//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Basic/Diagnostic.h" #include "clang/Parse/Scope.h" #include "ExtensionRAIIObject.h" #include "AstGuard.h" #include "llvm/ADT/SmallSet.h" using namespace clang; //===----------------------------------------------------------------------===// // C99 6.7: Declarations. //===----------------------------------------------------------------------===// /// ParseTypeName /// type-name: [C99 6.7.6] /// specifier-qualifier-list abstract-declarator[opt] /// /// Called type-id in C++. Parser::TypeTy *Parser::ParseTypeName() { // Parse the common declaration-specifiers piece. DeclSpec DS; ParseSpecifierQualifierList(DS); // Parse the abstract-declarator, if present. Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); ParseDeclarator(DeclaratorInfo); return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val; } /// ParseAttributes - Parse a non-empty attributes list. /// /// [GNU] attributes: /// attribute /// attributes attribute /// /// [GNU] attribute: /// '__attribute__' '(' '(' attribute-list ')' ')' /// /// [GNU] attribute-list: /// attrib /// attribute_list ',' attrib /// /// [GNU] attrib: /// empty /// attrib-name /// attrib-name '(' identifier ')' /// attrib-name '(' identifier ',' nonempty-expr-list ')' /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' /// /// [GNU] attrib-name: /// identifier /// typespec /// typequal /// storageclass /// /// FIXME: The GCC grammar/code for this construct implies we need two /// token lookahead. Comment from gcc: "If they start with an identifier /// which is followed by a comma or close parenthesis, then the arguments /// start with that identifier; otherwise they are an expression list." /// /// At the moment, I am not doing 2 token lookahead. I am also unaware of /// any attributes that don't work (based on my limited testing). Most /// attributes are very simple in practice. Until we find a bug, I don't see /// a pressing need to implement the 2 token lookahead. AttributeList *Parser::ParseAttributes() { assert(Tok.is(tok::kw___attribute) && "Not an attribute list!"); AttributeList *CurrAttr = 0; while (Tok.is(tok::kw___attribute)) { ConsumeToken(); if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "attribute")) { SkipUntil(tok::r_paren, true); // skip until ) or ; return CurrAttr; } if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { SkipUntil(tok::r_paren, true); // skip until ) or ; return CurrAttr; } // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) while (Tok.is(tok::identifier) || isDeclarationSpecifier() || Tok.is(tok::comma)) { if (Tok.is(tok::comma)) { // allows for empty/non-empty attributes. ((__vector_size__(16),,,,)) ConsumeToken(); continue; } // we have an identifier or declaration specifier (const, int, etc.) IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); // check if we have a "paramterized" attribute if (Tok.is(tok::l_paren)) { ConsumeParen(); // ignore the left paren loc for now if (Tok.is(tok::identifier)) { IdentifierInfo *ParmName = Tok.getIdentifierInfo(); SourceLocation ParmLoc = ConsumeToken(); if (Tok.is(tok::r_paren)) { // __attribute__(( mode(byte) )) ConsumeParen(); // ignore the right paren loc for now CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName, ParmLoc, 0, 0, CurrAttr); } else if (Tok.is(tok::comma)) { ConsumeToken(); // __attribute__(( format(printf, 1, 2) )) ExprVector ArgExprs(Actions); bool ArgExprsOk = true; // now parse the non-empty comma separated list of expressions while (1) { OwningExprResult ArgExpr(ParseAssignmentExpression()); if (ArgExpr.isInvalid()) { ArgExprsOk = false; SkipUntil(tok::r_paren); break; } else { ArgExprs.push_back(ArgExpr.release()); } if (Tok.isNot(tok::comma)) break; ConsumeToken(); // Eat the comma, move to the next argument } if (ArgExprsOk && Tok.is(tok::r_paren)) { ConsumeParen(); // ignore the right paren loc for now CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr); } } } else { // not an identifier // parse a possibly empty comma separated list of expressions if (Tok.is(tok::r_paren)) { // __attribute__(( nonnull() )) ConsumeParen(); // ignore the right paren loc for now CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(), 0, 0, CurrAttr); } else { // __attribute__(( aligned(16) )) ExprVector ArgExprs(Actions); bool ArgExprsOk = true; // now parse the list of expressions while (1) { OwningExprResult ArgExpr(ParseAssignmentExpression()); if (ArgExpr.isInvalid()) { ArgExprsOk = false; SkipUntil(tok::r_paren); break; } else { ArgExprs.push_back(ArgExpr.release()); } if (Tok.isNot(tok::comma)) break; ConsumeToken(); // Eat the comma, move to the next argument } // Match the ')'. if (ArgExprsOk && Tok.is(tok::r_paren)) { ConsumeParen(); // ignore the right paren loc for now CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(), ArgExprs.take(), ArgExprs.size(), CurrAttr); } } } } else { CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(), 0, 0, CurrAttr); } } if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) SkipUntil(tok::r_paren, false); if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) SkipUntil(tok::r_paren, false); } return CurrAttr; } /// ParseDeclaration - Parse a full 'declaration', which consists of /// declaration-specifiers, some number of declarators, and a semicolon. /// 'Context' should be a Declarator::TheContext value. /// /// declaration: [C99 6.7] /// block-declaration -> /// simple-declaration /// others [FIXME] /// [C++] template-declaration /// [C++] namespace-definition /// others... [FIXME] /// Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) { switch (Tok.getKind()) { case tok::kw_export: case tok::kw_template: return ParseTemplateDeclaration(Context); case tok::kw_namespace: return ParseNamespace(Context); default: return ParseSimpleDeclaration(Context); } } /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] /// declaration-specifiers init-declarator-list[opt] ';' ///[C90/C++]init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive [TODO] Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) { // Parse the common declaration-specifiers piece. DeclSpec DS; ParseDeclarationSpecifiers(DS); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { ConsumeToken(); return Actions.ParsedFreeStandingDeclSpec(CurScope, DS); } Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context); ParseDeclarator(DeclaratorInfo); return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo); } /// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after /// parsing 'declaration-specifiers declarator'. This method is split out this /// way to handle the ambiguity between top-level function-definitions and /// declarations. /// /// init-declarator-list: [C99 6.7] /// init-declarator /// init-declarator-list ',' init-declarator /// init-declarator: [C99 6.7] /// declarator /// declarator '=' initializer /// [GNU] declarator simple-asm-expr[opt] attributes[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer /// [C++] declarator initializer[opt] /// /// [C++] initializer: /// [C++] '=' initializer-clause /// [C++] '(' expression-list ')' /// Parser::DeclTy *Parser:: ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) { // Declarators may be grouped together ("int X, *Y, Z();"). Provide info so // that they can be chained properly if the actions want this. Parser::DeclTy *LastDeclInGroup = 0; // At this point, we know that it is not a function definition. Parse the // rest of the init-declarator-list. while (1) { // If a simple-asm-expr is present, parse it. if (Tok.is(tok::kw_asm)) { OwningExprResult AsmLabel(ParseSimpleAsm()); if (AsmLabel.isInvalid()) { SkipUntil(tok::semi); return 0; } D.setAsmLabel(AsmLabel.release()); } // If attributes are present, parse them. if (Tok.is(tok::kw___attribute)) D.AddAttributes(ParseAttributes()); // Inform the current actions module that we just parsed this declarator. LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup); // Parse declarator '=' initializer. if (Tok.is(tok::equal)) { ConsumeToken(); OwningExprResult Init(ParseInitializer()); if (Init.isInvalid()) { SkipUntil(tok::semi); return 0; } Actions.AddInitializerToDecl(LastDeclInGroup, move_convert(Init)); } else if (Tok.is(tok::l_paren)) { // Parse C++ direct initializer: '(' expression-list ')' SourceLocation LParenLoc = ConsumeParen(); ExprVector Exprs(Actions); CommaLocsTy CommaLocs; bool InvalidExpr = false; if (ParseExpressionList(Exprs, CommaLocs)) { SkipUntil(tok::r_paren); InvalidExpr = true; } // Match the ')'. SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); if (!InvalidExpr) { assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() && "Unexpected number of commas!"); Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc, Exprs.take(), Exprs.size(), &CommaLocs[0], RParenLoc); } } else { Actions.ActOnUninitializedDecl(LastDeclInGroup); } // If we don't have a comma, it is either the end of the list (a ';') or an // error, bail out. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. D.clear(); // Accept attributes in an init-declarator. In the first declarator in a // declaration, these would be part of the declspec. In subsequent // declarators, they become part of the declarator itself, so that they // don't apply to declarators after *this* one. Examples: // short __attribute__((common)) var; -> declspec // short var __attribute__((common)); -> declarator // short x, __attribute__((common)) var; -> declarator if (Tok.is(tok::kw___attribute)) D.AddAttributes(ParseAttributes()); ParseDeclarator(D); } if (Tok.is(tok::semi)) { ConsumeToken(); return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup); } // If this is an ObjC2 for-each loop, this is a successful declarator // parse. The syntax for these looks like: // 'for' '(' declaration 'in' expr ')' statement if (D.getContext() == Declarator::ForContext && isTokIdentifier_in()) { return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup); } Diag(Tok, diag::err_parse_error); // Skip to end of block or statement SkipUntil(tok::r_brace, true, true); if (Tok.is(tok::semi)) ConsumeToken(); return 0; } /// ParseSpecifierQualifierList /// specifier-qualifier-list: /// type-specifier specifier-qualifier-list[opt] /// type-qualifier specifier-qualifier-list[opt] /// [GNU] attributes specifier-qualifier-list[opt] /// void Parser::ParseSpecifierQualifierList(DeclSpec &DS) { /// specifier-qualifier-list is a subset of declaration-specifiers. Just /// parse declaration-specifiers and complain about extra stuff. ParseDeclarationSpecifiers(DS); // Validate declspec for type-name. unsigned Specs = DS.getParsedSpecifiers(); if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers()) Diag(Tok, diag::err_typename_requires_specqual); // Issue diagnostic and remove storage class if present. if (Specs & DeclSpec::PQ_StorageClassSpecifier) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); else Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass); DS.ClearStorageClassSpecs(); } // Issue diagnostic and remove function specfier if present. if (Specs & DeclSpec::PQ_FunctionSpecifier) { if (DS.isInlineSpecified()) Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isVirtualSpecified()) Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isExplicitSpecified()) Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); DS.ClearFunctionSpecs(); } } /// ParseDeclarationSpecifiers /// declaration-specifiers: [C99 6.7] /// storage-class-specifier declaration-specifiers[opt] /// type-specifier declaration-specifiers[opt] /// [C99] function-specifier declaration-specifiers[opt] /// [GNU] attributes declaration-specifiers[opt] /// /// storage-class-specifier: [C99 6.7.1] /// 'typedef' /// 'extern' /// 'static' /// 'auto' /// 'register' /// [C++] 'mutable' /// [GNU] '__thread' /// function-specifier: [C99 6.7.4] /// [C99] 'inline' /// [C++] 'virtual' /// [C++] 'explicit' /// void Parser::ParseDeclarationSpecifiers(DeclSpec &DS) { DS.SetRangeStart(Tok.getLocation()); while (1) { int isInvalid = false; const char *PrevSpec = 0; SourceLocation Loc = Tok.getLocation(); // Only annotate C++ scope. Allow class-name as an identifier in case // it's a constructor. if (getLang().CPlusPlus) TryAnnotateCXXScopeToken(); switch (Tok.getKind()) { default: // Try to parse a type-specifier; if we found one, continue. If it's not // a type, this falls through. if (MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec)) { continue; } DoneWithDeclSpec: // If this is not a declaration specifier token, we're done reading decl // specifiers. First verify that DeclSpec's are consistent. DS.Finish(Diags, PP.getSourceManager(), getLang()); return; case tok::annot_cxxscope: { if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; // We are looking for a qualified typename. if (NextToken().isNot(tok::identifier)) goto DoneWithDeclSpec; CXXScopeSpec SS; SS.setScopeRep(Tok.getAnnotationValue()); SS.setRange(Tok.getAnnotationRange()); // If the next token is the name of the class type that the C++ scope // denotes, followed by a '(', then this is a constructor declaration. // We're done with the decl-specifiers. if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(), CurScope, &SS) && GetLookAheadToken(2).is(tok::l_paren)) goto DoneWithDeclSpec; TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(), CurScope, &SS); if (TypeRep == 0) goto DoneWithDeclSpec; ConsumeToken(); // The C++ scope. isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec, TypeRep); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The typename. continue; } // typedef-name case tok::identifier: { // This identifier can only be a typedef name if we haven't already seen // a type-specifier. Without this check we misparse: // typedef int X; struct Y { short X; }; as 'short int'. if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; // It has to be available as a typedef too! TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope); if (TypeRep == 0) goto DoneWithDeclSpec; // C++: If the identifier is actually the name of the class type // being defined and the next token is a '(', then this is a // constructor declaration. We're done with the decl-specifiers // and will treat this token as an identifier. if (getLang().CPlusPlus && CurScope->isCXXClassScope() && Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) && NextToken().getKind() == tok::l_paren) goto DoneWithDeclSpec; isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec, TypeRep); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The identifier // Objective-C supports syntax of the form 'id' where 'id' // is a specific typedef and 'itf' where 'itf' is an // Objective-C interface. If we don't have Objective-C or a '<', this is // just a normal reference to a typedef name. if (!Tok.is(tok::less) || !getLang().ObjC1) continue; SourceLocation EndProtoLoc; llvm::SmallVector ProtocolDecl; ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc); DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size()); DS.SetRangeEnd(EndProtoLoc); // Need to support trailing type qualifiers (e.g. "id

const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // GNU attributes support. case tok::kw___attribute: DS.AddAttributes(ParseAttributes()); continue; // storage-class-specifier case tok::kw_typedef: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec); break; case tok::kw_extern: if (DS.isThreadSpecified()) Diag(Tok, diag::ext_thread_before) << "extern"; isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec); break; case tok::kw___private_extern__: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc, PrevSpec); break; case tok::kw_static: if (DS.isThreadSpecified()) Diag(Tok, diag::ext_thread_before) << "static"; isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec); break; case tok::kw_auto: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec); break; case tok::kw_register: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec); break; case tok::kw_mutable: isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec); break; case tok::kw___thread: isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2; break; continue; // function-specifier case tok::kw_inline: isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec); break; case tok::kw_virtual: isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec); break; case tok::kw_explicit: isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec); break; case tok::less: // GCC ObjC supports types like "" as a synonym for // "id". This is hopelessly old fashioned and dangerous, // but we support it. if (DS.hasTypeSpecifier() || !getLang().ObjC1) goto DoneWithDeclSpec; { SourceLocation EndProtoLoc; llvm::SmallVector ProtocolDecl; ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc); DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size()); DS.SetRangeEnd(EndProtoLoc); Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id) << SourceRange(Loc, EndProtoLoc); // Need to support trailing type qualifiers (e.g. "id

const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); // Pick between error or extwarn. unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination : diag::ext_duplicate_declspec; Diag(Tok, DiagID) << PrevSpec; } DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); } } /// MaybeParseTypeSpecifier - Try to parse a single type-specifier. We /// primarily follow the C++ grammar with additions for C99 and GNU, /// which together subsume the C grammar. Note that the C++ /// type-specifier also includes the C type-qualifier (for const, /// volatile, and C99 restrict). Returns true if a type-specifier was /// found (and parsed), false otherwise. /// /// type-specifier: [C++ 7.1.5] /// simple-type-specifier /// class-specifier /// enum-specifier /// elaborated-type-specifier [TODO] /// cv-qualifier /// /// cv-qualifier: [C++ 7.1.5.1] /// 'const' /// 'volatile' /// [C99] 'restrict' /// /// simple-type-specifier: [ C++ 7.1.5.2] /// '::'[opt] nested-name-specifier[opt] type-name [TODO] /// '::'[opt] nested-name-specifier 'template' template-id [TODO] /// 'char' /// 'wchar_t' /// 'bool' /// 'short' /// 'int' /// 'long' /// 'signed' /// 'unsigned' /// 'float' /// 'double' /// 'void' /// [C99] '_Bool' /// [C99] '_Complex' /// [C99] '_Imaginary' // Removed in TC2? /// [GNU] '_Decimal32' /// [GNU] '_Decimal64' /// [GNU] '_Decimal128' /// [GNU] typeof-specifier /// [OBJC] class-name objc-protocol-refs[opt] [TODO] /// [OBJC] typedef-name objc-protocol-refs[opt] [TODO] bool Parser::MaybeParseTypeSpecifier(DeclSpec &DS, int& isInvalid, const char *&PrevSpec) { // Annotate typenames and C++ scope specifiers. TryAnnotateTypeOrScopeToken(); SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { // simple-type-specifier: case tok::annot_qualtypename: { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec, Tok.getAnnotationValue()); DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeToken(); // The typename // Objective-C supports syntax of the form 'id' where 'id' // is a specific typedef and 'itf' where 'itf' is an // Objective-C interface. If we don't have Objective-C or a '<', this is // just a normal reference to a typedef name. if (!Tok.is(tok::less) || !getLang().ObjC1) return true; SourceLocation EndProtoLoc; llvm::SmallVector ProtocolDecl; ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc); DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size()); DS.SetRangeEnd(EndProtoLoc); return true; } case tok::kw_short: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec); break; case tok::kw_long: if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec); else isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec); break; case tok::kw_signed: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec); break; case tok::kw_unsigned: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec); break; case tok::kw__Complex: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec); break; case tok::kw__Imaginary: isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec); break; case tok::kw_void: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec); break; case tok::kw_char: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec); break; case tok::kw_int: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec); break; case tok::kw_float: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec); break; case tok::kw_double: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec); break; case tok::kw_wchar_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec); break; case tok::kw_bool: case tok::kw__Bool: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec); break; case tok::kw__Decimal32: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec); break; case tok::kw__Decimal64: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec); break; case tok::kw__Decimal128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec); break; // class-specifier: case tok::kw_class: case tok::kw_struct: case tok::kw_union: ParseClassSpecifier(DS); return true; // enum-specifier: case tok::kw_enum: ParseEnumSpecifier(DS); return true; // cv-qualifier: case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, getLang())*2; break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, getLang())*2; break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, getLang())*2; break; // GNU typeof support. case tok::kw_typeof: ParseTypeofSpecifier(DS); return true; default: // Not a type-specifier; do nothing. return false; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); // Pick between error or extwarn. unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination : diag::ext_duplicate_declspec; Diag(Tok, DiagID) << PrevSpec; } DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // whatever we parsed above. return true; } /// ParseStructDeclaration - Parse a struct declaration without the terminating /// semicolon. /// /// struct-declaration: /// specifier-qualifier-list struct-declarator-list /// [GNU] __extension__ struct-declaration /// [GNU] specifier-qualifier-list /// struct-declarator-list: /// struct-declarator /// struct-declarator-list ',' struct-declarator /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator /// struct-declarator: /// declarator /// [GNU] declarator attributes[opt] /// declarator[opt] ':' constant-expression /// [GNU] declarator[opt] ':' constant-expression attributes[opt] /// void Parser:: ParseStructDeclaration(DeclSpec &DS, llvm::SmallVectorImpl &Fields) { if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseStructDeclaration(DS, Fields); } // Parse the common specifier-qualifiers-list piece. SourceLocation DSStart = Tok.getLocation(); ParseSpecifierQualifierList(DS); // If there are no declarators, issue a warning. if (Tok.is(tok::semi)) { Diag(DSStart, diag::w_no_declarators); return; } // Read struct-declarators until we find the semicolon. Fields.push_back(FieldDeclarator(DS)); while (1) { FieldDeclarator &DeclaratorInfo = Fields.back(); /// struct-declarator: declarator /// struct-declarator: declarator[opt] ':' constant-expression if (Tok.isNot(tok::colon)) ParseDeclarator(DeclaratorInfo.D); if (Tok.is(tok::colon)) { ConsumeToken(); OwningExprResult Res(ParseConstantExpression()); if (Res.isInvalid()) SkipUntil(tok::semi, true, true); else DeclaratorInfo.BitfieldSize = Res.release(); } // If attributes exist after the declarator, parse them. if (Tok.is(tok::kw___attribute)) DeclaratorInfo.D.AddAttributes(ParseAttributes()); // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (Tok.isNot(tok::comma)) return; // Consume the comma. ConsumeToken(); // Parse the next declarator. Fields.push_back(FieldDeclarator(DS)); // Attributes are only allowed on the second declarator. if (Tok.is(tok::kw___attribute)) Fields.back().D.AddAttributes(ParseAttributes()); } } /// ParseStructUnionBody /// struct-contents: /// struct-declaration-list /// [EXT] empty /// [GNU] "struct-declaration-list" without terminatoring ';' /// struct-declaration-list: /// struct-declaration /// struct-declaration-list struct-declaration /// [OBC] '@' 'defs' '(' class-name ')' /// void Parser::ParseStructUnionBody(SourceLocation RecordLoc, unsigned TagType, DeclTy *TagDecl) { SourceLocation LBraceLoc = ConsumeBrace(); // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in // C++. if (Tok.is(tok::r_brace) && !getLang().CPlusPlus) Diag(Tok, diag::ext_empty_struct_union_enum) << DeclSpec::getSpecifierName((DeclSpec::TST)TagType); llvm::SmallVector FieldDecls; llvm::SmallVector FieldDeclarators; // While we still have something to read, read the declarations in the struct. while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one struct-declaration. // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { Diag(Tok, diag::ext_extra_struct_semi); ConsumeToken(); continue; } // Parse all the comma separated declarators. DeclSpec DS; FieldDeclarators.clear(); if (!Tok.is(tok::at)) { ParseStructDeclaration(DS, FieldDeclarators); // Convert them all to fields. for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) { FieldDeclarator &FD = FieldDeclarators[i]; // Install the declarator into the current TagDecl. DeclTy *Field = Actions.ActOnField(CurScope, TagDecl, DS.getSourceRange().getBegin(), FD.D, FD.BitfieldSize); FieldDecls.push_back(Field); } } else { // Handle @defs ConsumeToken(); if (!Tok.isObjCAtKeyword(tok::objc_defs)) { Diag(Tok, diag::err_unexpected_at); SkipUntil(tok::semi, true, true); continue; } ConsumeToken(); ExpectAndConsume(tok::l_paren, diag::err_expected_lparen); if (!Tok.is(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::semi, true, true); continue; } llvm::SmallVector Fields; Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(), Tok.getIdentifierInfo(), Fields); FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end()); ConsumeToken(); ExpectAndConsume(tok::r_paren, diag::err_expected_rparen); } if (Tok.is(tok::semi)) { ConsumeToken(); } else if (Tok.is(tok::r_brace)) { Diag(Tok, diag::ext_expected_semi_decl_list); break; } else { Diag(Tok, diag::err_expected_semi_decl_list); // Skip to end of block or statement SkipUntil(tok::r_brace, true, true); } } SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc); AttributeList *AttrList = 0; // If attributes exist after struct contents, parse them. if (Tok.is(tok::kw___attribute)) AttrList = ParseAttributes(); Actions.ActOnFields(CurScope, RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(), LBraceLoc, RBraceLoc, AttrList); } /// ParseEnumSpecifier /// enum-specifier: [C99 6.7.2.2] /// 'enum' identifier[opt] '{' enumerator-list '}' ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' attributes[opt] /// 'enum' identifier /// [GNU] 'enum' attributes[opt] identifier /// /// [C++] elaborated-type-specifier: /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier /// void Parser::ParseEnumSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_enum) && "Not an enum specifier"); SourceLocation StartLoc = ConsumeToken(); // Parse the tag portion of this. AttributeList *Attr = 0; // If attributes exist after tag, parse them. if (Tok.is(tok::kw___attribute)) Attr = ParseAttributes(); CXXScopeSpec SS; if (getLang().CPlusPlus && MaybeParseCXXScopeSpecifier(SS)) { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); if (Tok.isNot(tok::l_brace)) { // Has no name and is not a definition. // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, true); return; } } } // Must have either 'enum name' or 'enum {...}'. if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) { Diag(Tok, diag::err_expected_ident_lbrace); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, true); return; } // If an identifier is present, consume and remember it. IdentifierInfo *Name = 0; SourceLocation NameLoc; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); } // There are three options here. If we have 'enum foo;', then this is a // forward declaration. If we have 'enum foo {...' then this is a // definition. Otherwise we have something like 'enum foo xyz', a reference. // // This is needed to handle stuff like this right (C99 6.7.2.3p11): // enum foo {..}; void bar() { enum foo; } <- new foo in bar. // enum foo {..}; void bar() { enum foo x; } <- use of old foo. // Action::TagKind TK; if (Tok.is(tok::l_brace)) TK = Action::TK_Definition; else if (Tok.is(tok::semi)) TK = Action::TK_Declaration; else TK = Action::TK_Reference; DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc, SS, Name, NameLoc, Attr); if (Tok.is(tok::l_brace)) ParseEnumBody(StartLoc, TagDecl); // TODO: semantic analysis on the declspec for enums. const char *PrevSpec = 0; if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl)) Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec; } /// ParseEnumBody - Parse a {} enclosed enumerator-list. /// enumerator-list: /// enumerator /// enumerator-list ',' enumerator /// enumerator: /// enumeration-constant /// enumeration-constant '=' constant-expression /// enumeration-constant: /// identifier /// void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) { SourceLocation LBraceLoc = ConsumeBrace(); // C does not allow an empty enumerator-list, C++ does [dcl.enum]. if (Tok.is(tok::r_brace) && !getLang().CPlusPlus) Diag(Tok, diag::ext_empty_struct_union_enum) << "enum"; llvm::SmallVector EnumConstantDecls; DeclTy *LastEnumConstDecl = 0; // Parse the enumerator-list. while (Tok.is(tok::identifier)) { IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); SourceLocation EqualLoc; OwningExprResult AssignedVal(Actions); if (Tok.is(tok::equal)) { EqualLoc = ConsumeToken(); AssignedVal = ParseConstantExpression(); if (AssignedVal.isInvalid()) SkipUntil(tok::comma, tok::r_brace, true, true); } // Install the enumerator constant into EnumDecl. DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl, LastEnumConstDecl, IdentLoc, Ident, EqualLoc, AssignedVal.release()); EnumConstantDecls.push_back(EnumConstDecl); LastEnumConstDecl = EnumConstDecl; if (Tok.isNot(tok::comma)) break; SourceLocation CommaLoc = ConsumeToken(); if (Tok.isNot(tok::identifier) && !getLang().C99) Diag(CommaLoc, diag::ext_c99_enumerator_list_comma); } // Eat the }. MatchRHSPunctuation(tok::r_brace, LBraceLoc); Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0], EnumConstantDecls.size()); DeclTy *AttrList = 0; // If attributes exist after the identifier list, parse them. if (Tok.is(tok::kw___attribute)) AttrList = ParseAttributes(); // FIXME: where do they do? } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a type-qualifier-list. bool Parser::isTypeQualifier() const { switch (Tok.getKind()) { default: return false; // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: return true; } } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a specifier-qualifier-list. bool Parser::isTypeSpecifierQualifier() { // Annotate typenames and C++ scope specifiers. TryAnnotateTypeOrScopeToken(); switch (Tok.getKind()) { default: return false; // GNU attributes support. case tok::kw___attribute: // GNU typeof support. case tok::kw_typeof: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // typedef-name case tok::annot_qualtypename: return true; // GNU ObjC bizarre protocol extension: with implicit 'id'. case tok::less: return getLang().ObjC1; } } /// isDeclarationSpecifier() - Return true if the current token is part of a /// declaration specifier. bool Parser::isDeclarationSpecifier() { // Annotate typenames and C++ scope specifiers. TryAnnotateTypeOrScopeToken(); switch (Tok.getKind()) { default: return false; // storage-class-specifier case tok::kw_typedef: case tok::kw_extern: case tok::kw___private_extern__: case tok::kw_static: case tok::kw_auto: case tok::kw_register: case tok::kw___thread: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: // function-specifier case tok::kw_inline: case tok::kw_virtual: case tok::kw_explicit: // typedef-name case tok::annot_qualtypename: // GNU typeof support. case tok::kw_typeof: // GNU attributes. case tok::kw___attribute: return true; // GNU ObjC bizarre protocol extension: with implicit 'id'. case tok::less: return getLang().ObjC1; } } /// ParseTypeQualifierListOpt /// type-qualifier-list: [C99 6.7.5] /// type-qualifier /// [GNU] attributes [ only if AttributesAllowed=true ] /// type-qualifier-list type-qualifier /// [GNU] type-qualifier-list attributes [ only if AttributesAllowed=true ] /// void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) { while (1) { int isInvalid = false; const char *PrevSpec = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, getLang())*2; break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, getLang())*2; break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, getLang())*2; break; case tok::kw___attribute: if (AttributesAllowed) { DS.AddAttributes(ParseAttributes()); continue; // do *not* consume the next token! } // otherwise, FALL THROUGH! default: // If this is not a type-qualifier token, we're done reading type // qualifiers. First verify that DeclSpec's are consistent. DS.Finish(Diags, PP.getSourceManager(), getLang()); return; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); // Pick between error or extwarn. unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination : diag::ext_duplicate_declspec; Diag(Tok, DiagID) << PrevSpec; } ConsumeToken(); } } /// ParseDeclarator - Parse and verify a newly-initialized declarator. /// void Parser::ParseDeclarator(Declarator &D) { /// This implements the 'declarator' production in the C grammar, then checks /// for well-formedness and issues diagnostics. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); } /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator /// is parsed by the function passed to it. Pass null, and the direct-declarator /// isn't parsed at all, making this function effectively parse the C++ /// ptr-operator production. /// /// declarator: [C99 6.7.5] /// pointer[opt] direct-declarator /// [C++] '&' declarator [C++ 8p4, dcl.decl] /// [GNU] '&' restrict[opt] attributes[opt] declarator /// /// pointer: [C99 6.7.5] /// '*' type-qualifier-list[opt] /// '*' type-qualifier-list[opt] pointer /// /// ptr-operator: /// '*' cv-qualifier-seq[opt] /// '&' /// [GNU] '&' restrict[opt] attributes[opt] /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO] void Parser::ParseDeclaratorInternal(Declarator &D, DirectDeclParseFunction DirectDeclParser) { tok::TokenKind Kind = Tok.getKind(); // Not a pointer, C++ reference, or block. if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) && (Kind != tok::caret || !getLang().Blocks)) { if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference. SourceLocation Loc = ConsumeToken(); // Eat the * or &. if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) { // Is a pointer. DeclSpec DS; ParseTypeQualifierListOpt(DS); // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (Kind == tok::star) // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc, DS.TakeAttributes())); else // Remember that we parsed a Block type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc)); } else { // Is a reference DeclSpec DS; // C++ 8.3.2p1: cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef or of a // template type argument, in which case the cv-qualifiers are ignored. // // [GNU] Retricted references are allowed. // [GNU] Attributes on references are allowed. ParseTypeQualifierListOpt(DS); if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(DS.getConstSpecLoc(), diag::err_invalid_reference_qualifier_application) << "const"; if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) Diag(DS.getVolatileSpecLoc(), diag::err_invalid_reference_qualifier_application) << "volatile"; } // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (D.getNumTypeObjects() > 0) { // C++ [dcl.ref]p4: There shall be no references to references. DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); if (InnerChunk.Kind == DeclaratorChunk::Reference) { if (const IdentifierInfo *II = D.getIdentifier()) Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << II; else Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << "type name"; // Once we've complained about the reference-to-reference, we // can go ahead and build the (technically ill-formed) // declarator: reference collapsing will take care of it. } } // Remember that we parsed a reference type. It doesn't have type-quals. D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, DS.TakeAttributes())); } } /// ParseDirectDeclarator /// direct-declarator: [C99 6.7.5] /// [C99] identifier /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// [C++] direct-declarator '(' parameter-declaration-clause ')' /// cv-qualifier-seq[opt] exception-specification[opt] /// [C++] declarator-id /// /// declarator-id: [C++ 8] /// id-expression /// '::'[opt] nested-name-specifier[opt] type-name /// /// id-expression: [C++ 5.1] /// unqualified-id /// qualified-id [TODO] /// /// unqualified-id: [C++ 5.1] /// identifier /// operator-function-id /// conversion-function-id [TODO] /// '~' class-name /// template-id [TODO] /// void Parser::ParseDirectDeclarator(Declarator &D) { DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); if (getLang().CPlusPlus) { if (D.mayHaveIdentifier()) { bool afterCXXScope = MaybeParseCXXScopeSpecifier(D.getCXXScopeSpec()); if (afterCXXScope) { // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } if (Tok.is(tok::identifier)) { assert(Tok.getIdentifierInfo() && "Not an identifier?"); // Determine whether this identifier is a C++ constructor name or // a normal identifier. if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope)) { D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope), Tok.getLocation()); } else D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } if (Tok.is(tok::tilde)) { // This should be a C++ destructor. SourceLocation TildeLoc = ConsumeToken(); if (Tok.is(tok::identifier)) { if (TypeTy *Type = ParseClassName()) D.setDestructor(Type, TildeLoc); else D.SetIdentifier(0, TildeLoc); } else { Diag(Tok, diag::err_expected_class_name); D.SetIdentifier(0, TildeLoc); } goto PastIdentifier; } // If we reached this point, token is not identifier and not '~'. if (afterCXXScope) { Diag(Tok, diag::err_expected_unqualified_id); D.SetIdentifier(0, Tok.getLocation()); D.setInvalidType(true); goto PastIdentifier; } } if (Tok.is(tok::kw_operator)) { SourceLocation OperatorLoc = Tok.getLocation(); // First try the name of an overloaded operator if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) { D.setOverloadedOperator(Op, OperatorLoc); } else { // This must be a conversion function (C++ [class.conv.fct]). if (TypeTy *ConvType = ParseConversionFunctionId()) D.setConversionFunction(ConvType, OperatorLoc); else D.SetIdentifier(0, Tok.getLocation()); } goto PastIdentifier; } } // If we reached this point, we are either in C/ObjC or the token didn't // satisfy any of the C++-specific checks. if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { assert(!getLang().CPlusPlus && "There's a C++-specific check for tok::identifier above"); assert(Tok.getIdentifierInfo() && "Not an identifier?"); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); ConsumeToken(); } else if (Tok.is(tok::l_paren)) { // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' // Example: 'char (*X)' or 'int (*XX)(void)' ParseParenDeclarator(D); } else if (D.mayOmitIdentifier()) { // This could be something simple like "int" (in which case the declarator // portion is empty), if an abstract-declarator is allowed. D.SetIdentifier(0, Tok.getLocation()); } else { if (getLang().CPlusPlus) Diag(Tok, diag::err_expected_unqualified_id); else Diag(Tok, diag::err_expected_ident_lparen); D.SetIdentifier(0, Tok.getLocation()); D.setInvalidType(true); } PastIdentifier: assert(D.isPastIdentifier() && "Haven't past the location of the identifier yet?"); while (1) { if (Tok.is(tok::l_paren)) { // The paren may be part of a C++ direct initializer, eg. "int x(1);". // In such a case, check if we actually have a function declarator; if it // is not, the declarator has been fully parsed. if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { // When not in file scope, warn for ambiguous function declarators, just // in case the author intended it as a variable definition. bool warnIfAmbiguous = D.getContext() != Declarator::FileContext; if (!isCXXFunctionDeclarator(warnIfAmbiguous)) break; } ParseFunctionDeclarator(ConsumeParen(), D); } else if (Tok.is(tok::l_square)) { ParseBracketDeclarator(D); } else { break; } } } /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is /// only called before the identifier, so these are most likely just grouping /// parens for precedence. If we find that these are actually function /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. /// /// direct-declarator: /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// void Parser::ParseParenDeclarator(Declarator &D) { SourceLocation StartLoc = ConsumeParen(); assert(!D.isPastIdentifier() && "Should be called before passing identifier"); // Eat any attributes before we look at whether this is a grouping or function // declarator paren. If this is a grouping paren, the attribute applies to // the type being built up, for example: // int (__attribute__(()) *x)(long y) // If this ends up not being a grouping paren, the attribute applies to the // first argument, for example: // int (__attribute__(()) int x) // In either case, we need to eat any attributes to be able to determine what // sort of paren this is. // AttributeList *AttrList = 0; bool RequiresArg = false; if (Tok.is(tok::kw___attribute)) { AttrList = ParseAttributes(); // We require that the argument list (if this is a non-grouping paren) be // present even if the attribute list was empty. RequiresArg = true; } // If we haven't past the identifier yet (or where the identifier would be // stored, if this is an abstract declarator), then this is probably just // grouping parens. However, if this could be an abstract-declarator, then // this could also be the start of function arguments (consider 'void()'). bool isGrouping; if (!D.mayOmitIdentifier()) { // If this can't be an abstract-declarator, this *must* be a grouping // paren, because we haven't seen the identifier yet. isGrouping = true; } else if (Tok.is(tok::r_paren) || // 'int()' is a function. (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...) isDeclarationSpecifier()) { // 'int(int)' is a function. // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is // considered to be a type, not a K&R identifier-list. isGrouping = false; } else { // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. isGrouping = true; } // If this is a grouping paren, handle: // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' if (isGrouping) { bool hadGroupingParens = D.hasGroupingParens(); D.setGroupingParens(true); if (AttrList) D.AddAttributes(AttrList); ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Match the ')'. MatchRHSPunctuation(tok::r_paren, StartLoc); D.setGroupingParens(hadGroupingParens); return; } // Okay, if this wasn't a grouping paren, it must be the start of a function // argument list. Recognize that this declarator will never have an // identifier (and remember where it would have been), then call into // ParseFunctionDeclarator to handle of argument list. D.SetIdentifier(0, Tok.getLocation()); ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg); } /// ParseFunctionDeclarator - We are after the identifier and have parsed the /// declarator D up to a paren, which indicates that we are parsing function /// arguments. /// /// If AttrList is non-null, then the caller parsed those arguments immediately /// after the open paren - they should be considered to be the first argument of /// a parameter. If RequiresArg is true, then the first argument of the /// function is required to be present and required to not be an identifier /// list. /// /// This method also handles this portion of the grammar: /// parameter-type-list: [C99 6.7.5] /// parameter-list /// parameter-list ',' '...' /// /// parameter-list: [C99 6.7.5] /// parameter-declaration /// parameter-list ',' parameter-declaration /// /// parameter-declaration: [C99 6.7.5] /// declaration-specifiers declarator /// [C++] declaration-specifiers declarator '=' assignment-expression /// [GNU] declaration-specifiers declarator attributes /// declaration-specifiers abstract-declarator[opt] /// [C++] declaration-specifiers abstract-declarator[opt] /// '=' assignment-expression /// [GNU] declaration-specifiers abstract-declarator[opt] attributes /// /// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]" /// and "exception-specification[opt]"(TODO). /// void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D, AttributeList *AttrList, bool RequiresArg) { // lparen is already consumed! assert(D.isPastIdentifier() && "Should not call before identifier!"); // This parameter list may be empty. if (Tok.is(tok::r_paren)) { if (RequiresArg) { Diag(Tok, diag::err_argument_required_after_attribute); delete AttrList; } ConsumeParen(); // Eat the closing ')'. // cv-qualifier-seq[opt]. DeclSpec DS; if (getLang().CPlusPlus) { ParseTypeQualifierListOpt(DS, false /*no attributes*/); // Parse exception-specification[opt]. if (Tok.is(tok::kw_throw)) ParseExceptionSpecification(); } // Remember that we parsed a function type, and remember the attributes. // int() -> no prototype, no '...'. D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus, /*variadic*/ false, /*arglist*/ 0, 0, DS.getTypeQualifiers(), LParenLoc)); return; } // Alternatively, this parameter list may be an identifier list form for a // K&R-style function: void foo(a,b,c) if (!getLang().CPlusPlus && Tok.is(tok::identifier) && // K&R identifier lists can't have typedefs as identifiers, per // C99 6.7.5.3p11. !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) { if (RequiresArg) { Diag(Tok, diag::err_argument_required_after_attribute); delete AttrList; } // Identifier list. Note that '(' identifier-list ')' is only allowed for // normal declarators, not for abstract-declarators. return ParseFunctionDeclaratorIdentifierList(LParenLoc, D); } // Finally, a normal, non-empty parameter type list. // Build up an array of information about the parsed arguments. llvm::SmallVector ParamInfo; // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FnScope|Scope::DeclScope); bool IsVariadic = false; while (1) { if (Tok.is(tok::ellipsis)) { IsVariadic = true; // Check to see if this is "void(...)" which is not allowed. if (!getLang().CPlusPlus && ParamInfo.empty()) { // Otherwise, parse parameter type list. If it starts with an // ellipsis, diagnose the malformed function. Diag(Tok, diag::err_ellipsis_first_arg); IsVariadic = false; // Treat this like 'void()'. } ConsumeToken(); // Consume the ellipsis. break; } SourceLocation DSStart = Tok.getLocation(); // Parse the declaration-specifiers. DeclSpec DS; // If the caller parsed attributes for the first argument, add them now. if (AttrList) { DS.AddAttributes(AttrList); AttrList = 0; // Only apply the attributes to the first parameter. } ParseDeclarationSpecifiers(DS); // Parse the declarator. This is "PrototypeContext", because we must // accept either 'declarator' or 'abstract-declarator' here. Declarator ParmDecl(DS, Declarator::PrototypeContext); ParseDeclarator(ParmDecl); // Parse GNU attributes, if present. if (Tok.is(tok::kw___attribute)) ParmDecl.AddAttributes(ParseAttributes()); // Remember this parsed parameter in ParamInfo. IdentifierInfo *ParmII = ParmDecl.getIdentifier(); // DefArgToks is used when the parsing of default arguments needs // to be delayed. CachedTokens *DefArgToks = 0; // If no parameter was specified, verify that *something* was specified, // otherwise we have a missing type and identifier. if (DS.getParsedSpecifiers() == DeclSpec::PQ_None && ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) { // Completely missing, emit error. Diag(DSStart, diag::err_missing_param); } else { // Otherwise, we have something. Add it and let semantic analysis try // to grok it and add the result to the ParamInfo we are building. // Inform the actions module about the parameter declarator, so it gets // added to the current scope. DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl); // Parse the default argument, if any. We parse the default // arguments in all dialects; the semantic analysis in // ActOnParamDefaultArgument will reject the default argument in // C. if (Tok.is(tok::equal)) { // Parse the default argument if (D.getContext() == Declarator::MemberContext) { // If we're inside a class definition, cache the tokens // corresponding to the default argument. We'll actually parse // them when we see the end of the class definition. // FIXME: Templates will require something similar. // FIXME: Can we use a smart pointer for Toks? DefArgToks = new CachedTokens; if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks, tok::semi, false)) { delete DefArgToks; DefArgToks = 0; } } else { // Consume the '='. SourceLocation EqualLoc = ConsumeToken(); OwningExprResult DefArgResult(ParseAssignmentExpression()); if (DefArgResult.isInvalid()) { Actions.ActOnParamDefaultArgumentError(Param); SkipUntil(tok::comma, tok::r_paren, true, true); } else { // Inform the actions module about the default argument Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.release()); } } } ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, ParmDecl.getIdentifierLoc(), Param, DefArgToks)); } // If the next token is a comma, consume it and keep reading arguments. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); } // Leave prototype scope. PrototypeScope.Exit(); // If we have the closing ')', eat it. MatchRHSPunctuation(tok::r_paren, LParenLoc); DeclSpec DS; if (getLang().CPlusPlus) { // Parse cv-qualifier-seq[opt]. ParseTypeQualifierListOpt(DS, false /*no attributes*/); // Parse exception-specification[opt]. if (Tok.is(tok::kw_throw)) ParseExceptionSpecification(); } // Remember that we parsed a function type, and remember the attributes. D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic, &ParamInfo[0], ParamInfo.size(), DS.getTypeQualifiers(), LParenLoc)); } /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator /// we found a K&R-style identifier list instead of a type argument list. The /// current token is known to be the first identifier in the list. /// /// identifier-list: [C99 6.7.5] /// identifier /// identifier-list ',' identifier /// void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc, Declarator &D) { // Build up an array of information about the parsed arguments. llvm::SmallVector ParamInfo; llvm::SmallSet ParamsSoFar; // If there was no identifier specified for the declarator, either we are in // an abstract-declarator, or we are in a parameter declarator which was found // to be abstract. In abstract-declarators, identifier lists are not valid: // diagnose this. if (!D.getIdentifier()) Diag(Tok, diag::ext_ident_list_in_param); // Tok is known to be the first identifier in the list. Remember this // identifier in ParamInfo. ParamsSoFar.insert(Tok.getIdentifierInfo()); ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(), Tok.getLocation(), 0)); ConsumeToken(); // eat the first identifier. while (Tok.is(tok::comma)) { // Eat the comma. ConsumeToken(); // If this isn't an identifier, report the error and skip until ')'. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::r_paren); return; } IdentifierInfo *ParmII = Tok.getIdentifierInfo(); // Reject 'typedef int y; int test(x, y)', but continue parsing. if (Actions.isTypeName(*ParmII, CurScope)) Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; // Verify that the argument identifier has not already been mentioned. if (!ParamsSoFar.insert(ParmII)) { Diag(Tok, diag::err_param_redefinition) << ParmII; } else { // Remember this identifier in ParamInfo. ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, Tok.getLocation(), 0)); } // Eat the identifier. ConsumeToken(); } // Remember that we parsed a function type, and remember the attributes. This // function type is always a K&R style function type, which is not varargs and // has no prototype. D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false, &ParamInfo[0], ParamInfo.size(), /*TypeQuals*/0, LParenLoc)); // If we have the closing ')', eat it and we're done. MatchRHSPunctuation(tok::r_paren, LParenLoc); } /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' void Parser::ParseBracketDeclarator(Declarator &D) { SourceLocation StartLoc = ConsumeBracket(); // C array syntax has many features, but by-far the most common is [] and [4]. // This code does a fast path to handle some of the most obvious cases. if (Tok.getKind() == tok::r_square) { MatchRHSPunctuation(tok::r_square, StartLoc); // Remember that we parsed the empty array type. OwningExprResult NumElements(Actions); D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc)); return; } else if (Tok.getKind() == tok::numeric_constant && GetLookAheadToken(1).is(tok::r_square)) { // [4] is very common. Parse the numeric constant expression. OwningExprResult ExprRes(Actions, Actions.ActOnNumericConstant(Tok)); ConsumeToken(); MatchRHSPunctuation(tok::r_square, StartLoc); // If there was an error parsing the assignment-expression, recover. if (ExprRes.isInvalid()) ExprRes.release(); // Deallocate expr, just use []. // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(), StartLoc)); return; } // If valid, this location is the position where we read the 'static' keyword. SourceLocation StaticLoc; if (Tok.is(tok::kw_static)) StaticLoc = ConsumeToken(); // If there is a type-qualifier-list, read it now. // Type qualifiers in an array subscript are a C99 feature. DeclSpec DS; ParseTypeQualifierListOpt(DS, false /*no attributes*/); // If we haven't already read 'static', check to see if there is one after the // type-qualifier-list. if (!StaticLoc.isValid() && Tok.is(tok::kw_static)) StaticLoc = ConsumeToken(); // Handle "direct-declarator [ type-qual-list[opt] * ]". bool isStar = false; OwningExprResult NumElements(Actions); // Handle the case where we have '[*]' as the array size. However, a leading // star could be the start of an expression, for example 'X[*p + 4]'. Verify // the the token after the star is a ']'. Since stars in arrays are // infrequent, use of lookahead is not costly here. if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { ConsumeToken(); // Eat the '*'. if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } isStar = true; } else if (Tok.isNot(tok::r_square)) { // Note, in C89, this production uses the constant-expr production instead // of assignment-expr. The only difference is that assignment-expr allows // things like '=' and '*='. Sema rejects these in C89 mode because they // are not i-c-e's, so we don't need to distinguish between the two here. // Parse the assignment-expression now. NumElements = ParseAssignmentExpression(); } // If there was an error parsing the assignment-expression, recover. if (NumElements.isInvalid()) { // If the expression was invalid, skip it. SkipUntil(tok::r_square); return; } MatchRHSPunctuation(tok::r_square, StartLoc); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), isStar, NumElements.release(), StartLoc)); } /// [GNU] typeof-specifier: /// typeof ( expressions ) /// typeof ( type-name ) /// [GNU/C++] typeof unary-expression /// void Parser::ParseTypeofSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier"); const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); SourceLocation StartLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { if (!getLang().CPlusPlus) { Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII; return; } OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/)); if (Result.isInvalid()) return; const char *PrevSpec = 0; // Check for duplicate type specifiers. if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, Result.release())) Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec; // FIXME: Not accurate, the range gets one token more than it should. DS.SetRangeEnd(Tok.getLocation()); return; } SourceLocation LParenLoc = ConsumeParen(), RParenLoc; if (isTypeIdInParens()) { TypeTy *Ty = ParseTypeName(); assert(Ty && "Parser::ParseTypeofSpecifier(): missing type"); if (Tok.isNot(tok::r_paren)) { MatchRHSPunctuation(tok::r_paren, LParenLoc); return; } RParenLoc = ConsumeParen(); const char *PrevSpec = 0; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty)) Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec; } else { // we have an expression. OwningExprResult Result(ParseExpression()); if (Result.isInvalid() || Tok.isNot(tok::r_paren)) { MatchRHSPunctuation(tok::r_paren, LParenLoc); return; } RParenLoc = ConsumeParen(); const char *PrevSpec = 0; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, Result.release())) Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec; } DS.SetRangeEnd(RParenLoc); }