//===----- CodeGen/ExpandVectorPredication.cpp - Expand VP intrinsics -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements IR expansion for vector predication intrinsics, allowing // targets to enable vector predication until just before codegen. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ExpandVectorPredication.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include using namespace llvm; using VPLegalization = TargetTransformInfo::VPLegalization; using VPTransform = TargetTransformInfo::VPLegalization::VPTransform; // Keep this in sync with TargetTransformInfo::VPLegalization. #define VPINTERNAL_VPLEGAL_CASES \ VPINTERNAL_CASE(Legal) \ VPINTERNAL_CASE(Discard) \ VPINTERNAL_CASE(Convert) #define VPINTERNAL_CASE(X) "|" #X // Override options. static cl::opt EVLTransformOverride( "expandvp-override-evl-transform", cl::init(""), cl::Hidden, cl::desc("Options: " VPINTERNAL_VPLEGAL_CASES ". If non-empty, ignore " "TargetTransformInfo and " "always use this transformation for the %evl parameter (Used in " "testing).")); static cl::opt MaskTransformOverride( "expandvp-override-mask-transform", cl::init(""), cl::Hidden, cl::desc("Options: " VPINTERNAL_VPLEGAL_CASES ". If non-empty, Ignore " "TargetTransformInfo and " "always use this transformation for the %mask parameter (Used in " "testing).")); #undef VPINTERNAL_CASE #define VPINTERNAL_CASE(X) .Case(#X, VPLegalization::X) static VPTransform parseOverrideOption(const std::string &TextOpt) { return StringSwitch(TextOpt) VPINTERNAL_VPLEGAL_CASES; } #undef VPINTERNAL_VPLEGAL_CASES // Whether any override options are set. static bool anyExpandVPOverridesSet() { return !EVLTransformOverride.empty() || !MaskTransformOverride.empty(); } #define DEBUG_TYPE "expandvp" STATISTIC(NumFoldedVL, "Number of folded vector length params"); STATISTIC(NumLoweredVPOps, "Number of folded vector predication operations"); ///// Helpers { /// \returns Whether the vector mask \p MaskVal has all lane bits set. static bool isAllTrueMask(Value *MaskVal) { if (Value *SplattedVal = getSplatValue(MaskVal)) if (auto *ConstValue = dyn_cast(SplattedVal)) return ConstValue->isAllOnesValue(); return false; } /// \returns A non-excepting divisor constant for this type. static Constant *getSafeDivisor(Type *DivTy) { assert(DivTy->isIntOrIntVectorTy() && "Unsupported divisor type"); return ConstantInt::get(DivTy, 1u, false); } /// Transfer operation properties from \p OldVPI to \p NewVal. static void transferDecorations(Value &NewVal, VPIntrinsic &VPI) { auto *NewInst = dyn_cast(&NewVal); if (!NewInst || !isa(NewVal)) return; auto *OldFMOp = dyn_cast(&VPI); if (!OldFMOp) return; NewInst->setFastMathFlags(OldFMOp->getFastMathFlags()); } /// Transfer all properties from \p OldOp to \p NewOp and replace all uses. /// OldVP gets erased. static void replaceOperation(Value &NewOp, VPIntrinsic &OldOp) { transferDecorations(NewOp, OldOp); OldOp.replaceAllUsesWith(&NewOp); OldOp.eraseFromParent(); } static bool maySpeculateLanes(VPIntrinsic &VPI) { // The result of VP reductions depends on the mask and evl. if (isa(VPI)) return false; // Fallback to whether the intrinsic is speculatable. if (auto IntrID = VPI.getFunctionalIntrinsicID()) return Intrinsic::getAttributes(VPI.getContext(), *IntrID) .hasFnAttr(Attribute::AttrKind::Speculatable); if (auto Opc = VPI.getFunctionalOpcode()) return isSafeToSpeculativelyExecuteWithOpcode(*Opc, &VPI); return false; } //// } Helpers namespace { // Expansion pass state at function scope. struct CachingVPExpander { const TargetTransformInfo &TTI; /// \returns A (fixed length) vector with ascending integer indices /// (<0, 1, ..., NumElems-1>). /// \p Builder /// Used for instruction creation. /// \p LaneTy /// Integer element type of the result vector. /// \p NumElems /// Number of vector elements. Value *createStepVector(IRBuilder<> &Builder, Type *LaneTy, unsigned NumElems); /// \returns A bitmask that is true where the lane position is less-than \p /// EVLParam /// /// \p Builder /// Used for instruction creation. /// \p VLParam /// The explicit vector length parameter to test against the lane /// positions. /// \p ElemCount /// Static (potentially scalable) number of vector elements. Value *convertEVLToMask(IRBuilder<> &Builder, Value *EVLParam, ElementCount ElemCount); /// If needed, folds the EVL in the mask operand and discards the EVL /// parameter. Returns a pair of the value of the intrinsic after the change /// (if any) and whether the mask was actually folded. std::pair foldEVLIntoMask(VPIntrinsic &VPI); /// "Remove" the %evl parameter of \p PI by setting it to the static vector /// length of the operation. Returns true if the %evl (if any) was effectively /// changed. bool discardEVLParameter(VPIntrinsic &PI); /// Lower this VP binary operator to a unpredicated binary operator. Value *expandPredicationInBinaryOperator(IRBuilder<> &Builder, VPIntrinsic &PI); /// Lower this VP int call to a unpredicated int call. Value *expandPredicationToIntCall(IRBuilder<> &Builder, VPIntrinsic &PI, unsigned UnpredicatedIntrinsicID); /// Lower this VP fp call to a unpredicated fp call. Value *expandPredicationToFPCall(IRBuilder<> &Builder, VPIntrinsic &PI, unsigned UnpredicatedIntrinsicID); /// Lower this VP reduction to a call to an unpredicated reduction intrinsic. Value *expandPredicationInReduction(IRBuilder<> &Builder, VPReductionIntrinsic &PI); /// Lower this VP cast operation to a non-VP intrinsic. Value *expandPredicationToCastIntrinsic(IRBuilder<> &Builder, VPIntrinsic &VPI); /// Lower this VP memory operation to a non-VP intrinsic. Value *expandPredicationInMemoryIntrinsic(IRBuilder<> &Builder, VPIntrinsic &VPI); /// Lower this VP comparison to a call to an unpredicated comparison. Value *expandPredicationInComparison(IRBuilder<> &Builder, VPCmpIntrinsic &PI); /// Query TTI and expand the vector predication in \p P accordingly. Value *expandPredication(VPIntrinsic &PI); /// Determine how and whether the VPIntrinsic \p VPI shall be expanded. This /// overrides TTI with the cl::opts listed at the top of this file. VPLegalization getVPLegalizationStrategy(const VPIntrinsic &VPI) const; bool UsingTTIOverrides; public: CachingVPExpander(const TargetTransformInfo &TTI) : TTI(TTI), UsingTTIOverrides(anyExpandVPOverridesSet()) {} /// Expand llvm.vp.* intrinsics as requested by \p TTI. /// Returns the details of the expansion. VPExpansionDetails expandVectorPredication(VPIntrinsic &VPI); }; //// CachingVPExpander { Value *CachingVPExpander::createStepVector(IRBuilder<> &Builder, Type *LaneTy, unsigned NumElems) { // TODO add caching SmallVector ConstElems; for (unsigned Idx = 0; Idx < NumElems; ++Idx) ConstElems.push_back(ConstantInt::get(LaneTy, Idx, false)); return ConstantVector::get(ConstElems); } Value *CachingVPExpander::convertEVLToMask(IRBuilder<> &Builder, Value *EVLParam, ElementCount ElemCount) { // TODO add caching // Scalable vector %evl conversion. if (ElemCount.isScalable()) { Type *BoolVecTy = VectorType::get(Builder.getInt1Ty(), ElemCount); // `get_active_lane_mask` performs an implicit less-than comparison. Value *ConstZero = Builder.getInt32(0); return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask, {BoolVecTy, EVLParam->getType()}, {ConstZero, EVLParam}); } // Fixed vector %evl conversion. Type *LaneTy = EVLParam->getType(); unsigned NumElems = ElemCount.getFixedValue(); Value *VLSplat = Builder.CreateVectorSplat(NumElems, EVLParam); Value *IdxVec = createStepVector(Builder, LaneTy, NumElems); return Builder.CreateICmp(CmpInst::ICMP_ULT, IdxVec, VLSplat); } Value * CachingVPExpander::expandPredicationInBinaryOperator(IRBuilder<> &Builder, VPIntrinsic &VPI) { assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) && "Implicitly dropping %evl in non-speculatable operator!"); auto OC = static_cast(*VPI.getFunctionalOpcode()); assert(Instruction::isBinaryOp(OC)); Value *Op0 = VPI.getOperand(0); Value *Op1 = VPI.getOperand(1); Value *Mask = VPI.getMaskParam(); // Blend in safe operands. if (Mask && !isAllTrueMask(Mask)) { switch (OC) { default: // Can safely ignore the predicate. break; // Division operators need a safe divisor on masked-off lanes (1). case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: // 2nd operand must not be zero. Value *SafeDivisor = getSafeDivisor(VPI.getType()); Op1 = Builder.CreateSelect(Mask, Op1, SafeDivisor); } } Value *NewBinOp = Builder.CreateBinOp(OC, Op0, Op1, VPI.getName()); replaceOperation(*NewBinOp, VPI); return NewBinOp; } Value *CachingVPExpander::expandPredicationToIntCall( IRBuilder<> &Builder, VPIntrinsic &VPI, unsigned UnpredicatedIntrinsicID) { switch (UnpredicatedIntrinsicID) { case Intrinsic::abs: case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: { Value *Op0 = VPI.getOperand(0); Value *Op1 = VPI.getOperand(1); Value *NewOp = Builder.CreateIntrinsic( UnpredicatedIntrinsicID, {VPI.getType()}, {Op0, Op1}, /*FMFSource=*/nullptr, VPI.getName()); replaceOperation(*NewOp, VPI); return NewOp; } case Intrinsic::bswap: case Intrinsic::bitreverse: { Value *Op = VPI.getOperand(0); Value *NewOp = Builder.CreateIntrinsic(UnpredicatedIntrinsicID, {VPI.getType()}, {Op}, /*FMFSource=*/nullptr, VPI.getName()); replaceOperation(*NewOp, VPI); return NewOp; } } return nullptr; } Value *CachingVPExpander::expandPredicationToFPCall( IRBuilder<> &Builder, VPIntrinsic &VPI, unsigned UnpredicatedIntrinsicID) { assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) && "Implicitly dropping %evl in non-speculatable operator!"); switch (UnpredicatedIntrinsicID) { case Intrinsic::fabs: case Intrinsic::sqrt: { Value *Op0 = VPI.getOperand(0); Value *NewOp = Builder.CreateIntrinsic(UnpredicatedIntrinsicID, {VPI.getType()}, {Op0}, /*FMFSource=*/nullptr, VPI.getName()); replaceOperation(*NewOp, VPI); return NewOp; } case Intrinsic::maxnum: case Intrinsic::minnum: { Value *Op0 = VPI.getOperand(0); Value *Op1 = VPI.getOperand(1); Value *NewOp = Builder.CreateIntrinsic( UnpredicatedIntrinsicID, {VPI.getType()}, {Op0, Op1}, /*FMFSource=*/nullptr, VPI.getName()); replaceOperation(*NewOp, VPI); return NewOp; } case Intrinsic::fma: case Intrinsic::fmuladd: case Intrinsic::experimental_constrained_fma: case Intrinsic::experimental_constrained_fmuladd: { Value *Op0 = VPI.getOperand(0); Value *Op1 = VPI.getOperand(1); Value *Op2 = VPI.getOperand(2); Function *Fn = Intrinsic::getOrInsertDeclaration( VPI.getModule(), UnpredicatedIntrinsicID, {VPI.getType()}); Value *NewOp; if (Intrinsic::isConstrainedFPIntrinsic(UnpredicatedIntrinsicID)) NewOp = Builder.CreateConstrainedFPCall(Fn, {Op0, Op1, Op2}, VPI.getName()); else NewOp = Builder.CreateCall(Fn, {Op0, Op1, Op2}, VPI.getName()); replaceOperation(*NewOp, VPI); return NewOp; } } return nullptr; } static Value *getNeutralReductionElement(const VPReductionIntrinsic &VPI, Type *EltTy) { Intrinsic::ID RdxID = *VPI.getFunctionalIntrinsicID(); FastMathFlags FMF; if (isa(VPI)) FMF = VPI.getFastMathFlags(); return getReductionIdentity(RdxID, EltTy, FMF); } Value * CachingVPExpander::expandPredicationInReduction(IRBuilder<> &Builder, VPReductionIntrinsic &VPI) { assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) && "Implicitly dropping %evl in non-speculatable operator!"); Value *Mask = VPI.getMaskParam(); Value *RedOp = VPI.getOperand(VPI.getVectorParamPos()); // Insert neutral element in masked-out positions if (Mask && !isAllTrueMask(Mask)) { auto *NeutralElt = getNeutralReductionElement(VPI, VPI.getType()); auto *NeutralVector = Builder.CreateVectorSplat( cast(RedOp->getType())->getElementCount(), NeutralElt); RedOp = Builder.CreateSelect(Mask, RedOp, NeutralVector); } Value *Reduction; Value *Start = VPI.getOperand(VPI.getStartParamPos()); switch (VPI.getIntrinsicID()) { default: llvm_unreachable("Impossible reduction kind"); case Intrinsic::vp_reduce_add: case Intrinsic::vp_reduce_mul: case Intrinsic::vp_reduce_and: case Intrinsic::vp_reduce_or: case Intrinsic::vp_reduce_xor: { Intrinsic::ID RedID = *VPI.getFunctionalIntrinsicID(); unsigned Opc = getArithmeticReductionInstruction(RedID); assert(Instruction::isBinaryOp(Opc)); Reduction = Builder.CreateUnaryIntrinsic(RedID, RedOp); Reduction = Builder.CreateBinOp((Instruction::BinaryOps)Opc, Reduction, Start); break; } case Intrinsic::vp_reduce_smax: case Intrinsic::vp_reduce_smin: case Intrinsic::vp_reduce_umax: case Intrinsic::vp_reduce_umin: case Intrinsic::vp_reduce_fmax: case Intrinsic::vp_reduce_fmin: case Intrinsic::vp_reduce_fmaximum: case Intrinsic::vp_reduce_fminimum: { Intrinsic::ID RedID = *VPI.getFunctionalIntrinsicID(); Intrinsic::ID ScalarID = getMinMaxReductionIntrinsicOp(RedID); Reduction = Builder.CreateUnaryIntrinsic(RedID, RedOp); transferDecorations(*Reduction, VPI); Reduction = Builder.CreateBinaryIntrinsic(ScalarID, Reduction, Start); break; } case Intrinsic::vp_reduce_fadd: Reduction = Builder.CreateFAddReduce(Start, RedOp); break; case Intrinsic::vp_reduce_fmul: Reduction = Builder.CreateFMulReduce(Start, RedOp); break; } replaceOperation(*Reduction, VPI); return Reduction; } Value *CachingVPExpander::expandPredicationToCastIntrinsic(IRBuilder<> &Builder, VPIntrinsic &VPI) { Value *CastOp = nullptr; switch (VPI.getIntrinsicID()) { default: llvm_unreachable("Not a VP cast intrinsic"); case Intrinsic::vp_sext: CastOp = Builder.CreateSExt(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_zext: CastOp = Builder.CreateZExt(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_trunc: CastOp = Builder.CreateTrunc(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_inttoptr: CastOp = Builder.CreateIntToPtr(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_ptrtoint: CastOp = Builder.CreatePtrToInt(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_fptosi: CastOp = Builder.CreateFPToSI(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_fptoui: CastOp = Builder.CreateFPToUI(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_sitofp: CastOp = Builder.CreateSIToFP(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_uitofp: CastOp = Builder.CreateUIToFP(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_fptrunc: CastOp = Builder.CreateFPTrunc(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; case Intrinsic::vp_fpext: CastOp = Builder.CreateFPExt(VPI.getOperand(0), VPI.getType(), VPI.getName()); break; } replaceOperation(*CastOp, VPI); return CastOp; } Value * CachingVPExpander::expandPredicationInMemoryIntrinsic(IRBuilder<> &Builder, VPIntrinsic &VPI) { assert(VPI.canIgnoreVectorLengthParam()); const auto &DL = VPI.getDataLayout(); Value *MaskParam = VPI.getMaskParam(); Value *PtrParam = VPI.getMemoryPointerParam(); Value *DataParam = VPI.getMemoryDataParam(); bool IsUnmasked = isAllTrueMask(MaskParam); MaybeAlign AlignOpt = VPI.getPointerAlignment(); Value *NewMemoryInst = nullptr; switch (VPI.getIntrinsicID()) { default: llvm_unreachable("Not a VP memory intrinsic"); case Intrinsic::vp_store: if (IsUnmasked) { StoreInst *NewStore = Builder.CreateStore(DataParam, PtrParam, /*IsVolatile*/ false); if (AlignOpt.has_value()) NewStore->setAlignment(*AlignOpt); NewMemoryInst = NewStore; } else NewMemoryInst = Builder.CreateMaskedStore( DataParam, PtrParam, AlignOpt.valueOrOne(), MaskParam); break; case Intrinsic::vp_load: if (IsUnmasked) { LoadInst *NewLoad = Builder.CreateLoad(VPI.getType(), PtrParam, /*IsVolatile*/ false); if (AlignOpt.has_value()) NewLoad->setAlignment(*AlignOpt); NewMemoryInst = NewLoad; } else NewMemoryInst = Builder.CreateMaskedLoad( VPI.getType(), PtrParam, AlignOpt.valueOrOne(), MaskParam); break; case Intrinsic::vp_scatter: { auto *ElementType = cast(DataParam->getType())->getElementType(); NewMemoryInst = Builder.CreateMaskedScatter( DataParam, PtrParam, AlignOpt.value_or(DL.getPrefTypeAlign(ElementType)), MaskParam); break; } case Intrinsic::vp_gather: { auto *ElementType = cast(VPI.getType())->getElementType(); NewMemoryInst = Builder.CreateMaskedGather( VPI.getType(), PtrParam, AlignOpt.value_or(DL.getPrefTypeAlign(ElementType)), MaskParam, nullptr, VPI.getName()); break; } } assert(NewMemoryInst); replaceOperation(*NewMemoryInst, VPI); return NewMemoryInst; } Value *CachingVPExpander::expandPredicationInComparison(IRBuilder<> &Builder, VPCmpIntrinsic &VPI) { assert((maySpeculateLanes(VPI) || VPI.canIgnoreVectorLengthParam()) && "Implicitly dropping %evl in non-speculatable operator!"); assert(*VPI.getFunctionalOpcode() == Instruction::ICmp || *VPI.getFunctionalOpcode() == Instruction::FCmp); Value *Op0 = VPI.getOperand(0); Value *Op1 = VPI.getOperand(1); auto Pred = VPI.getPredicate(); auto *NewCmp = Builder.CreateCmp(Pred, Op0, Op1); replaceOperation(*NewCmp, VPI); return NewCmp; } bool CachingVPExpander::discardEVLParameter(VPIntrinsic &VPI) { LLVM_DEBUG(dbgs() << "Discard EVL parameter in " << VPI << "\n"); if (VPI.canIgnoreVectorLengthParam()) return false; Value *EVLParam = VPI.getVectorLengthParam(); if (!EVLParam) return false; ElementCount StaticElemCount = VPI.getStaticVectorLength(); Value *MaxEVL = nullptr; Type *Int32Ty = Type::getInt32Ty(VPI.getContext()); if (StaticElemCount.isScalable()) { // TODO add caching IRBuilder<> Builder(VPI.getParent(), VPI.getIterator()); Value *FactorConst = Builder.getInt32(StaticElemCount.getKnownMinValue()); Value *VScale = Builder.CreateIntrinsic(Intrinsic::vscale, Int32Ty, {}, /*FMFSource=*/nullptr, "vscale"); MaxEVL = Builder.CreateMul(VScale, FactorConst, "scalable_size", /*NUW*/ true, /*NSW*/ false); } else { MaxEVL = ConstantInt::get(Int32Ty, StaticElemCount.getFixedValue(), false); } VPI.setVectorLengthParam(MaxEVL); return true; } std::pair CachingVPExpander::foldEVLIntoMask(VPIntrinsic &VPI) { LLVM_DEBUG(dbgs() << "Folding vlen for " << VPI << '\n'); IRBuilder<> Builder(&VPI); // Ineffective %evl parameter and so nothing to do here. if (VPI.canIgnoreVectorLengthParam()) return {&VPI, false}; // Only VP intrinsics can have an %evl parameter. Value *OldMaskParam = VPI.getMaskParam(); Value *OldEVLParam = VPI.getVectorLengthParam(); assert(OldMaskParam && "no mask param to fold the vl param into"); assert(OldEVLParam && "no EVL param to fold away"); LLVM_DEBUG(dbgs() << "OLD evl: " << *OldEVLParam << '\n'); LLVM_DEBUG(dbgs() << "OLD mask: " << *OldMaskParam << '\n'); // Convert the %evl predication into vector mask predication. ElementCount ElemCount = VPI.getStaticVectorLength(); Value *VLMask = convertEVLToMask(Builder, OldEVLParam, ElemCount); Value *NewMaskParam = Builder.CreateAnd(VLMask, OldMaskParam); VPI.setMaskParam(NewMaskParam); // Drop the %evl parameter. discardEVLParameter(VPI); assert(VPI.canIgnoreVectorLengthParam() && "transformation did not render the evl param ineffective!"); // Reassess the modified instruction. return {&VPI, true}; } Value *CachingVPExpander::expandPredication(VPIntrinsic &VPI) { LLVM_DEBUG(dbgs() << "Lowering to unpredicated op: " << VPI << '\n'); IRBuilder<> Builder(&VPI); // Try lowering to a LLVM instruction first. auto OC = VPI.getFunctionalOpcode(); if (OC && Instruction::isBinaryOp(*OC)) return expandPredicationInBinaryOperator(Builder, VPI); if (auto *VPRI = dyn_cast(&VPI)) return expandPredicationInReduction(Builder, *VPRI); if (auto *VPCmp = dyn_cast(&VPI)) return expandPredicationInComparison(Builder, *VPCmp); if (VPCastIntrinsic::isVPCast(VPI.getIntrinsicID())) { return expandPredicationToCastIntrinsic(Builder, VPI); } switch (VPI.getIntrinsicID()) { default: break; case Intrinsic::vp_fneg: { Value *NewNegOp = Builder.CreateFNeg(VPI.getOperand(0), VPI.getName()); replaceOperation(*NewNegOp, VPI); return NewNegOp; } case Intrinsic::vp_abs: case Intrinsic::vp_smax: case Intrinsic::vp_smin: case Intrinsic::vp_umax: case Intrinsic::vp_umin: case Intrinsic::vp_bswap: case Intrinsic::vp_bitreverse: return expandPredicationToIntCall(Builder, VPI, VPI.getFunctionalIntrinsicID().value()); case Intrinsic::vp_fabs: case Intrinsic::vp_sqrt: case Intrinsic::vp_maxnum: case Intrinsic::vp_minnum: case Intrinsic::vp_maximum: case Intrinsic::vp_minimum: case Intrinsic::vp_fma: case Intrinsic::vp_fmuladd: return expandPredicationToFPCall(Builder, VPI, VPI.getFunctionalIntrinsicID().value()); case Intrinsic::vp_load: case Intrinsic::vp_store: case Intrinsic::vp_gather: case Intrinsic::vp_scatter: return expandPredicationInMemoryIntrinsic(Builder, VPI); } if (auto CID = VPI.getConstrainedIntrinsicID()) if (Value *Call = expandPredicationToFPCall(Builder, VPI, *CID)) return Call; return &VPI; } //// } CachingVPExpander void sanitizeStrategy(VPIntrinsic &VPI, VPLegalization &LegalizeStrat) { // Operations with speculatable lanes do not strictly need predication. if (maySpeculateLanes(VPI)) { // Converting a speculatable VP intrinsic means dropping %mask and %evl. // No need to expand %evl into the %mask only to ignore that code. if (LegalizeStrat.OpStrategy == VPLegalization::Convert) LegalizeStrat.EVLParamStrategy = VPLegalization::Discard; return; } // We have to preserve the predicating effect of %evl for this // non-speculatable VP intrinsic. // 1) Never discard %evl. // 2) If this VP intrinsic will be expanded to non-VP code, make sure that // %evl gets folded into %mask. if ((LegalizeStrat.EVLParamStrategy == VPLegalization::Discard) || (LegalizeStrat.OpStrategy == VPLegalization::Convert)) { LegalizeStrat.EVLParamStrategy = VPLegalization::Convert; } } VPLegalization CachingVPExpander::getVPLegalizationStrategy(const VPIntrinsic &VPI) const { auto VPStrat = TTI.getVPLegalizationStrategy(VPI); if (LLVM_LIKELY(!UsingTTIOverrides)) { // No overrides - we are in production. return VPStrat; } // Overrides set - we are in testing, the following does not need to be // efficient. VPStrat.EVLParamStrategy = parseOverrideOption(EVLTransformOverride); VPStrat.OpStrategy = parseOverrideOption(MaskTransformOverride); return VPStrat; } VPExpansionDetails CachingVPExpander::expandVectorPredication(VPIntrinsic &VPI) { auto Strategy = getVPLegalizationStrategy(VPI); sanitizeStrategy(VPI, Strategy); VPExpansionDetails Changed = VPExpansionDetails::IntrinsicUnchanged; // Transform the EVL parameter. switch (Strategy.EVLParamStrategy) { case VPLegalization::Legal: break; case VPLegalization::Discard: if (discardEVLParameter(VPI)) Changed = VPExpansionDetails::IntrinsicUpdated; break; case VPLegalization::Convert: if (auto [NewVPI, Folded] = foldEVLIntoMask(VPI); Folded) { (void)NewVPI; Changed = VPExpansionDetails::IntrinsicUpdated; ++NumFoldedVL; } break; } // Replace with a non-predicated operation. switch (Strategy.OpStrategy) { case VPLegalization::Legal: break; case VPLegalization::Discard: llvm_unreachable("Invalid strategy for operators."); case VPLegalization::Convert: if (Value *V = expandPredication(VPI); V != &VPI) { ++NumLoweredVPOps; Changed = VPExpansionDetails::IntrinsicReplaced; } break; } return Changed; } } // namespace VPExpansionDetails llvm::expandVectorPredicationIntrinsic(VPIntrinsic &VPI, const TargetTransformInfo &TTI) { return CachingVPExpander(TTI).expandVectorPredication(VPI); }