//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Instrumentation-based profile-guided optimization // //===----------------------------------------------------------------------===// #include "CodeGenPGO.h" #include "CodeGenFunction.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "llvm/Config/config.h" // for strtoull()/strtoll() define #include "llvm/IR/MDBuilder.h" #include "llvm/Support/FileSystem.h" using namespace clang; using namespace CodeGen; static void ReportBadPGOData(CodeGenModule &CGM, const char *Message) { DiagnosticsEngine &Diags = CGM.getDiags(); unsigned diagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0"); Diags.Report(diagID) << Message; } PGOProfileData::PGOProfileData(CodeGenModule &CGM, std::string Path) : CGM(CGM) { if (llvm::MemoryBuffer::getFile(Path, DataBuffer)) { ReportBadPGOData(CGM, "failed to open pgo data file"); return; } if (DataBuffer->getBufferSize() > std::numeric_limits::max()) { ReportBadPGOData(CGM, "pgo data file too big"); return; } // Scan through the data file and map each function to the corresponding // file offset where its counts are stored. const char *BufferStart = DataBuffer->getBufferStart(); const char *BufferEnd = DataBuffer->getBufferEnd(); const char *CurPtr = BufferStart; uint64_t MaxCount = 0; while (CurPtr < BufferEnd) { // Read the mangled function name. const char *FuncName = CurPtr; // FIXME: Something will need to be added to distinguish static functions. CurPtr = strchr(CurPtr, ' '); if (!CurPtr) { ReportBadPGOData(CGM, "pgo data file has malformed function entry"); return; } StringRef MangledName(FuncName, CurPtr - FuncName); // Read the number of counters. char *EndPtr; unsigned NumCounters = strtol(++CurPtr, &EndPtr, 10); if (EndPtr == CurPtr || *EndPtr != '\n' || NumCounters <= 0) { ReportBadPGOData(CGM, "pgo data file has unexpected number of counters"); return; } CurPtr = EndPtr; // Read function count. uint64_t Count = strtoll(CurPtr, &EndPtr, 10); if (EndPtr == CurPtr || *EndPtr != '\n') { ReportBadPGOData(CGM, "pgo-data file has bad count value"); return; } CurPtr = EndPtr; // Point to '\n'. FunctionCounts[MangledName] = Count; MaxCount = Count > MaxCount ? Count : MaxCount; // There is one line for each counter; skip over those lines. // Since function count is already read, we start the loop from 1. for (unsigned N = 1; N < NumCounters; ++N) { CurPtr = strchr(++CurPtr, '\n'); if (!CurPtr) { ReportBadPGOData(CGM, "pgo data file is missing some counter info"); return; } } // Skip over the blank line separating functions. CurPtr += 2; DataOffsets[MangledName] = FuncName - BufferStart; } MaxFunctionCount = MaxCount; } /// Return true if a function is hot. If we know nothing about the function, /// return false. bool PGOProfileData::isHotFunction(StringRef MangledName) { llvm::StringMap::const_iterator CountIter = FunctionCounts.find(MangledName); // If we know nothing about the function, return false. if (CountIter == FunctionCounts.end()) return false; // FIXME: functions with >= 30% of the maximal function count are // treated as hot. This number is from preliminary tuning on SPEC. return CountIter->getValue() >= (uint64_t)(0.3 * (double)MaxFunctionCount); } /// Return true if a function is cold. If we know nothing about the function, /// return false. bool PGOProfileData::isColdFunction(StringRef MangledName) { llvm::StringMap::const_iterator CountIter = FunctionCounts.find(MangledName); // If we know nothing about the function, return false. if (CountIter == FunctionCounts.end()) return false; // FIXME: functions with <= 1% of the maximal function count are treated as // cold. This number is from preliminary tuning on SPEC. return CountIter->getValue() <= (uint64_t)(0.01 * (double)MaxFunctionCount); } bool PGOProfileData::getFunctionCounts(StringRef MangledName, std::vector &Counts) { // Find the relevant section of the pgo-data file. llvm::StringMap::const_iterator OffsetIter = DataOffsets.find(MangledName); if (OffsetIter == DataOffsets.end()) return true; const char *CurPtr = DataBuffer->getBufferStart() + OffsetIter->getValue(); // Skip over the function name. CurPtr = strchr(CurPtr, ' '); assert(CurPtr && "pgo-data has corrupted function entry"); // Read the number of counters. char *EndPtr; unsigned NumCounters = strtol(++CurPtr, &EndPtr, 10); assert(EndPtr != CurPtr && *EndPtr == '\n' && NumCounters > 0 && "pgo-data file has corrupted number of counters"); CurPtr = EndPtr; Counts.reserve(NumCounters); for (unsigned N = 0; N < NumCounters; ++N) { // Read the count value. uint64_t Count = strtoll(CurPtr, &EndPtr, 10); if (EndPtr == CurPtr || *EndPtr != '\n') { ReportBadPGOData(CGM, "pgo-data file has bad count value"); return true; } Counts.push_back(Count); CurPtr = EndPtr + 1; } // Make sure the number of counters matches up. if (Counts.size() != NumCounters) { ReportBadPGOData(CGM, "pgo-data file has inconsistent counters"); return true; } return false; } void CodeGenPGO::emitWriteoutFunction(GlobalDecl &GD) { if (!CGM.getCodeGenOpts().ProfileInstrGenerate) return; llvm::LLVMContext &Ctx = CGM.getLLVMContext(); llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(Ctx); llvm::Function *WriteoutF = CGM.getModule().getFunction("__llvm_pgo_writeout"); if (!WriteoutF) { llvm::FunctionType *WriteoutFTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx), false); WriteoutF = llvm::Function::Create(WriteoutFTy, llvm::GlobalValue::InternalLinkage, "__llvm_pgo_writeout", &CGM.getModule()); } WriteoutF->setUnnamedAddr(true); WriteoutF->addFnAttr(llvm::Attribute::NoInline); if (CGM.getCodeGenOpts().DisableRedZone) WriteoutF->addFnAttr(llvm::Attribute::NoRedZone); llvm::BasicBlock *BB = WriteoutF->empty() ? llvm::BasicBlock::Create(Ctx, "", WriteoutF) : &WriteoutF->getEntryBlock(); CGBuilderTy PGOBuilder(BB); llvm::Instruction *I = BB->getTerminator(); if (!I) I = PGOBuilder.CreateRetVoid(); PGOBuilder.SetInsertPoint(I); llvm::Type *Int64PtrTy = llvm::Type::getInt64PtrTy(Ctx); llvm::Type *Args[] = { Int8PtrTy, // const char *MangledName Int32Ty, // uint32_t NumCounters Int64PtrTy // uint64_t *Counters }; llvm::FunctionType *FTy = llvm::FunctionType::get(PGOBuilder.getVoidTy(), Args, false); llvm::Constant *EmitFunc = CGM.getModule().getOrInsertFunction("llvm_pgo_emit", FTy); llvm::Constant *MangledName = CGM.GetAddrOfConstantCString(CGM.getMangledName(GD), "__llvm_pgo_name"); MangledName = llvm::ConstantExpr::getBitCast(MangledName, Int8PtrTy); PGOBuilder.CreateCall3(EmitFunc, MangledName, PGOBuilder.getInt32(NumRegionCounters), PGOBuilder.CreateBitCast(RegionCounters, Int64PtrTy)); } llvm::Function *CodeGenPGO::emitInitialization(CodeGenModule &CGM) { llvm::Function *WriteoutF = CGM.getModule().getFunction("__llvm_pgo_writeout"); if (!WriteoutF) return NULL; // Create a small bit of code that registers the "__llvm_pgo_writeout" to // be executed at exit. llvm::Function *F = CGM.getModule().getFunction("__llvm_pgo_init"); if (F) return NULL; llvm::LLVMContext &Ctx = CGM.getLLVMContext(); llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx), false); F = llvm::Function::Create(FTy, llvm::GlobalValue::InternalLinkage, "__llvm_pgo_init", &CGM.getModule()); F->setUnnamedAddr(true); F->setLinkage(llvm::GlobalValue::InternalLinkage); F->addFnAttr(llvm::Attribute::NoInline); if (CGM.getCodeGenOpts().DisableRedZone) F->addFnAttr(llvm::Attribute::NoRedZone); llvm::BasicBlock *BB = llvm::BasicBlock::Create(CGM.getLLVMContext(), "", F); CGBuilderTy PGOBuilder(BB); FTy = llvm::FunctionType::get(PGOBuilder.getVoidTy(), false); llvm::Type *Params[] = { llvm::PointerType::get(FTy, 0) }; FTy = llvm::FunctionType::get(PGOBuilder.getVoidTy(), Params, false); // Inialize the environment and register the local writeout function. llvm::Constant *PGOInit = CGM.getModule().getOrInsertFunction("llvm_pgo_init", FTy); PGOBuilder.CreateCall(PGOInit, WriteoutF); PGOBuilder.CreateRetVoid(); return F; } namespace { /// A StmtVisitor that fills a map of statements to PGO counters. struct MapRegionCounters : public ConstStmtVisitor { /// The next counter value to assign. unsigned NextCounter; /// The map of statements to counters. llvm::DenseMap *CounterMap; MapRegionCounters(llvm::DenseMap *CounterMap) : NextCounter(0), CounterMap(CounterMap) { } void VisitChildren(const Stmt *S) { for (Stmt::const_child_range I = S->children(); I; ++I) if (*I) this->Visit(*I); } void VisitStmt(const Stmt *S) { VisitChildren(S); } /// Assign a counter to track entry to the function body. void VisitFunctionDecl(const FunctionDecl *S) { (*CounterMap)[S->getBody()] = NextCounter++; Visit(S->getBody()); } /// Assign a counter to track the block following a label. void VisitLabelStmt(const LabelStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getSubStmt()); } /// Assign three counters - one for the body of the loop, one for breaks /// from the loop, and one for continues. /// /// The break and continue counters cover all such statements in this loop, /// and are used in calculations to find the number of times the condition /// and exit of the loop occur. They are needed so we can differentiate /// these statements from non-local exits like return and goto. void VisitWhileStmt(const WhileStmt *S) { (*CounterMap)[S] = NextCounter; NextCounter += 3; Visit(S->getCond()); Visit(S->getBody()); } /// Assign counters for the body of the loop, and for breaks and /// continues. See VisitWhileStmt. void VisitDoStmt(const DoStmt *S) { (*CounterMap)[S] = NextCounter; NextCounter += 3; Visit(S->getBody()); Visit(S->getCond()); } /// Assign counters for the body of the loop, and for breaks and /// continues. See VisitWhileStmt. void VisitForStmt(const ForStmt *S) { (*CounterMap)[S] = NextCounter; NextCounter += 3; const Expr *E; if ((E = S->getCond())) Visit(E); Visit(S->getBody()); if ((E = S->getInc())) Visit(E); } /// Assign counters for the body of the loop, and for breaks and /// continues. See VisitWhileStmt. void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { (*CounterMap)[S] = NextCounter; NextCounter += 3; const Expr *E; if ((E = S->getCond())) Visit(E); Visit(S->getBody()); if ((E = S->getInc())) Visit(E); } /// Assign counters for the body of the loop, and for breaks and /// continues. See VisitWhileStmt. void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { (*CounterMap)[S] = NextCounter; NextCounter += 3; Visit(S->getElement()); Visit(S->getBody()); } /// Assign a counter for the exit block of the switch statement. void VisitSwitchStmt(const SwitchStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getCond()); Visit(S->getBody()); } /// Assign a counter for a particular case in a switch. This counts jumps /// from the switch header as well as fallthrough from the case before this /// one. void VisitCaseStmt(const CaseStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getSubStmt()); } /// Assign a counter for the default case of a switch statement. The count /// is the number of branches from the loop header to the default, and does /// not include fallthrough from previous cases. If we have multiple /// conditional branch blocks from the switch instruction to the default /// block, as with large GNU case ranges, this is the counter for the last /// edge in that series, rather than the first. void VisitDefaultStmt(const DefaultStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getSubStmt()); } /// Assign a counter for the "then" part of an if statement. The count for /// the "else" part, if it exists, will be calculated from this counter. void VisitIfStmt(const IfStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getCond()); Visit(S->getThen()); if (S->getElse()) Visit(S->getElse()); } /// Assign a counter for the continuation block of a C++ try statement. void VisitCXXTryStmt(const CXXTryStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getTryBlock()); for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) Visit(S->getHandler(I)); } /// Assign a counter for a catch statement's handler block. void VisitCXXCatchStmt(const CXXCatchStmt *S) { (*CounterMap)[S] = NextCounter++; Visit(S->getHandlerBlock()); } /// Assign a counter for the "true" part of a conditional operator. The /// count in the "false" part will be calculated from this counter. void VisitConditionalOperator(const ConditionalOperator *E) { (*CounterMap)[E] = NextCounter++; Visit(E->getCond()); Visit(E->getTrueExpr()); Visit(E->getFalseExpr()); } /// Assign a counter for the right hand side of a logical and operator. void VisitBinLAnd(const BinaryOperator *E) { (*CounterMap)[E] = NextCounter++; Visit(E->getLHS()); Visit(E->getRHS()); } /// Assign a counter for the right hand side of a logical or operator. void VisitBinLOr(const BinaryOperator *E) { (*CounterMap)[E] = NextCounter++; Visit(E->getLHS()); Visit(E->getRHS()); } }; } void CodeGenPGO::assignRegionCounters(GlobalDecl &GD) { bool InstrumentRegions = CGM.getCodeGenOpts().ProfileInstrGenerate; PGOProfileData *PGOData = CGM.getPGOData(); if (!InstrumentRegions && !PGOData) return; const Decl *D = GD.getDecl(); if (!D) return; mapRegionCounters(D); if (InstrumentRegions) emitCounterVariables(); if (PGOData) loadRegionCounts(GD, PGOData); } void CodeGenPGO::mapRegionCounters(const Decl *D) { RegionCounterMap = new llvm::DenseMap(); MapRegionCounters Walker(RegionCounterMap); if (const FunctionDecl *FD = dyn_cast_or_null(D)) Walker.VisitFunctionDecl(FD); NumRegionCounters = Walker.NextCounter; } void CodeGenPGO::emitCounterVariables() { llvm::LLVMContext &Ctx = CGM.getLLVMContext(); llvm::ArrayType *CounterTy = llvm::ArrayType::get(llvm::Type::getInt64Ty(Ctx), NumRegionCounters); RegionCounters = new llvm::GlobalVariable(CGM.getModule(), CounterTy, false, llvm::GlobalVariable::PrivateLinkage, llvm::Constant::getNullValue(CounterTy), "__llvm_pgo_ctr"); } void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, unsigned Counter) { if (!CGM.getCodeGenOpts().ProfileInstrGenerate) return; llvm::Value *Addr = Builder.CreateConstInBoundsGEP2_64(RegionCounters, 0, Counter); llvm::Value *Count = Builder.CreateLoad(Addr, "pgocount"); Count = Builder.CreateAdd(Count, Builder.getInt64(1)); Builder.CreateStore(Count, Addr); } void CodeGenPGO::loadRegionCounts(GlobalDecl &GD, PGOProfileData *PGOData) { // For now, ignore the counts from the PGO data file only if the number of // counters does not match. This could be tightened down in the future to // ignore counts when the input changes in various ways, e.g., by comparing a // hash value based on some characteristics of the input. RegionCounts = new std::vector(); if (PGOData->getFunctionCounts(CGM.getMangledName(GD), *RegionCounts) || RegionCounts->size() != NumRegionCounters) { delete RegionCounts; RegionCounts = 0; } } void CodeGenPGO::destroyRegionCounters() { if (RegionCounterMap != 0) delete RegionCounterMap; if (RegionCounts != 0) delete RegionCounts; } llvm::MDNode *CodeGenPGO::createBranchWeights(uint64_t TrueCount, uint64_t FalseCount) { if (!TrueCount && !FalseCount) return 0; llvm::MDBuilder MDHelper(CGM.getLLVMContext()); // TODO: need to scale down to 32-bits // According to Laplace's Rule of Succession, it is better to compute the // weight based on the count plus 1. return MDHelper.createBranchWeights(TrueCount + 1, FalseCount + 1); } llvm::MDNode *CodeGenPGO::createBranchWeights(ArrayRef Weights) { llvm::MDBuilder MDHelper(CGM.getLLVMContext()); // TODO: need to scale down to 32-bits, instead of just truncating. // According to Laplace's Rule of Succession, it is better to compute the // weight based on the count plus 1. SmallVector ScaledWeights; ScaledWeights.reserve(Weights.size()); for (ArrayRef::iterator WI = Weights.begin(), WE = Weights.end(); WI != WE; ++WI) { ScaledWeights.push_back(*WI + 1); } return MDHelper.createBranchWeights(ScaledWeights); }