//===- ExecutionEngine.cpp - MLIR Execution engine and utils --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the execution engine for MLIR modules based on LLVM Orc // JIT engine. // //===----------------------------------------------------------------------===// #include "mlir/ExecutionEngine/ExecutionEngine.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Support/FileUtilities.h" #include "mlir/Target/LLVMIR/Export.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ExecutionEngine/Orc/CompileUtils.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" #include "llvm/ExecutionEngine/Orc/IRTransformLayer.h" #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h" #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" #include "llvm/IR/IRBuilder.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/TargetParser/Host.h" #define DEBUG_TYPE "execution-engine" using namespace mlir; using llvm::dbgs; using llvm::Error; using llvm::errs; using llvm::Expected; using llvm::LLVMContext; using llvm::MemoryBuffer; using llvm::MemoryBufferRef; using llvm::Module; using llvm::SectionMemoryManager; using llvm::StringError; using llvm::Triple; using llvm::orc::DynamicLibrarySearchGenerator; using llvm::orc::ExecutionSession; using llvm::orc::IRCompileLayer; using llvm::orc::JITTargetMachineBuilder; using llvm::orc::MangleAndInterner; using llvm::orc::RTDyldObjectLinkingLayer; using llvm::orc::SymbolMap; using llvm::orc::ThreadSafeModule; using llvm::orc::TMOwningSimpleCompiler; /// Wrap a string into an llvm::StringError. static Error makeStringError(const Twine &message) { return llvm::make_error(message.str(), llvm::inconvertibleErrorCode()); } void SimpleObjectCache::notifyObjectCompiled(const Module *m, MemoryBufferRef objBuffer) { cachedObjects[m->getModuleIdentifier()] = MemoryBuffer::getMemBufferCopy( objBuffer.getBuffer(), objBuffer.getBufferIdentifier()); } std::unique_ptr SimpleObjectCache::getObject(const Module *m) { auto i = cachedObjects.find(m->getModuleIdentifier()); if (i == cachedObjects.end()) { LLVM_DEBUG(dbgs() << "No object for " << m->getModuleIdentifier() << " in cache. Compiling.\n"); return nullptr; } LLVM_DEBUG(dbgs() << "Object for " << m->getModuleIdentifier() << " loaded from cache.\n"); return MemoryBuffer::getMemBuffer(i->second->getMemBufferRef()); } void SimpleObjectCache::dumpToObjectFile(StringRef outputFilename) { // Set up the output file. std::string errorMessage; auto file = openOutputFile(outputFilename, &errorMessage); if (!file) { llvm::errs() << errorMessage << "\n"; return; } // Dump the object generated for a single module to the output file. assert(cachedObjects.size() == 1 && "Expected only one object entry."); auto &cachedObject = cachedObjects.begin()->second; file->os() << cachedObject->getBuffer(); file->keep(); } bool SimpleObjectCache::isEmpty() { return cachedObjects.empty(); } void ExecutionEngine::dumpToObjectFile(StringRef filename) { if (cache == nullptr) { llvm::errs() << "cannot dump ExecutionEngine object code to file: " "object cache is disabled\n"; return; } // Compilation is lazy and it doesn't populate object cache unless requested. // In case object dump is requested before cache is populated, we need to // force compilation manually. if (cache->isEmpty()) { for (std::string &functionName : functionNames) { auto result = lookupPacked(functionName); if (!result) { llvm::errs() << "Could not compile " << functionName << ":\n " << result.takeError() << "\n"; return; } } } cache->dumpToObjectFile(filename); } void ExecutionEngine::registerSymbols( llvm::function_ref symbolMap) { auto &mainJitDylib = jit->getMainJITDylib(); cantFail(mainJitDylib.define( absoluteSymbols(symbolMap(llvm::orc::MangleAndInterner( mainJitDylib.getExecutionSession(), jit->getDataLayout()))))); } // Setup LLVM target triple from the current machine. bool ExecutionEngine::setupTargetTriple(Module *llvmModule) { // Setup the machine properties from the current architecture. auto targetTriple = llvm::sys::getDefaultTargetTriple(); std::string errorMessage; const auto *target = llvm::TargetRegistry::lookupTarget(targetTriple, errorMessage); if (!target) { errs() << "NO target: " << errorMessage << "\n"; return true; } std::string cpu(llvm::sys::getHostCPUName()); llvm::SubtargetFeatures features; llvm::StringMap hostFeatures; if (llvm::sys::getHostCPUFeatures(hostFeatures)) for (const auto &[feature, isEnabled] : hostFeatures) features.AddFeature(feature, isEnabled); std::unique_ptr machine(target->createTargetMachine( targetTriple, cpu, features.getString(), {}, {})); if (!machine) { errs() << "Unable to create target machine\n"; return true; } llvmModule->setDataLayout(machine->createDataLayout()); llvmModule->setTargetTriple(targetTriple); return false; } static std::string makePackedFunctionName(StringRef name) { return "_mlir_" + name.str(); } // For each function in the LLVM module, define an interface function that wraps // all the arguments of the original function and all its results into an i8** // pointer to provide a unified invocation interface. static void packFunctionArguments(Module *module) { auto &ctx = module->getContext(); llvm::IRBuilder<> builder(ctx); DenseSet interfaceFunctions; for (auto &func : module->getFunctionList()) { if (func.isDeclaration()) { continue; } if (interfaceFunctions.count(&func)) { continue; } // Given a function `foo(<...>)`, define the interface function // `mlir_foo(i8**)`. auto *newType = llvm::FunctionType::get( builder.getVoidTy(), builder.getInt8PtrTy()->getPointerTo(), /*isVarArg=*/false); auto newName = makePackedFunctionName(func.getName()); auto funcCst = module->getOrInsertFunction(newName, newType); llvm::Function *interfaceFunc = cast(funcCst.getCallee()); interfaceFunctions.insert(interfaceFunc); // Extract the arguments from the type-erased argument list and cast them to // the proper types. auto *bb = llvm::BasicBlock::Create(ctx); bb->insertInto(interfaceFunc); builder.SetInsertPoint(bb); llvm::Value *argList = interfaceFunc->arg_begin(); SmallVector args; args.reserve(llvm::size(func.args())); for (auto [index, arg] : llvm::enumerate(func.args())) { llvm::Value *argIndex = llvm::Constant::getIntegerValue( builder.getInt64Ty(), APInt(64, index)); llvm::Value *argPtrPtr = builder.CreateGEP(builder.getInt8PtrTy(), argList, argIndex); llvm::Value *argPtr = builder.CreateLoad(builder.getInt8PtrTy(), argPtrPtr); llvm::Type *argTy = arg.getType(); argPtr = builder.CreateBitCast(argPtr, argTy->getPointerTo()); llvm::Value *load = builder.CreateLoad(argTy, argPtr); args.push_back(load); } // Call the implementation function with the extracted arguments. llvm::Value *result = builder.CreateCall(&func, args); // Assuming the result is one value, potentially of type `void`. if (!result->getType()->isVoidTy()) { llvm::Value *retIndex = llvm::Constant::getIntegerValue( builder.getInt64Ty(), APInt(64, llvm::size(func.args()))); llvm::Value *retPtrPtr = builder.CreateGEP(builder.getInt8PtrTy(), argList, retIndex); llvm::Value *retPtr = builder.CreateLoad(builder.getInt8PtrTy(), retPtrPtr); retPtr = builder.CreateBitCast(retPtr, result->getType()->getPointerTo()); builder.CreateStore(result, retPtr); } // The interface function returns void. builder.CreateRetVoid(); } } ExecutionEngine::ExecutionEngine(bool enableObjectDump, bool enableGDBNotificationListener, bool enablePerfNotificationListener) : cache(enableObjectDump ? new SimpleObjectCache() : nullptr), functionNames(), gdbListener(enableGDBNotificationListener ? llvm::JITEventListener::createGDBRegistrationListener() : nullptr), perfListener(nullptr) { if (enablePerfNotificationListener) { if (auto *listener = llvm::JITEventListener::createPerfJITEventListener()) perfListener = listener; else if (auto *listener = llvm::JITEventListener::createIntelJITEventListener()) perfListener = listener; } } Expected> ExecutionEngine::create(Operation *m, const ExecutionEngineOptions &options) { auto engine = std::make_unique( options.enableObjectDump, options.enableGDBNotificationListener, options.enablePerfNotificationListener); // Remember all entry-points if object dumping is enabled. if (options.enableObjectDump) { for (auto funcOp : m->getRegion(0).getOps()) { StringRef funcName = funcOp.getSymName(); engine->functionNames.push_back(funcName.str()); } } std::unique_ptr ctx(new llvm::LLVMContext); auto llvmModule = options.llvmModuleBuilder ? options.llvmModuleBuilder(m, *ctx) : translateModuleToLLVMIR(m, *ctx); if (!llvmModule) return makeStringError("could not convert to LLVM IR"); // FIXME: the triple should be passed to the translation or dialect conversion // instead of this. Currently, the LLVM module created above has no triple // associated with it. setupTargetTriple(llvmModule.get()); packFunctionArguments(llvmModule.get()); auto dataLayout = llvmModule->getDataLayout(); // Callback to create the object layer with symbol resolution to current // process and dynamically linked libraries. auto objectLinkingLayerCreator = [&](ExecutionSession &session, const Triple &tt) { auto objectLayer = std::make_unique( session, [sectionMemoryMapper = options.sectionMemoryMapper]() { return std::make_unique(sectionMemoryMapper); }); // Register JIT event listeners if they are enabled. if (engine->gdbListener) objectLayer->registerJITEventListener(*engine->gdbListener); if (engine->perfListener) objectLayer->registerJITEventListener(*engine->perfListener); // COFF format binaries (Windows) need special handling to deal with // exported symbol visibility. // cf llvm/lib/ExecutionEngine/Orc/LLJIT.cpp LLJIT::createObjectLinkingLayer llvm::Triple targetTriple(llvm::Twine(llvmModule->getTargetTriple())); if (targetTriple.isOSBinFormatCOFF()) { objectLayer->setOverrideObjectFlagsWithResponsibilityFlags(true); objectLayer->setAutoClaimResponsibilityForObjectSymbols(true); } // Resolve symbols from shared libraries. for (auto libPath : options.sharedLibPaths) { auto mb = llvm::MemoryBuffer::getFile(libPath); if (!mb) { errs() << "Failed to create MemoryBuffer for: " << libPath << "\nError: " << mb.getError().message() << "\n"; continue; } auto &jd = session.createBareJITDylib(std::string(libPath)); auto loaded = DynamicLibrarySearchGenerator::Load( libPath.data(), dataLayout.getGlobalPrefix()); if (!loaded) { errs() << "Could not load " << libPath << ":\n " << loaded.takeError() << "\n"; continue; } jd.addGenerator(std::move(*loaded)); cantFail(objectLayer->add(jd, std::move(mb.get()))); } return objectLayer; }; // Callback to inspect the cache and recompile on demand. This follows Lang's // LLJITWithObjectCache example. auto compileFunctionCreator = [&](JITTargetMachineBuilder jtmb) -> Expected> { if (options.jitCodeGenOptLevel) jtmb.setCodeGenOptLevel(*options.jitCodeGenOptLevel); auto tm = jtmb.createTargetMachine(); if (!tm) return tm.takeError(); return std::make_unique(std::move(*tm), engine->cache.get()); }; // Create the LLJIT by calling the LLJITBuilder with 2 callbacks. auto jit = cantFail(llvm::orc::LLJITBuilder() .setCompileFunctionCreator(compileFunctionCreator) .setObjectLinkingLayerCreator(objectLinkingLayerCreator) .create()); // Add a ThreadSafemodule to the engine and return. ThreadSafeModule tsm(std::move(llvmModule), std::move(ctx)); if (options.transformer) cantFail(tsm.withModuleDo( [&](llvm::Module &module) { return options.transformer(&module); })); cantFail(jit->addIRModule(std::move(tsm))); engine->jit = std::move(jit); // Resolve symbols that are statically linked in the current process. llvm::orc::JITDylib &mainJD = engine->jit->getMainJITDylib(); mainJD.addGenerator( cantFail(DynamicLibrarySearchGenerator::GetForCurrentProcess( dataLayout.getGlobalPrefix()))); return std::move(engine); } Expected ExecutionEngine::lookupPacked(StringRef name) const { auto result = lookup(makePackedFunctionName(name)); if (!result) return result.takeError(); return reinterpret_cast(result.get()); } Expected ExecutionEngine::lookup(StringRef name) const { auto expectedSymbol = jit->lookup(name); // JIT lookup may return an Error referring to strings stored internally by // the JIT. If the Error outlives the ExecutionEngine, it would want have a // dangling reference, which is currently caught by an assertion inside JIT // thanks to hand-rolled reference counting. Rewrap the error message into a // string before returning. Alternatively, ORC JIT should consider copying // the string into the error message. if (!expectedSymbol) { std::string errorMessage; llvm::raw_string_ostream os(errorMessage); llvm::handleAllErrors(expectedSymbol.takeError(), [&os](llvm::ErrorInfoBase &ei) { ei.log(os); }); return makeStringError(os.str()); } if (void *fptr = expectedSymbol->toPtr()) return fptr; return makeStringError("looked up function is null"); } Error ExecutionEngine::invokePacked(StringRef name, MutableArrayRef args) { auto expectedFPtr = lookupPacked(name); if (!expectedFPtr) return expectedFPtr.takeError(); auto fptr = *expectedFPtr; (*fptr)(args.data()); return Error::success(); }