------------===// // BuiltinDialect //===----------------------------------------------------------------------===// void BuiltinDialect::registerAttributes() { addAttributes< #define GET_ATTRDEF_LIST #include "mlir/IR/BuiltinAttributes.cpp.inc" >(); addAttributes(); } //===----------------------------------------------------------------------===// // DictionaryAttr //===----------------------------------------------------------------------===// /// Helper function that does either an in place sort or sorts from source array /// into destination. If inPlace then storage is both the source and the /// destination, else value is the source and storage destination. Returns /// whether source was sorted. template static bool dictionaryAttrSort(ArrayRef value, SmallVectorImpl &storage) { // Specialize for the common case. switch (value.size()) { case 0: // Zero already sorted. if (!inPlace) storage.clear(); break; case 1: // One already sorted but may need to be copied. if (!inPlace) storage.assign({value[0]}); break; case 2: { bool isSorted = value[0] < value[1]; if (inPlace) { if (!isSorted) std::swap(storage[0], storage[1]); } else if (isSorted) { storage.assign({value[0], value[1]}); } else { storage.assign({value[1], value[0]}); } return !isSorted; } default: if (!inPlace) storage.assign(value.begin(), value.end()); // Check to see they are sorted already. bool isSorted = llvm::is_sorted(value); // If not, do a general sort. if (!isSorted) llvm::array_pod_sort(storage.begin(), storage.end()); return !isSorted; } return false; } /// Returns an entry with a duplicate name from the given sorted array of named /// attributes. Returns std::nullopt if all elements have unique names. static std::optional findDuplicateElement(ArrayRef value) { const std::optional none{std::nullopt}; if (value.size() < 2) return none; if (value.size() == 2) return value[0].getName() == value[1].getName() ? value[0] : none; const auto *it = std::adjacent_find(value.begin(), value.end(), [](NamedAttribute l, NamedAttribute r) { return l.getName() == r.getName(); }); return it != value.end() ? *it : none; } bool DictionaryAttr::sort(ArrayRef value, SmallVectorImpl &storage) { bool isSorted = dictionaryAttrSort(value, storage); assert(!findDuplicateElement(storage) && "DictionaryAttr element names must be unique"); return isSorted; } bool DictionaryAttr::sortInPlace(SmallVectorImpl &array) { bool isSorted = dictionaryAttrSort(array, array); assert(!findDuplicateElement(array) && "DictionaryAttr element names must be unique"); return isSorted; } std::optional DictionaryAttr::findDuplicate(SmallVectorImpl &array, bool isSorted) { if (!isSorted) dictionaryAttrSort(array, array); return findDuplicateElement(array); } DictionaryAttr DictionaryAttr::get(MLIRContext *context, ArrayRef value) { if (value.empty()) return DictionaryAttr::getEmpty(context); // We need to sort the element list to canonicalize it. SmallVector storage; if (dictionaryAttrSort(value, storage)) value = storage; assert(!findDuplicateElement(value) && "DictionaryAttr element names must be unique"); return Base::get(context, value); } /// Construct a dictionary with an array of values that is known to already be /// sorted by name and uniqued. DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context, ArrayRef value) { if (value.empty()) return DictionaryAttr::getEmpty(context); // Ensure that the attribute elements are unique and sorted. assert(llvm::is_sorted( value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) && "expected attribute values to be sorted"); assert(!findDuplicateElement(value) && "DictionaryAttr element names must be unique"); return Base::get(context, value); } /// Return the specified attribute if present, null otherwise. Attribute DictionaryAttr::get(StringRef name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? it.first->getValue() : Attribute(); } Attribute DictionaryAttr::get(StringAttr name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? it.first->getValue() : Attribute(); } /// Return the specified named attribute if present, std::nullopt otherwise. std::optional DictionaryAttr::getNamed(StringRef name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? *it.first : std::optional(); } std::optional DictionaryAttr::getNamed(StringAttr name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? *it.first : std::optional(); } /// Return whether the specified attribute is present. bool DictionaryAttr::contains(StringRef name) const { return impl::findAttrSorted(begin(), end(), name).second; } bool DictionaryAttr::contains(StringAttr name) const { return impl::findAttrSorted(begin(), end(), name).second; } DictionaryAttr::iterator DictionaryAttr::begin() const { return getValue().begin(); } DictionaryAttr::iterator DictionaryAttr::end() const { return getValue().end(); } size_t DictionaryAttr::size() const { return getValue().size(); } DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) { return Base::get(context, ArrayRef()); } //===----------------------------------------------------------------------===// // StridedLayoutAttr //===----------------------------------------------------------------------===// /// Prints a strided layout attribute. void StridedLayoutAttr::print(llvm::raw_ostream &os) const { auto printIntOrQuestion = [&](int64_t value) { if (ShapedType::isDynamic(value)) os << "?"; else os << value; }; os << "strided<["; llvm::interleaveComma(getStrides(), os, printIntOrQuestion); os << "]"; if (getOffset() != 0) { os << ", offset: "; printIntOrQuestion(getOffset()); } os << ">"; } /// Returns true if this layout is static, i.e. the strides and offset all have /// a known value > 0. bool StridedLayoutAttr::hasStaticLayout() const { return !ShapedType::isDynamic(getOffset()) && !ShapedType::isDynamicShape(getStrides()); } /// Returns the strided layout as an affine map. AffineMap StridedLayoutAttr::getAffineMap() const { return makeStridedLinearLayoutMap(getStrides(), getOffset(), getContext()); } /// Checks that the type-agnostic strided layout invariants are satisfied. LogicalResult StridedLayoutAttr::verify(function_ref emitError, int64_t offset, ArrayRef strides) { if (llvm::is_contained(strides, 0)) return emitError() << "strides must not be zero"; return success(); } /// Checks that the type-specific strided layout invariants are satisfied. LogicalResult StridedLayoutAttr::verifyLayout( ArrayRef shape, function_ref emitError) const { if (shape.size() != getStrides().size()) return emitError() << "expected the number of strides to match the rank"; return success(); } //===----------------------------------------------------------------------===// // StringAttr //===----------------------------------------------------------------------===// StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) { return Base::get(context, "", NoneType::get(context)); } /// Twine support for StringAttr. StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) { // Fast-path empty twine. if (twine.isTriviallyEmpty()) return get(context); SmallVector tempStr; return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context)); } /// Twine support for StringAttr. StringAttr StringAttr::get(const Twine &twine, Type type) { SmallVector tempStr; return Base::get(type.getContext(), twine.toStringRef(tempStr), type); } StringRef StringAttr::getValue() const { return getImpl()->value; } Type StringAttr::getType() const { return getImpl()->type; } Dialect *StringAttr::getReferencedDialect() const { return getImpl()->referencedDialect; } //===----------------------------------------------------------------------===// // FloatAttr //===----------------------------------------------------------------------===// double FloatAttr::getValueAsDouble() const { return getValueAsDouble(getValue()); } double FloatAttr::getValueAsDouble(APFloat value) { if (&value.getSemantics() != &APFloat::IEEEdouble()) { bool losesInfo = false; value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); } return value.convertToDouble(); } LogicalResult FloatAttr::verify(function_ref emitError, Type type, APFloat value) { // Verify that the type is correct. if (!llvm::isa(type)) return emitError() << "expected floating point type"; // Verify that the type semantics match that of the value. if (&llvm::cast(type).getFloatSemantics() != &value.getSemantics()) { return emitError() << "FloatAttr type doesn't match the type implied by its value"; } return success(); } //===----------------------------------------------------------------------===// // SymbolRefAttr //===----------------------------------------------------------------------===// SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value, ArrayRef nestedRefs) { return get(StringAttr::get(ctx, value), nestedRefs); } FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) { return llvm::cast(get(ctx, value, {})); } FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) { return llvm::cast(get(value, {})); } FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) { auto symName = symbol->getAttrOfType(SymbolTable::getSymbolAttrName()); assert(symName && "value does not have a valid symbol name"); return SymbolRefAttr::get(symName); } StringAttr SymbolRefAttr::getLeafReference() const { ArrayRef nestedRefs = getNestedReferences(); return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr(); } //===----------------------------------------------------------------------===// // IntegerAttr //===----------------------------------------------------------------------===// int64_t IntegerAttr::getInt() const { assert((getType().isIndex() || getType().isSignlessInteger()) && "must be signless integer"); return getValue().getSExtValue(); } int64_t IntegerAttr::getSInt() const { assert(getType().isSignedInteger() && "must be signed integer"); return getValue().getSExtValue(); } uint64_t IntegerAttr::getUInt() const { assert(getType().isUnsignedInteger() && "must be unsigned integer"); return getValue().getZExtValue(); } /// Return the value as an APSInt which carries the signed from the type of /// the attribute. This traps on signless integers types! APSInt IntegerAttr::getAPSInt() const { assert(!getType().isSignlessInteger() && "Signless integers don't carry a sign for APSInt"); return APSInt(getValue(), getType().isUnsignedInteger()); } LogicalResult IntegerAttr::verify(function_ref emitError, Type type, APInt value) { if (IntegerType integerType = llvm::dyn_cast(type)) { if (integerType.getWidth() != value.getBitWidth()) return emitError() << "integer type bit width (" << integerType.getWidth() << ") doesn't match value bit width (" << value.getBitWidth() << ")"; return success(); } if (llvm::isa(type)) { if (value.getBitWidth() != IndexType::kInternalStorageBitWidth) return emitError() << "value bit width (" << value.getBitWidth() << ") doesn't match index type internal storage bit width (" << IndexType::kInternalStorageBitWidth << ")"; return success(); } return emitError() << "expected integer or index type"; } BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) { auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value)); return llvm::cast(attr); } //===----------------------------------------------------------------------===// // BoolAttr //===----------------------------------------------------------------------===// bool BoolAttr::getValue() const { auto *storage = reinterpret_cast(impl); return storage->value.getBoolValue(); } bool BoolAttr::classof(Attribute attr) { IntegerAttr intAttr = llvm::dyn_cast(attr); return intAttr && intAttr.getType().isSignlessInteger(1); } //===----------------------------------------------------------------------===// // OpaqueAttr //===----------------------------------------------------------------------===// LogicalResult OpaqueAttr::verify(function_ref emitError, StringAttr dialect, StringRef attrData, Type type) { if (!Dialect::isValidNamespace(dialect.strref())) return emitError() << "invalid dialect namespace '" << dialect << "'"; // Check that the dialect is actually registered. MLIRContext *context = dialect.getContext(); if (!context->allowsUnregisteredDialects() && !context->getLoadedDialect(dialect.strref())) { return emitError() << "#" << dialect << "<\"" << attrData << "\"> : " << type << " attribute created with unregistered dialect. If this is " "intended, please call allowUnregisteredDialects() on the " "MLIRContext, or use -allow-unregistered-dialect with " "the MLIR opt tool used"; } return success(); } //===----------------------------------------------------------------------===// // DenseElementsAttr Utilities //===----------------------------------------------------------------------===// const char DenseIntOrFPElementsAttrStorage::kSplatTrue = ~0; const char DenseIntOrFPElementsAttrStorage::kSplatFalse = 0; /// Get the bitwidth of a dense element type within the buffer. /// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8. static size_t getDenseElementStorageWidth(size_t origWidth) { return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth); } static size_t getDenseElementStorageWidth(Type elementType) { return getDenseElementStorageWidth(getDenseElementBitWidth(elementType)); } /// Set a bit to a specific value. static void setBit(char *rawData, size_t bitPos, bool value) { if (value) rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT)); else rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT)); } /// Return the value of the specified bit. static bool getBit(const char *rawData, size_t bitPos) { return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0; } /// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for /// BE format. static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes, char *result) { assert(llvm::endianness::native == llvm::endianness::big); assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes); // Copy the words filled with data. // For example, when `value` has 2 words, the first word is filled with data. // `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--| size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE; std::copy_n(reinterpret_cast(value.getRawData()), numFilledWords, result); // Convert last word of APInt to LE format and store it in char // array(`valueLE`). // ex. last word of `value` (BE): |------ij| ==> `valueLE` (LE): |ji------| size_t lastWordPos = numFilledWords; SmallVector valueLE(APInt::APINT_WORD_SIZE); DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( reinterpret_cast(value.getRawData()) + lastWordPos, valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1); // Extract actual APInt data from `valueLE`, convert endianness to BE format, // and store it in `result`. // ex. `valueLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|ij| DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( valueLE.begin(), result + lastWordPos, (numBytes - lastWordPos) * CHAR_BIT, 1); } /// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE /// format. static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes, APInt &result) { assert(llvm::endianness::native == llvm::endianness::big); assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes); // Copy the data that fills the word of `result` from `inArray`. // For example, when `result` has 2 words, the first word will be filled with // data. So, the first 8 bytes are copied from `inArray` here. // `inArray` (10 bytes, BE): |abcdefgh|ij| // ==> `result` (2 words, BE): |abcdefgh|--------| size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE; std::copy_n( inArray, numFilledWords, const_cast(reinterpret_cast(result.getRawData()))); // Convert array data which will be last word of `result` to LE format, and // store it in char array(`inArrayLE`). // ex. `inArray` (last two bytes, BE): |ij| ==> `inArrayLE` (LE): |ji------| size_t lastWordPos = numFilledWords; SmallVector inArrayLE(APInt::APINT_WORD_SIZE); DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( inArray + lastWordPos, inArrayLE.begin(), (numBytes - lastWordPos) * CHAR_BIT, 1); // Convert `inArrayLE` to BE format, and store it in last word of `result`. // ex. `inArrayLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|------ij| DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( inArrayLE.begin(), const_cast(reinterpret_cast(result.getRawData())) + lastWordPos, APInt::APINT_BITS_PER_WORD, 1); } /// Writes value to the bit position `bitPos` in array `rawData`. static void writeBits(char *rawData, size_t bitPos, APInt value) { size_t bitWidth = value.getBitWidth(); // If the bitwidth is 1 we just toggle the specific bit. if (bitWidth == 1) return setBit(rawData, bitPos, value.isOne()); // Otherwise, the bit position is guaranteed to be byte aligned. assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); if (llvm::endianness::native == llvm::endianness::big) { // Copy from `value` to `rawData + (bitPos / CHAR_BIT)`. // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't // work correctly in BE format. // ex. `value` (2 words including 10 bytes) // ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT), rawData + (bitPos / CHAR_BIT)); } else { std::copy_n(reinterpret_cast(value.getRawData()), llvm::divideCeil(bitWidth, CHAR_BIT), rawData + (bitPos / CHAR_BIT)); } } /// Reads the next `bitWidth` bits from the bit position `bitPos` in array /// `rawData`. static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) { // Handle a boolean bit position. if (bitWidth == 1) return APInt(1, getBit(rawData, bitPos) ? 1 : 0); // Otherwise, the bit position must be 8-bit aligned. assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); APInt result(bitWidth, 0); if (llvm::endianness::native == llvm::endianness::big) { // Copy from `rawData + (bitPos / CHAR_BIT)` to `result`. // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't // work correctly in BE format. // ex. `result` (2 words including 10 bytes) // ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| This function copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT), llvm::divideCeil(bitWidth, CHAR_BIT), result); } else { std::copy_n(rawData + (bitPos / CHAR_BIT), llvm::divideCeil(bitWidth, CHAR_BIT), const_cast( reinterpret_cast(result.getRawData()))); } return result; } /// Returns true if 'values' corresponds to a splat, i.e. one element, or has /// the same element count as 'type'. template static bool hasSameElementsOrSplat(ShapedType type, const Values &values) { return (values.size() == 1) || (type.getNumElements() == static_cast(values.size())); } //===----------------------------------------------------------------------===// // DenseElementsAttr Iterators //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // AttributeElementIterator DenseElementsAttr::AttributeElementIterator::AttributeElementIterator( DenseElementsAttr attr, size_t index) : llvm::indexed_accessor_iterator( attr.getAsOpaquePointer(), index) {} Attribute DenseElementsAttr::AttributeElementIterator::operator*() const { auto owner = llvm::cast(getFromOpaquePointer(base)); Type eltTy = owner.getElementType(); if (llvm::dyn_cast(eltTy)) return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); if (llvm::isa(eltTy)) return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); if (auto floatEltTy = llvm::dyn_cast(eltTy)) { IntElementIterator intIt(owner, index); FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt); return FloatAttr::get(eltTy, *floatIt); } if (auto complexTy = llvm::dyn_cast(eltTy)) { auto complexEltTy = complexTy.getElementType(); ComplexIntElementIterator complexIntIt(owner, index); if (llvm::isa(complexEltTy)) { auto value = *complexIntIt; auto real = IntegerAttr::get(complexEltTy, value.real()); auto imag = IntegerAttr::get(complexEltTy, value.imag()); return ArrayAttr::get(complexTy.getContext(), ArrayRef{real, imag}); } ComplexFloatElementIterator complexFloatIt( llvm::cast(complexEltTy).getFloatSemantics(), complexIntIt); auto value = *complexFloatIt; auto real = FloatAttr::get(complexEltTy, value.real()); auto imag = FloatAttr::get(complexEltTy, value.imag()); return ArrayAttr::get(complexTy.getContext(), ArrayRef{real, imag}); } if (llvm::isa(owner)) { ArrayRef vals = owner.getRawStringData(); return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy); } llvm_unreachable("unexpected element type"); } //===----------------------------------------------------------------------===// // BoolElementIterator DenseElementsAttr::BoolElementIterator::BoolElementIterator( DenseElementsAttr attr, size_t dataIndex) : DenseElementIndexedIteratorImpl( attr.getRawData().data(), attr.isSplat(), dataIndex) {} bool DenseElementsAttr::BoolElementIterator::operator*() const { return getBit(getData(), getDataIndex()); } //===----------------------------------------------------------------------===// // IntElementIterator DenseElementsAttr::IntElementIterator::IntElementIterator( DenseElementsAttr attr, size_t dataIndex) : DenseElementIndexedIteratorImpl( attr.getRawData().data(), attr.isSplat(), dataIndex), bitWidth(getDenseElementBitWidth(attr.getElementType())) {} APInt DenseElementsAttr::IntElementIterator::operator*() const { return readBits(getData(), getDataIndex() * getDenseElementStorageWidth(bitWidth), bitWidth); } //===----------------------------------------------------------------------===// // ComplexIntElementIterator DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator( DenseElementsAttr attr, size_t dataIndex) : DenseElementIndexedIteratorImpl, std::complex, std::complex>( attr.getRawData().data(), attr.isSplat(), dataIndex) { auto complexType = llvm::cast(attr.getElementType()); bitWidth = getDenseElementBitWidth(complexType.getElementType()); } std::complex DenseElementsAttr::ComplexIntElementIterator::operator*() const { size_t storageWidth = getDenseElementStorageWidth(bitWidth); size_t offset = getDataIndex() * storageWidth * 2; return {readBits(getData(), offset, bitWidth), readBits(getData(), offset + storageWidth, bitWidth)}; } //===----------------------------------------------------------------------===// // DenseArrayAttr //===----------------------------------------------------------------------===// LogicalResult DenseArrayAttr::verify(function_ref emitError, Type elementType, int64_t size, ArrayRef rawData) { if (!elementType.isIntOrIndexOrFloat()) return emitError() << "expected integer or floating point element type"; int64_t dataSize = rawData.size(); int64_t elementSize = llvm::divideCeil(elementType.getIntOrFloatBitWidth(), CHAR_BIT); if (size * elementSize != dataSize) { return emitError() << "expected data size (" << size << " elements, " << elementSize << " bytes each) does not match: " << dataSize << " bytes"; } return success(); } namespace { /// Instantiations of this class provide utilities for interacting with native /// data types in the context of DenseArrayAttr. template struct DenseArrayAttrIntUtil { static bool checkElementType(Type eltType) { auto type = llvm::dyn_cast(eltType); if (!type || type.getWidth() != width) return false; return type.getSignedness() == signedness; } static Type getElementType(MLIRContext *ctx) { return IntegerType::get(ctx, width, signedness); } template static void printElement(raw_ostream &os, T value) { os << value; } template static ParseResult parseElement(AsmParser &parser, T &value) { return parser.parseInteger(value); } }; template struct DenseArrayAttrUtil; /// Specialization for boolean elements to print 'true' and 'false' literals for /// elements. template <> struct DenseArrayAttrUtil : public DenseArrayAttrIntUtil<1> { static void printElement(raw_ostream &os, bool value) { os << (value ? "true" : "false"); } }; /// Specialization for 8-bit integers to ensure values are printed as integers /// and not characters. template <> struct DenseArrayAttrUtil : public DenseArrayAttrIntUtil<8> { static void printElement(raw_ostream &os, int8_t value) { os << static_cast(value); } }; template <> struct DenseArrayAttrUtil : public DenseArrayAttrIntUtil<16> {}; template <> struct DenseArrayAttrUtil : public DenseArrayAttrIntUtil<32> {}; template <> struct DenseArrayAttrUtil : public DenseArrayAttrIntUtil<64> {}; /// Specialization for 32-bit floats. template <> struct DenseArrayAttrUtil { static bool checkElementType(Type eltType) { return eltType.isF32(); } static Type getElementType(MLIRContext *ctx) { return Float32Type::get(ctx); } static void printElement(raw_ostream &os, float value) { os << value; } /// Parse a double and cast it to a float. static ParseResult parseElement(AsmParser &parser, float &value) { double doubleVal; if (parser.parseFloat(doubleVal)) return failure(); value = doubleVal; return success(); } }; /// Specialization for 64-bit floats. template <> struct DenseArrayAttrUtil { static bool checkElementType(Type eltType) { return eltType.isF64(); } static Type getElementType(MLIRContext *ctx) { return Float64Type::get(ctx); } static void printElement(raw_ostream &os, float value) { os << value; } static ParseResult parseElement(AsmParser &parser, double &value) { return parser.parseFloat(value); } }; } // namespace template void DenseArrayAttrImpl::print(AsmPrinter &printer) const { print(printer.getStream()); } template void DenseArrayAttrImpl::printWithoutBraces(raw_ostream &os) const { llvm::interleaveComma(asArrayRef(), os, [&](T value) { DenseArrayAttrUtil::printElement(os, value); }); } template void DenseArrayAttrImpl::print(raw_ostream &os) const { os << "["; printWithoutBraces(os); os << "]"; } /// Parse a DenseArrayAttr without the braces: `1, 2, 3` template Attribute DenseArrayAttrImpl::parseWithoutBraces(AsmParser &parser, Type odsType) { SmallVector data; if (failed(parser.parseCommaSeparatedList([&]() { T value; if (DenseArrayAttrUtil::parseElement(parser, value)) return failure(); data.push_back(value); return success(); }))) return {}; return get(parser.getContext(), data); } /// Parse a DenseArrayAttr: `[ 1, 2, 3 ]` template Attribute DenseArrayAttrImpl::parse(AsmParser &parser, Type odsType) { if (parser.parseLSquare()) return {}; // Handle empty list case. if (succeeded(parser.parseOptionalRSquare())) return get(parser.getContext(), {}); Attribute result = parseWithoutBraces(parser, odsType); if (parser.parseRSquare()) return {}; return result; } /// Conversion from DenseArrayAttr to ArrayRef. template DenseArrayAttrImpl::operator ArrayRef() const { ArrayRef raw = getRawData(); assert((raw.size() % sizeof(T)) == 0); return ArrayRef(reinterpret_cast(raw.data()), raw.size() / sizeof(T)); } /// Builds a DenseArrayAttr from an ArrayRef. template DenseArrayAttrImpl DenseArrayAttrImpl::get(MLIRContext *context, ArrayRef content) { Type elementType = DenseArrayAttrUtil::getElementType(context); auto rawArray = ArrayRef(reinterpret_cast(content.data()), content.size() * sizeof(T)); return llvm::cast>( Base::get(context, elementType, content.size(), rawArray)); } template bool DenseArrayAttrImpl::classof(Attribute attr) { if (auto denseArray = llvm::dyn_cast(attr)) return DenseArrayAttrUtil::checkElementType(denseArray.getElementType()); return false; } namespace mlir { namespace detail { // Explicit instantiation for all the supported DenseArrayAttr. template class DenseArrayAttrImpl; template class DenseArrayAttrImpl; template class DenseArrayAttrImpl; template class DenseArrayAttrImpl; template class DenseArrayAttrImpl; template class DenseArrayAttrImpl; template class DenseArrayAttrImpl; } // namespace detail } // namespace mlir //===----------------------------------------------------------------------===// // DenseElementsAttr //===----------------------------------------------------------------------===// /// Method for support type inquiry through isa, cast and dyn_cast. bool DenseElementsAttr::classof(Attribute attr) { return llvm::isa(attr); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(hasSameElementsOrSplat(type, values)); Type eltType = type.getElementType(); // Take care complex type case first. if (auto complexType = llvm::dyn_cast(eltType)) { if (complexType.getElementType().isIntOrIndex()) { SmallVector> complexValues; complexValues.reserve(values.size()); for (Attribute attr : values) { assert(llvm::isa(attr) && "expected ArrayAttr for complex"); auto arrayAttr = llvm::cast(attr); assert(arrayAttr.size() == 2 && "expected 2 element for complex"); auto attr0 = arrayAttr[0]; auto attr1 = arrayAttr[1]; complexValues.push_back( std::complex(llvm::cast(attr0).getValue(), llvm::cast(attr1).getValue())); } return DenseElementsAttr::get(type, complexValues); } // Must be float. SmallVector> complexValues; complexValues.reserve(values.size()); for (Attribute attr : values) { assert(llvm::isa(attr) && "expected ArrayAttr for complex"); auto arrayAttr = llvm::cast(attr); assert(arrayAttr.size() == 2 && "expected 2 element for complex"); auto attr0 = arrayAttr[0]; auto attr1 = arrayAttr[1]; complexValues.push_back( std::complex(llvm::cast(attr0).getValue(), llvm::cast(attr1).getValue())); } return DenseElementsAttr::get(type, complexValues); } // If the element type is not based on int/float/index, assume it is a string // type. if (!eltType.isIntOrIndexOrFloat()) { SmallVector stringValues; stringValues.reserve(values.size()); for (Attribute attr : values) { assert(llvm::isa(attr) && "expected string value for non integer/index/float element"); stringValues.push_back(llvm::cast(attr).getValue()); } return get(type, stringValues); } // Otherwise, get the raw storage width to use for the allocation. size_t bitWidth = getDenseElementBitWidth(eltType); size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); // Compress the attribute values into a character buffer. SmallVector data( llvm::divideCeil(storageBitWidth * values.size(), CHAR_BIT)); APInt intVal; for (unsigned i = 0, e = values.size(); i < e; ++i) { if (auto floatAttr = llvm::dyn_cast(values[i])) { assert(floatAttr.getType() == eltType && "expected float attribute type to equal element type"); intVal = floatAttr.getValue().bitcastToAPInt(); } else { auto intAttr = llvm::cast(values[i]); assert(intAttr.getType() == eltType && "expected integer attribute type to equal element type"); intVal = intAttr.getValue(); } assert(intVal.getBitWidth() == bitWidth && "expected value to have same bitwidth as element type"); writeBits(data.data(), i * storageBitWidth, intVal); } // Handle the special encoding of splat of bool. if (values.size() == 1 && eltType.isInteger(1)) data[0] = data[0] ? -1 : 0; return DenseIntOrFPElementsAttr::getRaw(type, data); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(hasSameElementsOrSplat(type, values)); assert(type.getElementType().isInteger(1)); std::vector buff(llvm::divideCeil(values.size(), CHAR_BIT)); if (!values.empty()) { bool isSplat = true; bool firstValue = values[0]; for (int i = 0, e = values.size(); i != e; ++i) { isSplat &= values[i] == firstValue; setBit(buff.data(), i, values[i]); } // Splat of bool is encoded as a byte with all-ones in it. if (isSplat) { buff.resize(1); buff[0] = values[0] ? -1 : 0; } } return DenseIntOrFPElementsAttr::getRaw(type, buff); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(!type.getElementType().isIntOrFloat()); return DenseStringElementsAttr::get(type, values); } /// Constructs a dense integer elements attribute from an array of APInt /// values. Each APInt value is expected to have the same bitwidth as the /// element type of 'type'. DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(type.getElementType().isIntOrIndex()); assert(hasSameElementsOrSplat(type, values)); size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef> values) { ComplexType complex = llvm::cast(type.getElementType()); assert(llvm::isa(complex.getElementType())); assert(hasSameElementsOrSplat(type, values)); size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; ArrayRef intVals(reinterpret_cast(values.data()), values.size() * 2); return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals); } // Constructs a dense float elements attribute from an array of APFloat // values. Each APFloat value is expected to have the same bitwidth as the // element type of 'type'. DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(llvm::isa(type.getElementType())); assert(hasSameElementsOrSplat(type, values)); size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef> values) { ComplexType complex = llvm::cast(type.getElementType()); assert(llvm::isa(complex.getElementType())); assert(hasSameElementsOrSplat(type, values)); ArrayRef apVals(reinterpret_cast(values.data()), values.size() * 2); size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals); } /// Construct a dense elements attribute from a raw buffer representing the /// data for this attribute. Users should generally not use this methods as /// the expected buffer format may not be a form the user expects. DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type, ArrayRef rawBuffer) { return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer); } /// Returns true if the given buffer is a valid raw buffer for the given type. bool DenseElementsAttr::isValidRawBuffer(ShapedType type, ArrayRef rawBuffer, bool &detectedSplat) { size_t storageWidth = getDenseElementStorageWidth(type.getElementType()); size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT; int64_t numElements = type.getNumElements(); // The initializer is always a splat if the result type has a single element. detectedSplat = numElements == 1; // Storage width of 1 is special as it is packed by the bit. if (storageWidth == 1) { // Check for a splat, or a buffer equal to the number of elements which // consists of either all 0's or all 1's. if (rawBuffer.size() == 1) { auto rawByte = static_cast(rawBuffer[0]); if (rawByte == 0 || rawByte == 0xff) { detectedSplat = true; return true; } } // This is a valid non-splat buffer if it has the right size. return rawBufferWidth == llvm::alignTo<8>(numElements); } // All other types are 8-bit aligned, so we can just check the buffer width // to know if only a single initializer element was passed in. if (rawBufferWidth == storageWidth) { detectedSplat = true; return true; } // The raw buffer is valid if it has the right size. return rawBufferWidth == storageWidth * numElements; } /// Check the information for a C++ data type, check if this type is valid for /// the current attribute. This method is used to verify specific type /// invariants that the templatized 'getValues' method cannot. static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt, bool isSigned) { // Make sure that the data element size is the same as the type element width. auto denseEltBitWidth = getDenseElementBitWidth(type); auto dataSize = static_cast(dataEltSize * CHAR_BIT); if (denseEltBitWidth != dataSize) { LLVM_DEBUG(llvm::dbgs() << "expected dense element bit width " << denseEltBitWidth << " to match data size " << dataSize << " for type " << type << "\n"); return false; } // Check that the element type is either float or integer or index. if (!isInt) { bool valid = llvm::isa(type); if (!valid) LLVM_DEBUG(llvm::dbgs() << "expected float type when isInt is false, but found " << type << "\n"); return valid; } if (type.isIndex()) return true; auto intType = llvm::dyn_cast(type); if (!intType) { LLVM_DEBUG(llvm::dbgs() << "expected integer type when isInt is true, but found " << type << "\n"); return false; } // Make sure signedness semantics is consistent. if (intType.isSignless()) return true; bool valid = intType.isSigned() == isSigned; if (!valid) LLVM_DEBUG(llvm::dbgs() << "expected signedness " << isSigned << " to match type " << type << "\n"); return valid; } /// Defaults down the subclass implementation. DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt, isSigned); } DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize, isInt, isSigned); } bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt, bool isSigned) const { return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned); } bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt, bool isSigned) const { return ::isValidIntOrFloat( llvm::cast(getElementType()).getElementType(), dataEltSize / 2, isInt, isSigned); } /// Returns true if this attribute corresponds to a splat, i.e. if all element /// values are the same. bool DenseElementsAttr::isSplat() const { return static_cast(impl)->isSplat; } /// Return if the given complex type has an integer element type. static bool isComplexOfIntType(Type type) { return llvm::isa(llvm::cast(type).getElementType()); } auto DenseElementsAttr::tryGetComplexIntValues() const -> FailureOr> { if (!isComplexOfIntType(getElementType())) return failure(); return iterator_range_impl( getType(), ComplexIntElementIterator(*this, 0), ComplexIntElementIterator(*this, getNumElements())); } auto DenseElementsAttr::tryGetFloatValues() const -> FailureOr> { auto eltTy = llvm::dyn_cast(getElementType()); if (!eltTy) return failure(); const auto &elementSemantics = eltTy.getFloatSemantics(); return iterator_range_impl( getType(), FloatElementIterator(elementSemantics, raw_int_begin()), FloatElementIterator(elementSemantics, raw_int_end())); } auto DenseElementsAttr::tryGetComplexFloatValues() const -> FailureOr> { auto complexTy = llvm::dyn_cast(getElementType()); if (!complexTy) return failure(); auto eltTy = llvm::dyn_cast(complexTy.getElementType()); if (!eltTy) return failure(); const auto &semantics = eltTy.getFloatSemantics(); return iterator_range_impl( getType(), {semantics, {*this, 0}}, {semantics, {*this, static_cast(getNumElements())}}); } /// Return the raw storage data held by this attribute. ArrayRef DenseElementsAttr::getRawData() const { return static_cast(impl)->data; } ArrayRef DenseElementsAttr::getRawStringData() const { return static_cast(impl)->data; } /// Return a new DenseElementsAttr that has the same data as the current /// attribute, but has been reshaped to 'newType'. The new type must have the /// same total number of elements as well as element type. DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) { ShapedType curType = getType(); if (curType == newType) return *this; assert(newType.getElementType() == curType.getElementType() && "expected the same element type"); assert(newType.getNumElements() == curType.getNumElements() && "expected the same number of elements"); return DenseIntOrFPElementsAttr::getRaw(newType, getRawData()); } DenseElementsAttr DenseElementsAttr::resizeSplat(ShapedType newType) { assert(isSplat() && "expected a splat type"); ShapedType curType = getType(); if (curType == newType) return *this; assert(newType.getElementType() == curType.getElementType() && "expected the same element type"); return DenseIntOrFPElementsAttr::getRaw(newType, getRawData()); } /// Return a new DenseElementsAttr that has the same data as the current /// attribute, but has bitcast elements such that it is now 'newType'. The new /// type must have the same shape and element types of the same bitwidth as the /// current type. DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) { ShapedType curType = getType(); Type curElType = curType.getElementType(); if (curElType == newElType) return *this; assert(getDenseElementBitWidth(newElType) == getDenseElementBitWidth(curElType) && "expected element types with the same bitwidth"); return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType), getRawData()); } DenseElementsAttr DenseElementsAttr::mapValues(Type newElementType, function_ref mapping) const { return llvm::cast(*this).mapValues(newElementType, mapping); } DenseElementsAttr DenseElementsAttr::mapValues( Type newElementType, function_ref mapping) const { return llvm::cast(*this).mapValues(newElementType, mapping); } ShapedType DenseElementsAttr::getType() const { return static_cast(impl)->type; } Type DenseElementsAttr::getElementType() const { return getType().getElementType(); } int64_t DenseElementsAttr::getNumElements() const { return getType().getNumElements(); } //===----------------------------------------------------------------------===// // DenseIntOrFPElementsAttr //===----------------------------------------------------------------------===// /// Utility method to write a range of APInt values to a buffer. template static void writeAPIntsToBuffer(size_t storageWidth, std::vector &data, APRangeT &&values) { size_t numValues = llvm::size(values); data.resize(llvm::divideCeil(storageWidth * numValues, CHAR_BIT)); size_t offset = 0; for (auto it = values.begin(), e = values.end(); it != e; ++it, offset += storageWidth) { assert((*it).getBitWidth() <= storageWidth); writeBits(data.data(), offset, *it); } // Handle the special encoding of splat of a boolean. if (numValues == 1 && (*values.begin()).getBitWidth() == 1) data[0] = data[0] ? -1 : 0; } /// Constructs a dense elements attribute from an array of raw APFloat values. /// Each APFloat value is expected to have the same bitwidth as the element /// type of 'type'. 'type' must be a vector or tensor with static shape. DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, size_t storageWidth, ArrayRef values) { std::vector data; auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); }; writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat)); return DenseIntOrFPElementsAttr::getRaw(type, data); } /// Constructs a dense elements attribute from an array of raw APInt values. /// Each APInt value is expected to have the same bitwidth as the element type /// of 'type'. DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, size_t storageWidth, ArrayRef values) { std::vector data; writeAPIntsToBuffer(storageWidth, data, values); return DenseIntOrFPElementsAttr::getRaw(type, data); } DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, ArrayRef data) { assert(type.hasStaticShape() && "type must have static shape"); bool isSplat = false; bool isValid = isValidRawBuffer(type, data, isSplat); assert(isValid); (void)isValid; return Base::get(type.getContext(), type, data, isSplat); } /// Overload of the raw 'get' method that asserts that the given type is of /// complex type. This method is used to verify type invariants that the /// templatized 'get' method cannot. DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { assert(::isValidIntOrFloat( llvm::cast(type.getElementType()).getElementType(), dataEltSize / 2, isInt, isSigned) && "Try re-running with -debug-only=builtinattributes"); int64_t numElements = data.size() / dataEltSize; (void)numElements; assert(numElements == 1 || numElements == type.getNumElements()); return getRaw(type, data); } /// Overload of the 'getRaw' method that asserts that the given type is of /// integer type. This method is used to verify type invariants that the /// templatized 'get' method cannot. DenseElementsAttr DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { assert(::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned) && "Try re-running with -debug-only=builtinattributes"); int64_t numElements = data.size() / dataEltSize; assert(numElements == 1 || numElements == type.getNumElements()); (void)numElements; return getRaw(type, data); } void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( const char *inRawData, char *outRawData, size_t elementBitWidth, size_t numElements) { using llvm::support::ulittle16_t; using llvm::support::ulittle32_t; using llvm::support::ulittle64_t; assert(llvm::endianness::native == llvm::endianness::big); // NOLINT to avoid warning message about replacing by static_assert() // Following std::copy_n always converts endianness on BE machine. switch (elementBitWidth) { case 16: { const ulittle16_t *inRawDataPos = reinterpret_cast(inRawData); uint16_t *outDataPos = reinterpret_cast(outRawData); std::copy_n(inRawDataPos, numElements, outDataPos); break; } case 32: { const ulittle32_t *inRawDataPos = reinterpret_cast(inRawData); uint32_t *outDataPos = reinterpret_cast(outRawData); std::copy_n(inRawDataPos, numElements, outDataPos); break; } case 64: { const ulittle64_t *inRawDataPos = reinterpret_cast(inRawData); uint64_t *outDataPos = reinterpret_cast(outRawData); std::copy_n(inRawDataPos, numElements, outDataPos); break; } default: { size_t nBytes = elementBitWidth / CHAR_BIT; for (size_t i = 0; i < nBytes; i++) std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i); break; } } } void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine( ArrayRef inRawData, MutableArrayRef outRawData, ShapedType type) { size_t numElements = type.getNumElements(); Type elementType = type.getElementType(); if (ComplexType complexTy = llvm::dyn_cast(elementType)) { elementType = complexTy.getElementType(); numElements = numElements * 2; } size_t elementBitWidth = getDenseElementStorageWidth(elementType); assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT && inRawData.size() <= outRawData.size()); if (elementBitWidth <= CHAR_BIT) std::memcpy(outRawData.begin(), inRawData.begin(), inRawData.size()); else convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(), elementBitWidth, numElements); } //===----------------------------------------------------------------------===// // DenseFPElementsAttr //===----------------------------------------------------------------------===// template static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType, Type newElementType, llvm::SmallVectorImpl &data) { size_t bitWidth = getDenseElementBitWidth(newElementType); size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); ShapedType newArrayType = inType.cloneWith(inType.getShape(), newElementType); size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements(); data.resize(llvm::divideCeil(storageBitWidth * numRawElements, CHAR_BIT)); // Functor used to process a single element value of the attribute. auto processElt = [&](decltype(*attr.begin()) value, size_t index) { auto newInt = mapping(value); assert(newInt.getBitWidth() == bitWidth); writeBits(data.data(), index * storageBitWidth, newInt); }; // Check for the splat case. if (attr.isSplat()) { if (bitWidth == 1) { // Handle the special encoding of splat of bool. data[0] = mapping(*attr.begin()).isZero() ? 0 : -1; } else { processElt(*attr.begin(), /*index=*/0); } return newArrayType; } // Otherwise, process all of the element values. uint64_t elementIdx = 0; for (auto value : attr) processElt(value, elementIdx++); return newArrayType; } DenseElementsAttr DenseFPElementsAttr::mapValues( Type newElementType, function_ref mapping) const { llvm::SmallVector elementData; auto newArrayType = mappingHelper(mapping, *this, getType(), newElementType, elementData); return getRaw(newArrayType, elementData); } /// Method for supporting type inquiry through isa, cast and dyn_cast. bool DenseFPElementsAttr::classof(Attribute attr) { if (auto denseAttr = llvm::dyn_cast(attr)) return llvm::isa(denseAttr.getType().getElementType()); return false; } //===----------------------------------------------------------------------===// // DenseIntElementsAttr //===----------------------------------------------------------------------===// DenseElementsAttr DenseIntElementsAttr::mapValues( Type newElementType, function_ref mapping) const { llvm::SmallVector elementData; auto newArrayType = mappingHelper(mapping, *this, getType(), newElementType, elementData); return getRaw(newArrayType, elementData); } /// Method for supporting type inquiry through isa, cast and dyn_cast. bool DenseIntElementsAttr::classof(Attribute attr) { if (auto denseAttr = llvm::dyn_cast(attr)) return denseAttr.getType().getElementType().isIntOrIndex(); return false; } //===----------------------------------------------------------------------===// // DenseResourceElementsAttr //===----------------------------------------------------------------------===// DenseResourceElementsAttr DenseResourceElementsAttr::get(ShapedType type, DenseResourceElementsHandle handle) { return Base::get(type.getContext(), type, handle); } DenseResourceElementsAttr DenseResourceElementsAttr::get(ShapedType type, StringRef blobName, AsmResourceBlob blob) { // Extract the builtin dialect resource manager from context and construct a // handle by inserting a new resource using the provided blob. auto &manager = DenseResourceElementsHandle::getManagerInterface(type.getContext()); return get(type, manager.insert(blobName, std::move(blob))); } //===----------------------------------------------------------------------===// // DenseResourceElementsAttrBase namespace { /// Instantiations of this class provide utilities for interacting with native /// data types in the context of DenseResourceElementsAttr. template struct DenseResourceAttrUtil; template struct DenseResourceElementsAttrIntUtil { static bool checkElementType(Type eltType) { IntegerType type = llvm::dyn_cast(eltType); if (!type || type.getWidth() != width) return false; return isSigned ? !type.isUnsigned() : !type.isSigned(); } }; template <> struct DenseResourceAttrUtil { static bool checkElementType(Type eltType) { return eltType.isSignlessInteger(1); } }; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<8, true> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<8, false> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<16, true> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<16, false> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<32, true> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<32, false> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<64, true> {}; template <> struct DenseResourceAttrUtil : public DenseResourceElementsAttrIntUtil<64, false> {}; template <> struct DenseResourceAttrUtil { static bool checkElementType(Type eltType) { return eltType.isF32(); } }; template <> struct DenseResourceAttrUtil { static bool checkElementType(Type eltType) { return eltType.isF64(); } }; } // namespace template DenseResourceElementsAttrBase DenseResourceElementsAttrBase::get(ShapedType type, StringRef blobName, AsmResourceBlob blob) { // Check that the blob is in the form we were expecting. assert(blob.getDataAlignment() == alignof(T) && "alignment mismatch between expected alignment and blob alignment"); assert(((blob.getData().size() % sizeof(T)) == 0) && "size mismatch between expected element width and blob size"); assert(DenseResourceAttrUtil::checkElementType(type.getElementType()) && "invalid shape element type for provided type `T`"); return llvm::cast>( DenseResourceElementsAttr::get(type, blobName, std::move(blob))); } template std::optional> DenseResourceElementsAttrBase::tryGetAsArrayRef() const { if (AsmResourceBlob *blob = this->getRawHandle().getBlob()) return blob->template getDataAs(); return std::nullopt; } template bool DenseResourceElementsAttrBase::classof(Attribute attr) { auto resourceAttr = llvm::dyn_cast(attr); return resourceAttr && DenseResourceAttrUtil::checkElementType( resourceAttr.getElementType()); } namespace mlir { namespace detail { // Explicit instantiation for all the supported DenseResourceElementsAttr. template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; template class DenseResourceElementsAttrBase; } // namespace detail } // namespace mlir //===----------------------------------------------------------------------===// // SparseElementsAttr //===----------------------------------------------------------------------===// /// Get a zero APFloat for the given sparse attribute. APFloat SparseElementsAttr::getZeroAPFloat() const { auto eltType = llvm::cast(getElementType()); return APFloat(eltType.getFloatSemantics()); } /// Get a zero APInt for the given sparse attribute. APInt SparseElementsAttr::getZeroAPInt() const { auto eltType = llvm::cast(getElementType()); return APInt::getZero(eltType.getWidth()); } /// Get a zero attribute for the given attribute type. Attribute SparseElementsAttr::getZeroAttr() const { auto eltType = getElementType(); // Handle floating point elements. if (llvm::isa(eltType)) return FloatAttr::get(eltType, 0); // Handle complex elements. if (auto complexTy = llvm::dyn_cast(eltType)) { auto eltType = complexTy.getElementType(); Attribute zero; if (llvm::isa(eltType)) zero = FloatAttr::get(eltType, 0); else // must be integer zero = IntegerAttr::get(eltType, 0); return ArrayAttr::get(complexTy.getContext(), ArrayRef{zero, zero}); } // Handle string type. if (llvm::isa(getValues())) return StringAttr::get("", eltType); // Otherwise, this is an integer. return IntegerAttr::get(eltType, 0); } /// Flatten, and return, all of the sparse indices in this attribute in /// row-major order. std::vector SparseElementsAttr::getFlattenedSparseIndices() const { std::vector flatSparseIndices; // The sparse indices are 64-bit integers, so we can reinterpret the raw data // as a 1-D index array. auto sparseIndices = getIndices(); auto sparseIndexValues = sparseIndices.getValues(); if (sparseIndices.isSplat()) { SmallVector indices(getType().getRank(), *sparseIndexValues.begin()); flatSparseIndices.push_back(getFlattenedIndex(indices)); return flatSparseIndices; } // Otherwise, reinterpret each index as an ArrayRef when flattening. auto numSparseIndices = sparseIndices.getType().getDimSize(0); size_t rank = getType().getRank(); for (size_t i = 0, e = numSparseIndices; i != e; ++i) flatSparseIndices.push_back(getFlattenedIndex( {&*std::next(sparseIndexValues.begin(), i * rank), rank})); return flatSparseIndices; } LogicalResult SparseElementsAttr::verify(function_ref emitError, ShapedType type, DenseIntElementsAttr sparseIndices, DenseElementsAttr values) { ShapedType valuesType = values.getType(); if (valuesType.getRank() != 1) return emitError() << "expected 1-d tensor for sparse element values"; // Verify the indices and values shape. ShapedType indicesType = sparseIndices.getType(); auto emitShapeError = [&]() { return emitError() << "expected shape ([" << type.getShape() << "]); inferred shape of indices literal ([" << indicesType.getShape() << "]); inferred shape of values literal ([" << valuesType.getShape() << "])"; }; // Verify indices shape. size_t rank = type.getRank(), indicesRank = indicesType.getRank(); if (indicesRank == 2) { if (indicesType.getDimSize(1) != static_cast(rank)) return emitShapeError(); } else if (indicesRank != 1 || rank != 1) { return emitShapeError(); } // Verify the values shape. int64_t numSparseIndices = indicesType.getDimSize(0); if (numSparseIndices != valuesType.getDimSize(0)) return emitShapeError(); // Verify that the sparse indices are within the value shape. auto emitIndexError = [&](unsigned indexNum, ArrayRef index) { return emitError() << "sparse index #" << indexNum << " is not contained within the value shape, with index=[" << index << "], and type=" << type; }; // Handle the case where the index values are a splat. auto sparseIndexValues = sparseIndices.getValues(); if (sparseIndices.isSplat()) { SmallVector indices(rank, *sparseIndexValues.begin()); if (!ElementsAttr::isValidIndex(type, indices)) return emitIndexError(0, indices); return success(); } // Otherwise, reinterpret each index as an ArrayRef. for (size_t i = 0, e = numSparseIndices; i != e; ++i) { ArrayRef index(&*std::next(sparseIndexValues.begin(), i * rank), rank); if (!ElementsAttr::isValidIndex(type, index)) return emitIndexError(i, index); } return success(); } //===----------------------------------------------------------------------===// // DistinctAttr //===----------------------------------------------------------------------===// DistinctAttr DistinctAttr::create(Attribute referencedAttr) { return Base::get(referencedAttr.getContext(), referencedAttr); } Attribute DistinctAttr::getReferencedAttr() const { return getImpl()->referencedAttr; } //===----------------------------------------------------------------------===// // Attribute Utilities //===----------------------------------------------------------------------===// AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef strides, int64_t offset, MLIRContext *context) { AffineExpr expr; unsigned nSymbols = 0; // AffineExpr for offset. // Static case. if (!ShapedType::isDynamic(offset)) { auto cst = getAffineConstantExpr(offset, context); expr = cst; } else { // Dynamic case, new symbol for the offset. auto sym = getAffineSymbolExpr(nSymbols++, context); expr = sym; } // AffineExpr for strides. for (const auto &en : llvm::enumerate(strides)) { auto dim = en.index(); auto stride = en.value(); assert(stride != 0 && "Invalid stride specification"); auto d = getAffineDimExpr(dim, context); AffineExpr mult; // Static case. if (!ShapedType::isDynamic(stride)) mult = getAffineConstantExpr(stride, context); else // Dynamic case, new symbol for each new stride. mult = getAffineSymbolExpr(nSymbols++, context); expr = expr + d * mult; } return AffineMap::get(strides.size(), nSymbols, expr); }