//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/DeclSpec.h" #include "llvm/ADT/SmallSet.h" using namespace llvm; using namespace clang; //===----------------------------------------------------------------------===// // C99 6.7: Declarations. //===----------------------------------------------------------------------===// /// ParseTypeName /// type-name: [C99 6.7.6] /// specifier-qualifier-list abstract-declarator[opt] Parser::TypeTy *Parser::ParseTypeName() { // Parse the common declaration-specifiers piece. DeclSpec DS; ParseSpecifierQualifierList(DS); // Parse the abstract-declarator, if present. Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); ParseDeclarator(DeclaratorInfo); return Actions.ParseTypeName(CurScope, DeclaratorInfo).Val; } /// ParseAttributes - Parse a non-empty attributes list. /// /// [GNU] attributes: /// attribute /// attributes attribute /// /// [GNU] attribute: /// '__attribute__' '(' '(' attribute-list ')' ')' /// /// [GNU] attribute-list: /// attrib /// attribute_list ',' attrib /// /// [GNU] attrib: /// empty /// any-word /// any-word '(' identifier ')' /// any-word '(' identifier ',' nonempty-expr-list ')' /// any-word '(' expr-list ')' /// void Parser::ParseAttributes() { assert(Tok.getKind() == tok::kw___attribute && "Not an attribute list!"); ConsumeToken(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "attribute")) return; // TODO: Parse the attributes. SkipUntil(tok::r_paren, false); } /// ParseDeclaration - Parse a full 'declaration', which consists of /// declaration-specifiers, some number of declarators, and a semicolon. /// 'Context' should be a Declarator::TheContext value. Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) { // Parse the common declaration-specifiers piece. DeclSpec DS; ParseDeclarationSpecifiers(DS); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.getKind() == tok::semi) { ConsumeToken(); return Actions.ParsedFreeStandingDeclSpec(CurScope, DS); } Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context); ParseDeclarator(DeclaratorInfo); return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo); } /// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after /// parsing 'declaration-specifiers declarator'. This method is split out this /// way to handle the ambiguity between top-level function-definitions and /// declarations. /// /// declaration: [C99 6.7] /// declaration-specifiers init-declarator-list[opt] ';' [TODO] /// [!C99] init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive [TODO] /// /// init-declarator-list: [C99 6.7] /// init-declarator /// init-declarator-list ',' init-declarator /// init-declarator: [C99 6.7] /// declarator /// declarator '=' initializer /// [GNU] declarator simple-asm-expr[opt] attributes[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer /// Parser::DeclTy *Parser:: ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) { // Declarators may be grouped together ("int X, *Y, Z();"). Provide info so // that they can be chained properly if the actions want this. Parser::DeclTy *LastDeclInGroup = 0; // At this point, we know that it is not a function definition. Parse the // rest of the init-declarator-list. while (1) { // If a simple-asm-expr is present, parse it. if (Tok.getKind() == tok::kw_asm) ParseSimpleAsm(); // If attributes are present, parse them. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); // Parse declarator '=' initializer. ExprResult Init; if (Tok.getKind() == tok::equal) { ConsumeToken(); Init = ParseInitializer(); if (Init.isInvalid) { SkipUntil(tok::semi); return 0; } } // Inform the current actions module that we just parsed this declarator. // FIXME: pass asm & attributes. LastDeclInGroup = Actions.ParseDeclarator(CurScope, D, Init.Val, LastDeclInGroup); // If we don't have a comma, it is either the end of the list (a ';') or an // error, bail out. if (Tok.getKind() != tok::comma) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. D.clear(); ParseDeclarator(D); } if (Tok.getKind() == tok::semi) { ConsumeToken(); return LastDeclInGroup; } else { Diag(Tok, diag::err_parse_error); // Skip to end of block or statement SkipUntil(tok::r_brace, true); if (Tok.getKind() == tok::semi) ConsumeToken(); return 0; } } /// ParseSpecifierQualifierList /// specifier-qualifier-list: /// type-specifier specifier-qualifier-list[opt] /// type-qualifier specifier-qualifier-list[opt] /// [GNU] attributes specifier-qualifier-list[opt] /// void Parser::ParseSpecifierQualifierList(DeclSpec &DS) { /// specifier-qualifier-list is a subset of declaration-specifiers. Just /// parse declaration-specifiers and complain about extra stuff. SourceLocation Loc = Tok.getLocation(); ParseDeclarationSpecifiers(DS); // Validate declspec for type-name. unsigned Specs = DS.getParsedSpecifiers(); if (Specs == DeclSpec::PQ_None) Diag(Tok, diag::err_typename_requires_specqual); // Issue diagnostic and remove storage class if present. if (Specs & DeclSpec::PQ_StorageClassSpecifier) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); else Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass); DS.ClearStorageClassSpecs(); } // Issue diagnostic and remove function specfier if present. if (Specs & DeclSpec::PQ_FunctionSpecifier) { Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); DS.ClearFunctionSpecs(); } } /// ParseDeclarationSpecifiers /// declaration-specifiers: [C99 6.7] /// storage-class-specifier declaration-specifiers[opt] /// type-specifier declaration-specifiers[opt] /// type-qualifier declaration-specifiers[opt] /// [C99] function-specifier declaration-specifiers[opt] /// [GNU] attributes declaration-specifiers[opt] /// /// storage-class-specifier: [C99 6.7.1] /// 'typedef' /// 'extern' /// 'static' /// 'auto' /// 'register' /// [GNU] '__thread' /// type-specifier: [C99 6.7.2] /// 'void' /// 'char' /// 'short' /// 'int' /// 'long' /// 'float' /// 'double' /// 'signed' /// 'unsigned' /// struct-or-union-specifier /// enum-specifier /// typedef-name /// [C99] '_Bool' /// [C99] '_Complex' /// [C99] '_Imaginary' // Removed in TC2? /// [GNU] '_Decimal32' /// [GNU] '_Decimal64' /// [GNU] '_Decimal128' /// [GNU] typeof-specifier [TODO] /// [OBJC] class-name objc-protocol-refs[opt] [TODO] /// [OBJC] typedef-name objc-protocol-refs [TODO] /// [OBJC] objc-protocol-refs [TODO] /// type-qualifier: /// 'const' /// 'volatile' /// [C99] 'restrict' /// function-specifier: [C99 6.7.4] /// [C99] 'inline' /// void Parser::ParseDeclarationSpecifiers(DeclSpec &DS) { while (1) { int isInvalid = false; const char *PrevSpec = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { // typedef-name case tok::identifier: // This identifier can only be a typedef name if we haven't already seen // a type-specifier. Without this check we misparse: // typedef int X; struct Y { short X; }; as 'short int'. if (!DS.hasTypeSpecifier()) { // It has to be available as a typedef too! if (void *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec, TypeRep); break; } } // FALL THROUGH. default: // If this is not a declaration specifier token, we're done reading decl // specifiers. First verify that DeclSpec's are consistent. DS.Finish(Diags, getLang()); return; // GNU attributes support. case tok::kw___attribute: ParseAttributes(); continue; // storage-class-specifier case tok::kw_typedef: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec); break; case tok::kw_extern: if (DS.isThreadSpecified()) Diag(Tok, diag::ext_thread_before, "extern"); isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec); break; case tok::kw_static: if (DS.isThreadSpecified()) Diag(Tok, diag::ext_thread_before, "static"); isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec); break; case tok::kw_auto: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec); break; case tok::kw_register: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec); break; case tok::kw___thread: isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2; break; // type-specifiers case tok::kw_short: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec); break; case tok::kw_long: if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec); else isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec); break; case tok::kw_signed: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec); break; case tok::kw_unsigned: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec); break; case tok::kw__Complex: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec); break; case tok::kw__Imaginary: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec); break; case tok::kw_void: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec); break; case tok::kw_char: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec); break; case tok::kw_int: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec); break; case tok::kw_float: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec); break; case tok::kw_double: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec); break; case tok::kw__Bool: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec); break; case tok::kw__Decimal32: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec); break; case tok::kw__Decimal64: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec); break; case tok::kw__Decimal128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec); break; case tok::kw_struct: case tok::kw_union: ParseStructUnionSpecifier(DS); continue; case tok::kw_enum: ParseEnumSpecifier(DS); continue; // type-qualifier case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, getLang())*2; break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, getLang())*2; break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, getLang())*2; break; // function-specifier case tok::kw_inline: isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec); break; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); if (isInvalid == 1) // Error. Diag(Tok, diag::err_invalid_decl_spec_combination, PrevSpec); else // extwarn. Diag(Tok, diag::ext_duplicate_declspec, PrevSpec); } ConsumeToken(); } } /// ParseStructUnionSpecifier /// struct-or-union-specifier: [C99 6.7.2.1] /// struct-or-union identifier[opt] '{' struct-contents '}' /// struct-or-union identifier /// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents /// '}' attributes[opt] /// [GNU] struct-or-union attributes[opt] identifier /// struct-or-union: /// 'struct' /// 'union' /// void Parser::ParseStructUnionSpecifier(DeclSpec &DS) { assert((Tok.getKind() == tok::kw_struct || Tok.getKind() == tok::kw_union) && "Not a struct/union specifier"); SourceLocation StartLoc = ConsumeToken(); DeclSpec::TST TagType = Tok.getKind() == tok::kw_union ? DeclSpec::TST_union : DeclSpec::TST_struct; // If attributes exist after tag, parse them. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); // Must have either 'struct name' or 'struct {...}'. if (Tok.getKind() != tok::identifier && Tok.getKind() != tok::l_brace) { Diag(Tok, diag::err_expected_ident_lbrace); // TODO: better error recovery here. return; } // If an identifier is present, consume and remember it. IdentifierInfo *Name = 0; SourceLocation NameLoc; if (Tok.getKind() == tok::identifier) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); } // There are three options here. If we have 'struct foo;', then this is a // forward declaration. If we have 'struct foo {...' then this is a // definition. Otherwise we have something like 'struct foo xyz', a use. Tell // the actions module whether this is a definition (forward or not) of the // type insted of a use. // // This is needed to handle stuff like this right (C99 6.7.2.3p11): // struct foo {..}; void bar() { struct foo; } <- new foo in bar. // struct foo {..}; void bar() { struct foo x; } <- use of old foo. // bool isUse = Tok.getKind() != tok::l_brace && Tok.getKind() != tok::semi; DeclTy *TagDecl = Actions.ParseTag(CurScope, TagType, isUse, StartLoc, Name, NameLoc); // If there is a body, parse it and inform the actions module. if (Tok.getKind() == tok::l_brace) ParseStructUnionBody(TagType, TagDecl); const char *PrevSpec = 0; if (DS.SetTypeSpecType(TagType, StartLoc, PrevSpec)) Diag(StartLoc, diag::err_invalid_decl_spec_combination, PrevSpec); } /// ParseStructUnionBody /// struct-contents: /// struct-declaration-list /// [EXT] empty /// [GNU] "struct-declaration-list" without terminatoring ';' [TODO] /// struct-declaration-list: /// struct-declaration /// struct-declaration-list struct-declaration /// [OBC] '@' 'defs' '(' class-name ')' [TODO] /// struct-declaration: /// specifier-qualifier-list struct-declarator-list ';' /// [GNU] __extension__ struct-declaration [TODO] /// [GNU] specifier-qualifier-list ';' [TODO] /// struct-declarator-list: /// struct-declarator /// struct-declarator-list ',' struct-declarator /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator /// struct-declarator: /// declarator /// [GNU] declarator attributes[opt] /// declarator[opt] ':' constant-expression /// [GNU] declarator[opt] ':' constant-expression attributes[opt] /// void Parser::ParseStructUnionBody(unsigned TagType, DeclTy *TagDecl) { SourceLocation LBraceLoc = ConsumeBrace(); if (Tok.getKind() == tok::r_brace) Diag(Tok, diag::ext_empty_struct_union_enum, DeclSpec::getSpecifierName((DeclSpec::TST)TagType)); while (Tok.getKind() != tok::r_brace && Tok.getKind() != tok::eof) { // Each iteration of this loop reads one struct-declaration. // Parse the common specifier-qualifiers-list piece. DeclSpec DS; SourceLocation SpecQualLoc = Tok.getLocation(); ParseSpecifierQualifierList(DS); // TODO: Does specifier-qualifier list correctly check that *something* is // specified? Declarator DeclaratorInfo(DS, Declarator::MemberContext); // If there are no declarators, issue a warning. if (Tok.getKind() == tok::semi) { Diag(SpecQualLoc, diag::w_no_declarators); } else { // Read struct-declarators until we find the semicolon. while (1) { /// struct-declarator: declarator /// struct-declarator: declarator[opt] ':' constant-expression if (Tok.getKind() != tok::colon) ParseDeclarator(DeclaratorInfo); if (Tok.getKind() == tok::colon) { ConsumeToken(); ExprResult Res = ParseConstantExpression(); if (Res.isInvalid) { SkipUntil(tok::semi, true, true); } else { // Process it. } } // If attributes exist after the declarator, parse them. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); // TODO: install declarator. // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (Tok.getKind() != tok::comma) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. DeclaratorInfo.clear(); // Attributes are only allowed on the second declarator. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); } } if (Tok.getKind() == tok::semi) { ConsumeToken(); } else { Diag(Tok, diag::err_expected_semi_decl_list); // Skip to end of block or statement SkipUntil(tok::r_brace, true, true); } } MatchRHSPunctuation(tok::r_brace, LBraceLoc); // If attributes exist after struct contents, parse them. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); } /// ParseEnumSpecifier /// enum-specifier: [C99 6.7.2.2] /// 'enum' identifier[opt] '{' enumerator-list '}' /// [C99] 'enum' identifier[opt] '{' enumerator-list ',' '}' /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' attributes[opt] /// 'enum' identifier /// [GNU] 'enum' attributes[opt] identifier /// enumerator-list: /// enumerator /// enumerator-list ',' enumerator /// enumerator: /// enumeration-constant /// enumeration-constant '=' constant-expression /// enumeration-constant: /// identifier /// void Parser::ParseEnumSpecifier(DeclSpec &DS) { assert(Tok.getKind() == tok::kw_enum && "Not an enum specifier"); SourceLocation StartLoc = ConsumeToken(); if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); // Must have either 'enum name' or 'enum {...}'. if (Tok.getKind() != tok::identifier && Tok.getKind() != tok::l_brace) { Diag(Tok, diag::err_expected_ident_lbrace); return; } if (Tok.getKind() == tok::identifier) ConsumeToken(); if (Tok.getKind() == tok::l_brace) { SourceLocation LBraceLoc = ConsumeBrace(); if (Tok.getKind() == tok::r_brace) Diag(Tok, diag::ext_empty_struct_union_enum, "enum"); // Parse the enumerator-list. while (Tok.getKind() == tok::identifier) { ConsumeToken(); if (Tok.getKind() == tok::equal) { ConsumeToken(); ExprResult Res = ParseConstantExpression(); if (Res.isInvalid) SkipUntil(tok::comma, true, false); } if (Tok.getKind() != tok::comma) break; SourceLocation CommaLoc = ConsumeToken(); if (Tok.getKind() != tok::identifier && !getLang().C99) Diag(CommaLoc, diag::ext_c99_enumerator_list_comma); } // Eat the }. MatchRHSPunctuation(tok::r_brace, LBraceLoc); // If attributes exist after the identifier list, parse them. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); } // TODO: semantic analysis on the declspec for enums. const char *PrevSpec = 0; if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec)) Diag(StartLoc, diag::err_invalid_decl_spec_combination, PrevSpec); } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a specifier-qualifier-list. bool Parser::isTypeSpecifierQualifier() const { switch (Tok.getKind()) { default: return false; // GNU attributes support. case tok::kw___attribute: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: // struct-or-union-specifier case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: return true; // typedef-name case tok::identifier: return Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope) != 0; // TODO: Attributes. } } /// isDeclarationSpecifier() - Return true if the current token is part of a /// declaration specifier. bool Parser::isDeclarationSpecifier() const { switch (Tok.getKind()) { default: return false; // storage-class-specifier case tok::kw_typedef: case tok::kw_extern: case tok::kw_static: case tok::kw_auto: case tok::kw_register: case tok::kw___thread: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: // struct-or-union-specifier case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // function-specifier case tok::kw_inline: return true; // typedef-name case tok::identifier: return Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope) != 0; // TODO: Attributes. } } /// ParseTypeQualifierListOpt /// type-qualifier-list: [C99 6.7.5] /// type-qualifier /// [GNU] attributes /// type-qualifier-list type-qualifier /// [GNU] type-qualifier-list attributes /// void Parser::ParseTypeQualifierListOpt(DeclSpec &DS) { while (1) { int isInvalid = false; const char *PrevSpec = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { default: // If this is not a type-qualifier token, we're done reading type // qualifiers. First verify that DeclSpec's are consistent. DS.Finish(Diags, getLang()); return; case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, getLang())*2; break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, getLang())*2; break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, getLang())*2; break; case tok::kw___attribute: ParseAttributes(); break; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); if (isInvalid == 1) // Error. Diag(Tok, diag::err_invalid_decl_spec_combination, PrevSpec); else // extwarn. Diag(Tok, diag::ext_duplicate_declspec, PrevSpec); } ConsumeToken(); } } /// ParseDeclarator - Parse and verify a newly-initialized declarator. /// void Parser::ParseDeclarator(Declarator &D) { /// This implements the 'declarator' production in the C grammar, then checks /// for well-formedness and issues diagnostics. ParseDeclaratorInternal(D); // TODO: validate D. } /// ParseDeclaratorInternal /// declarator: [C99 6.7.5] /// pointer[opt] direct-declarator /// /// pointer: [C99 6.7.5] /// '*' type-qualifier-list[opt] /// '*' type-qualifier-list[opt] pointer /// void Parser::ParseDeclaratorInternal(Declarator &D) { if (Tok.getKind() != tok::star) return ParseDirectDeclarator(D); // Otherwise, '*' -> pointer. SourceLocation Loc = ConsumeToken(); // Eat the *. DeclSpec DS; ParseTypeQualifierListOpt(DS); // Recursively parse the declarator. ParseDeclaratorInternal(D); // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc)); } /// ParseDirectDeclarator /// direct-declarator: [C99 6.7.5] /// identifier /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// void Parser::ParseDirectDeclarator(Declarator &D) { // Parse the first direct-declarator seen. if (Tok.getKind() == tok::identifier && D.mayHaveIdentifier()) { assert(Tok.getIdentifierInfo() && "Not an identifier?"); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); ConsumeToken(); } else if (Tok.getKind() == tok::l_paren) { // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' // Example: 'char (*X)' or 'int (*XX)(void)' ParseParenDeclarator(D); } else if (D.mayOmitIdentifier()) { // This could be something simple like "int" (in which case the declarator // portion is empty), if an abstract-declarator is allowed. D.SetIdentifier(0, Tok.getLocation()); } else { // Expected identifier or '('. Diag(Tok, diag::err_expected_ident_lparen); D.SetIdentifier(0, Tok.getLocation()); } assert(D.isPastIdentifier() && "Haven't past the location of the identifier yet?"); while (1) { if (Tok.getKind() == tok::l_paren) { ParseParenDeclarator(D); } else if (Tok.getKind() == tok::l_square) { ParseBracketDeclarator(D); } else { break; } } } /// ParseParenDeclarator - We parsed the declarator D up to a paren. This may /// either be before the identifier (in which case these are just grouping /// parens for precedence) or it may be after the identifier, in which case /// these are function arguments. /// /// This method also handles this portion of the grammar: /// parameter-type-list: [C99 6.7.5] /// parameter-list /// parameter-list ',' '...' /// /// parameter-list: [C99 6.7.5] /// parameter-declaration /// parameter-list ',' parameter-declaration /// /// parameter-declaration: [C99 6.7.5] /// declaration-specifiers declarator /// [GNU] declaration-specifiers declarator attributes /// declaration-specifiers abstract-declarator[opt] /// [GNU] declaration-specifiers abstract-declarator[opt] attributes /// /// identifier-list: [C99 6.7.5] /// identifier /// identifier-list ',' identifier /// void Parser::ParseParenDeclarator(Declarator &D) { SourceLocation StartLoc = ConsumeParen(); // If we haven't past the identifier yet (or where the identifier would be // stored, if this is an abstract declarator), then this is probably just // grouping parens. if (!D.isPastIdentifier()) { // Okay, this is probably a grouping paren. However, if this could be an // abstract-declarator, then this could also be the start of function // arguments (consider 'void()'). bool isGrouping; if (!D.mayOmitIdentifier()) { // If this can't be an abstract-declarator, this *must* be a grouping // paren, because we haven't seen the identifier yet. isGrouping = true; } else if (Tok.getKind() == tok::r_paren || // 'int()' is a function. isDeclarationSpecifier()) { // 'int(int)' is a function. // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is // considered to be a type, not a K&R identifier-list. isGrouping = false; } else { // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. isGrouping = true; } // If this is a grouping paren, handle: // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' if (isGrouping) { if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); ParseDeclaratorInternal(D); // Match the ')'. MatchRHSPunctuation(tok::r_paren, StartLoc); return; } // Okay, if this wasn't a grouping paren, it must be the start of a function // argument list. Recognize that this declarator will never have an // identifier (and remember where it would have been), then fall through to // the handling of argument lists. D.SetIdentifier(0, Tok.getLocation()); } // Okay, this is the parameter list of a function definition, or it is an // identifier list of a K&R-style function. bool IsVariadic; bool HasPrototype; bool ErrorEmitted = false; // Build up an array of information about the parsed arguments. SmallVector ParamInfo; SmallSet ParamsSoFar; if (Tok.getKind() == tok::r_paren) { // int() -> no prototype, no '...'. IsVariadic = false; HasPrototype = false; } else if (Tok.getKind() == tok::identifier && // K&R identifier lists can't have typedefs as identifiers, per // C99 6.7.5.3p11. !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) { // Identifier list. Note that '(' identifier-list ')' is only allowed for // normal declarators, not for abstract-declarators. assert(D.isPastIdentifier() && "Identifier (if present) must be passed!"); // If there was no identifier specified, either we are in an // abstract-declarator, or we are in a parameter declarator which was found // to be abstract. In abstract-declarators, identifier lists are not valid, // diagnose this. if (!D.getIdentifier()) Diag(Tok, diag::ext_ident_list_in_param); // Remember this identifier in ParamInfo. ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(), Tok.getLocation(), 0)); ConsumeToken(); while (Tok.getKind() == tok::comma) { // Eat the comma. ConsumeToken(); if (Tok.getKind() != tok::identifier) { Diag(Tok, diag::err_expected_ident); ErrorEmitted = true; break; } IdentifierInfo *ParmII = Tok.getIdentifierInfo(); // Verify that the argument identifier has not already been mentioned. if (!ParamsSoFar.insert(ParmII).second) { Diag(Tok.getLocation(), diag::err_param_redefinition,ParmII->getName()); ParmII = 0; } // Remember this identifier in ParamInfo. if (ParmII) ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, Tok.getLocation(), 0)); // Eat the identifier. ConsumeToken(); } // K&R 'prototype'. IsVariadic = false; HasPrototype = false; } else { // Finally, a normal, non-empty parameter type list. // Enter function-declaration scope, limiting any declarators for struct // tags to the function prototype scope. // FIXME: is this needed? EnterScope(0); IsVariadic = false; while (1) { if (Tok.getKind() == tok::ellipsis) { IsVariadic = true; // Check to see if this is "void(...)" which is not allowed. if (ParamInfo.empty()) { // Otherwise, parse parameter type list. If it starts with an // ellipsis, diagnose the malformed function. Diag(Tok, diag::err_ellipsis_first_arg); IsVariadic = false; // Treat this like 'void()'. } // Consume the ellipsis. ConsumeToken(); break; } // Parse the declaration-specifiers. DeclSpec DS; ParseDeclarationSpecifiers(DS); // Parse the declarator. This is "PrototypeContext", because we must // accept either 'declarator' or 'abstract-declarator' here. Declarator ParmDecl(DS, Declarator::PrototypeContext); ParseDeclarator(ParmDecl); // Parse GNU attributes, if present. if (Tok.getKind() == tok::kw___attribute) ParseAttributes(); // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. // NOTE: we could trivially allow 'int foo(auto int X)' if we wanted. if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && DS.getStorageClassSpec() != DeclSpec::SCS_register) { Diag(DS.getStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } if (DS.isThreadSpecified()) { Diag(DS.getThreadSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } // Inform the actions module about the parameter declarator, so it gets // added to the current scope. Action::TypeResult ParamTy = Actions.ParseParamDeclaratorType(CurScope, ParmDecl); // Remember this parsed parameter in ParamInfo. IdentifierInfo *ParmII = ParmDecl.getIdentifier(); // Verify that the argument identifier has not already been mentioned. if (ParmII && !ParamsSoFar.insert(ParmII).second) { Diag(ParmDecl.getIdentifierLoc(), diag::err_param_redefinition, ParmII->getName()); ParmII = 0; } ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, ParmDecl.getIdentifierLoc(), ParamTy.Val)); // If the next token is a comma, consume it and keep reading arguments. if (Tok.getKind() != tok::comma) break; // Consume the comma. ConsumeToken(); } HasPrototype = true; // Leave prototype scope. ExitScope(); } // Remember that we parsed a function type, and remember the attributes. if (!ErrorEmitted) D.AddTypeInfo(DeclaratorChunk::getFunction(HasPrototype, IsVariadic, &ParamInfo[0], ParamInfo.size(), StartLoc)); // If we have the closing ')', eat it and we're done. if (Tok.getKind() == tok::r_paren) { ConsumeParen(); } else { // If an error happened earlier parsing something else in the proto, don't // issue another error. if (!ErrorEmitted) Diag(Tok, diag::err_expected_rparen); SkipUntil(tok::r_paren); } } /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' void Parser::ParseBracketDeclarator(Declarator &D) { SourceLocation StartLoc = ConsumeBracket(); // If valid, this location is the position where we read the 'static' keyword. SourceLocation StaticLoc; if (Tok.getKind() == tok::kw_static) StaticLoc = ConsumeToken(); // If there is a type-qualifier-list, read it now. DeclSpec DS; ParseTypeQualifierListOpt(DS); // If we haven't already read 'static', check to see if there is one after the // type-qualifier-list. if (!StaticLoc.isValid() && Tok.getKind() == tok::kw_static) StaticLoc = ConsumeToken(); // Handle "direct-declarator [ type-qual-list[opt] * ]". bool isStar = false; ExprResult NumElements(false); if (Tok.getKind() == tok::star) { // Remember the '*' token, in case we have to un-get it. LexerToken StarTok = Tok; ConsumeToken(); // Check that the ']' token is present to avoid incorrectly parsing // expressions starting with '*' as [*]. if (Tok.getKind() == tok::r_square) { if (StaticLoc.isValid()) Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); StaticLoc = SourceLocation(); // Drop the static. isStar = true; } else { // Otherwise, the * must have been some expression (such as '*ptr') that // started an assignment-expr. We already consumed the token, but now we // need to reparse it. This handles cases like 'X[*p + 4]' NumElements = ParseAssignmentExpressionWithLeadingStar(StarTok); } } else if (Tok.getKind() != tok::r_square) { // Parse the assignment-expression now. NumElements = ParseAssignmentExpression(); } // If there was an error parsing the assignment-expression, recover. if (NumElements.isInvalid) { // If the expression was invalid, skip it. SkipUntil(tok::r_square); return; } MatchRHSPunctuation(tok::r_square, StartLoc); // If C99 isn't enabled, emit an ext-warn if the arg list wasn't empty and if // it was not a constant expression. if (!getLang().C99) { // TODO: check C90 array constant exprness. if (isStar || StaticLoc.isValid() || 0/*TODO: NumElts is not a C90 constantexpr */) Diag(StartLoc, diag::ext_c99_array_usage); } // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), isStar, NumElements.Val, StartLoc)); }