//===- OperationSupport.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains out-of-line implementations of the support types that // Operation and related classes build on top of. // //===----------------------------------------------------------------------===// #include "mlir/IR/OperationSupport.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/OpDefinition.h" #include "llvm/ADT/BitVector.h" #include "llvm/Support/SHA1.h" #include #include using namespace mlir; //===----------------------------------------------------------------------===// // NamedAttrList //===----------------------------------------------------------------------===// NamedAttrList::NamedAttrList(ArrayRef attributes) { assign(attributes.begin(), attributes.end()); } NamedAttrList::NamedAttrList(DictionaryAttr attributes) : NamedAttrList(attributes ? attributes.getValue() : ArrayRef()) { dictionarySorted.setPointerAndInt(attributes, true); } NamedAttrList::NamedAttrList(const_iterator inStart, const_iterator inEnd) { assign(inStart, inEnd); } ArrayRef NamedAttrList::getAttrs() const { return attrs; } std::optional NamedAttrList::findDuplicate() const { std::optional duplicate = DictionaryAttr::findDuplicate(attrs, isSorted()); // DictionaryAttr::findDuplicate will sort the list, so reset the sorted // state. if (!isSorted()) dictionarySorted.setPointerAndInt(nullptr, true); return duplicate; } DictionaryAttr NamedAttrList::getDictionary(MLIRContext *context) const { if (!isSorted()) { DictionaryAttr::sortInPlace(attrs); dictionarySorted.setPointerAndInt(nullptr, true); } if (!dictionarySorted.getPointer()) dictionarySorted.setPointer(DictionaryAttr::getWithSorted(context, attrs)); return llvm::cast(dictionarySorted.getPointer()); } /// Replaces the attributes with new list of attributes. void NamedAttrList::assign(const_iterator inStart, const_iterator inEnd) { DictionaryAttr::sort(ArrayRef{inStart, inEnd}, attrs); dictionarySorted.setPointerAndInt(nullptr, true); } void NamedAttrList::push_back(NamedAttribute newAttribute) { if (isSorted()) dictionarySorted.setInt(attrs.empty() || attrs.back() < newAttribute); dictionarySorted.setPointer(nullptr); attrs.push_back(newAttribute); } /// Return the specified attribute if present, null otherwise. Attribute NamedAttrList::get(StringRef name) const { auto it = findAttr(*this, name); return it.second ? it.first->getValue() : Attribute(); } Attribute NamedAttrList::get(StringAttr name) const { auto it = findAttr(*this, name); return it.second ? it.first->getValue() : Attribute(); } /// Return the specified named attribute if present, std::nullopt otherwise. std::optional NamedAttrList::getNamed(StringRef name) const { auto it = findAttr(*this, name); return it.second ? *it.first : std::optional(); } std::optional NamedAttrList::getNamed(StringAttr name) const { auto it = findAttr(*this, name); return it.second ? *it.first : std::optional(); } /// If the an attribute exists with the specified name, change it to the new /// value. Otherwise, add a new attribute with the specified name/value. Attribute NamedAttrList::set(StringAttr name, Attribute value) { assert(value && "attributes may never be null"); // Look for an existing attribute with the given name, and set its value // in-place. Return the previous value of the attribute, if there was one. auto it = findAttr(*this, name); if (it.second) { // Update the existing attribute by swapping out the old value for the new // value. Return the old value. Attribute oldValue = it.first->getValue(); if (it.first->getValue() != value) { it.first->setValue(value); // If the attributes have changed, the dictionary is invalidated. dictionarySorted.setPointer(nullptr); } return oldValue; } // Perform a string lookup to insert the new attribute into its sorted // position. if (isSorted()) it = findAttr(*this, name.strref()); attrs.insert(it.first, {name, value}); // Invalidate the dictionary. Return null as there was no previous value. dictionarySorted.setPointer(nullptr); return Attribute(); } Attribute NamedAttrList::set(StringRef name, Attribute value) { assert(value && "attributes may never be null"); return set(mlir::StringAttr::get(value.getContext(), name), value); } Attribute NamedAttrList::eraseImpl(SmallVectorImpl::iterator it) { // Erasing does not affect the sorted property. Attribute attr = it->getValue(); attrs.erase(it); dictionarySorted.setPointer(nullptr); return attr; } Attribute NamedAttrList::erase(StringAttr name) { auto it = findAttr(*this, name); return it.second ? eraseImpl(it.first) : Attribute(); } Attribute NamedAttrList::erase(StringRef name) { auto it = findAttr(*this, name); return it.second ? eraseImpl(it.first) : Attribute(); } NamedAttrList & NamedAttrList::operator=(const SmallVectorImpl &rhs) { assign(rhs.begin(), rhs.end()); return *this; } NamedAttrList::operator ArrayRef() const { return attrs; } //===----------------------------------------------------------------------===// // OperationState //===----------------------------------------------------------------------===// OperationState::OperationState(Location location, StringRef name) : location(location), name(name, location->getContext()) {} OperationState::OperationState(Location location, OperationName name) : location(location), name(name) {} OperationState::OperationState(Location location, OperationName name, ValueRange operands, TypeRange types, ArrayRef attributes, BlockRange successors, MutableArrayRef> regions) : location(location), name(name), operands(operands.begin(), operands.end()), types(types.begin(), types.end()), attributes(attributes.begin(), attributes.end()), successors(successors.begin(), successors.end()) { for (std::unique_ptr &r : regions) this->regions.push_back(std::move(r)); } OperationState::OperationState(Location location, StringRef name, ValueRange operands, TypeRange types, ArrayRef attributes, BlockRange successors, MutableArrayRef> regions) : OperationState(location, OperationName(name, location.getContext()), operands, types, attributes, successors, regions) {} OperationState::~OperationState() { if (properties) propertiesDeleter(properties); } LogicalResult OperationState::setProperties( Operation *op, function_ref emitError) const { if (LLVM_UNLIKELY(propertiesAttr)) { assert(!properties); return op->setPropertiesFromAttribute(propertiesAttr, emitError); } if (properties) propertiesSetter(op->getPropertiesStorage(), properties); return success(); } void OperationState::addOperands(ValueRange newOperands) { operands.append(newOperands.begin(), newOperands.end()); } void OperationState::addSuccessors(BlockRange newSuccessors) { successors.append(newSuccessors.begin(), newSuccessors.end()); } Region *OperationState::addRegion() { regions.emplace_back(new Region); return regions.back().get(); } void OperationState::addRegion(std::unique_ptr &®ion) { regions.push_back(std::move(region)); } void OperationState::addRegions( MutableArrayRef> regions) { for (std::unique_ptr ®ion : regions) addRegion(std::move(region)); } //===----------------------------------------------------------------------===// // OperandStorage //===----------------------------------------------------------------------===// detail::OperandStorage::OperandStorage(Operation *owner, OpOperand *trailingOperands, ValueRange values) : isStorageDynamic(false), operandStorage(trailingOperands) { numOperands = capacity = values.size(); for (unsigned i = 0; i < numOperands; ++i) new (&operandStorage[i]) OpOperand(owner, values[i]); } detail::OperandStorage::~OperandStorage() { for (auto &operand : getOperands()) operand.~OpOperand(); // If the storage is dynamic, deallocate it. if (isStorageDynamic) free(operandStorage); } /// Replace the operands contained in the storage with the ones provided in /// 'values'. void detail::OperandStorage::setOperands(Operation *owner, ValueRange values) { MutableArrayRef storageOperands = resize(owner, values.size()); for (unsigned i = 0, e = values.size(); i != e; ++i) storageOperands[i].set(values[i]); } /// Replace the operands beginning at 'start' and ending at 'start' + 'length' /// with the ones provided in 'operands'. 'operands' may be smaller or larger /// than the range pointed to by 'start'+'length'. void detail::OperandStorage::setOperands(Operation *owner, unsigned start, unsigned length, ValueRange operands) { // If the new size is the same, we can update inplace. unsigned newSize = operands.size(); if (newSize == length) { MutableArrayRef storageOperands = getOperands(); for (unsigned i = 0, e = length; i != e; ++i) storageOperands[start + i].set(operands[i]); return; } // If the new size is greater, remove the extra operands and set the rest // inplace. if (newSize < length) { eraseOperands(start + operands.size(), length - newSize); setOperands(owner, start, newSize, operands); return; } // Otherwise, the new size is greater so we need to grow the storage. auto storageOperands = resize(owner, size() + (newSize - length)); // Shift operands to the right to make space for the new operands. unsigned rotateSize = storageOperands.size() - (start + length); auto rbegin = storageOperands.rbegin(); std::rotate(rbegin, std::next(rbegin, newSize - length), rbegin + rotateSize); // Update the operands inplace. for (unsigned i = 0, e = operands.size(); i != e; ++i) storageOperands[start + i].set(operands[i]); } /// Erase an operand held by the storage. void detail::OperandStorage::eraseOperands(unsigned start, unsigned length) { MutableArrayRef operands = getOperands(); assert((start + length) <= operands.size()); numOperands -= length; // Shift all operands down if the operand to remove is not at the end. if (start != numOperands) { auto *indexIt = std::next(operands.begin(), start); std::rotate(indexIt, std::next(indexIt, length), operands.end()); } for (unsigned i = 0; i != length; ++i) operands[numOperands + i].~OpOperand(); } void detail::OperandStorage::eraseOperands(const BitVector &eraseIndices) { MutableArrayRef operands = getOperands(); assert(eraseIndices.size() == operands.size()); // Check that at least one operand is erased. int firstErasedIndice = eraseIndices.find_first(); if (firstErasedIndice == -1) return; // Shift all of the removed operands to the end, and destroy them. numOperands = firstErasedIndice; for (unsigned i = firstErasedIndice + 1, e = operands.size(); i < e; ++i) if (!eraseIndices.test(i)) operands[numOperands++] = std::move(operands[i]); for (OpOperand &operand : operands.drop_front(numOperands)) operand.~OpOperand(); } /// Resize the storage to the given size. Returns the array containing the new /// operands. MutableArrayRef detail::OperandStorage::resize(Operation *owner, unsigned newSize) { // If the number of operands is less than or equal to the current amount, we // can just update in place. MutableArrayRef origOperands = getOperands(); if (newSize <= numOperands) { // If the number of new size is less than the current, remove any extra // operands. for (unsigned i = newSize; i != numOperands; ++i) origOperands[i].~OpOperand(); numOperands = newSize; return origOperands.take_front(newSize); } // If the new size is within the original inline capacity, grow inplace. if (newSize <= capacity) { OpOperand *opBegin = origOperands.data(); for (unsigned e = newSize; numOperands != e; ++numOperands) new (&opBegin[numOperands]) OpOperand(owner); return MutableArrayRef(opBegin, newSize); } // Otherwise, we need to allocate a new storage. unsigned newCapacity = std::max(unsigned(llvm::NextPowerOf2(capacity + 2)), newSize); OpOperand *newOperandStorage = reinterpret_cast(malloc(sizeof(OpOperand) * newCapacity)); // Move the current operands to the new storage. MutableArrayRef newOperands(newOperandStorage, newSize); std::uninitialized_move(origOperands.begin(), origOperands.end(), newOperands.begin()); // Destroy the original operands. for (auto &operand : origOperands) operand.~OpOperand(); // Initialize any new operands. for (unsigned e = newSize; numOperands != e; ++numOperands) new (&newOperands[numOperands]) OpOperand(owner); // If the current storage is dynamic, free it. if (isStorageDynamic) free(operandStorage); // Update the storage representation to use the new dynamic storage. operandStorage = newOperandStorage; capacity = newCapacity; isStorageDynamic = true; return newOperands; } //===----------------------------------------------------------------------===// // Operation Value-Iterators //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // OperandRange unsigned OperandRange::getBeginOperandIndex() const { assert(!empty() && "range must not be empty"); return base->getOperandNumber(); } OperandRangeRange OperandRange::split(DenseI32ArrayAttr segmentSizes) const { return OperandRangeRange(*this, segmentSizes); } //===----------------------------------------------------------------------===// // OperandRangeRange OperandRangeRange::OperandRangeRange(OperandRange operands, Attribute operandSegments) : OperandRangeRange(OwnerT(operands.getBase(), operandSegments), 0, llvm::cast(operandSegments).size()) { } OperandRange OperandRangeRange::join() const { const OwnerT &owner = getBase(); ArrayRef sizeData = llvm::cast(owner.second); return OperandRange(owner.first, std::accumulate(sizeData.begin(), sizeData.end(), 0)); } OperandRange OperandRangeRange::dereference(const OwnerT &object, ptrdiff_t index) { ArrayRef sizeData = llvm::cast(object.second); uint32_t startIndex = std::accumulate(sizeData.begin(), sizeData.begin() + index, 0); return OperandRange(object.first + startIndex, *(sizeData.begin() + index)); } //===----------------------------------------------------------------------===// // MutableOperandRange /// Construct a new mutable range from the given operand, operand start index, /// and range length. MutableOperandRange::MutableOperandRange( Operation *owner, unsigned start, unsigned length, ArrayRef operandSegments) : owner(owner), start(start), length(length), operandSegments(operandSegments) { assert((start + length) <= owner->getNumOperands() && "invalid range"); } MutableOperandRange::MutableOperandRange(Operation *owner) : MutableOperandRange(owner, /*start=*/0, owner->getNumOperands()) {} /// Construct a new mutable range for the given OpOperand. MutableOperandRange::MutableOperandRange(OpOperand &opOperand) : MutableOperandRange(opOperand.getOwner(), /*start=*/opOperand.getOperandNumber(), /*length=*/1) {} /// Slice this range into a sub range, with the additional operand segment. MutableOperandRange MutableOperandRange::slice(unsigned subStart, unsigned subLen, std::optional segment) const { assert((subStart + subLen) <= length && "invalid sub-range"); MutableOperandRange subSlice(owner, start + subStart, subLen, operandSegments); if (segment) subSlice.operandSegments.push_back(*segment); return subSlice; } /// Append the given values to the range. void MutableOperandRange::append(ValueRange values) { if (values.empty()) return; owner->insertOperands(start + length, values); updateLength(length + values.size()); } /// Assign this range to the given values. void MutableOperandRange::assign(ValueRange values) { owner->setOperands(start, length, values); if (length != values.size()) updateLength(/*newLength=*/values.size()); } /// Assign the range to the given value. void MutableOperandRange::assign(Value value) { if (length == 1) { owner->setOperand(start, value); } else { owner->setOperands(start, length, value); updateLength(/*newLength=*/1); } } /// Erase the operands within the given sub-range. void MutableOperandRange::erase(unsigned subStart, unsigned subLen) { assert((subStart + subLen) <= length && "invalid sub-range"); if (length == 0) return; owner->eraseOperands(start + subStart, subLen); updateLength(length - subLen); } /// Clear this range and erase all of the operands. void MutableOperandRange::clear() { if (length != 0) { owner->eraseOperands(start, length); updateLength(/*newLength=*/0); } } /// Explicit conversion to an OperandRange. OperandRange MutableOperandRange::getAsOperandRange() const { return owner->getOperands().slice(start, length); } /// Allow implicit conversion to an OperandRange. MutableOperandRange::operator OperandRange() const { return getAsOperandRange(); } MutableOperandRange::operator MutableArrayRef() const { return owner->getOpOperands().slice(start, length); } MutableOperandRangeRange MutableOperandRange::split(NamedAttribute segmentSizes) const { return MutableOperandRangeRange(*this, segmentSizes); } /// Update the length of this range to the one provided. void MutableOperandRange::updateLength(unsigned newLength) { int32_t diff = int32_t(newLength) - int32_t(length); length = newLength; // Update any of the provided segment attributes. for (OperandSegment &segment : operandSegments) { auto attr = llvm::cast(segment.second.getValue()); SmallVector segments(attr.asArrayRef()); segments[segment.first] += diff; segment.second.setValue( DenseI32ArrayAttr::get(attr.getContext(), segments)); owner->setAttr(segment.second.getName(), segment.second.getValue()); } } OpOperand &MutableOperandRange::operator[](unsigned index) const { assert(index < length && "index is out of bounds"); return owner->getOpOperand(start + index); } MutableArrayRef::iterator MutableOperandRange::begin() const { return owner->getOpOperands().slice(start, length).begin(); } MutableArrayRef::iterator MutableOperandRange::end() const { return owner->getOpOperands().slice(start, length).end(); } //===----------------------------------------------------------------------===// // MutableOperandRangeRange MutableOperandRangeRange::MutableOperandRangeRange( const MutableOperandRange &operands, NamedAttribute operandSegmentAttr) : MutableOperandRangeRange( OwnerT(operands, operandSegmentAttr), 0, llvm::cast(operandSegmentAttr.getValue()).size()) { } MutableOperandRange MutableOperandRangeRange::join() const { return getBase().first; } MutableOperandRangeRange::operator OperandRangeRange() const { return OperandRangeRange(getBase().first, getBase().second.getValue()); } MutableOperandRange MutableOperandRangeRange::dereference(const OwnerT &object, ptrdiff_t index) { ArrayRef sizeData = llvm::cast(object.second.getValue()); uint32_t startIndex = std::accumulate(sizeData.begin(), sizeData.begin() + index, 0); return object.first.slice( startIndex, *(sizeData.begin() + index), MutableOperandRange::OperandSegment(index, object.second)); } //===----------------------------------------------------------------------===// // ResultRange ResultRange::ResultRange(OpResult result) : ResultRange(static_cast(Value(result).getImpl()), 1) {} ResultRange::use_range ResultRange::getUses() const { return {use_begin(), use_end()}; } ResultRange::use_iterator ResultRange::use_begin() const { return use_iterator(*this); } ResultRange::use_iterator ResultRange::use_end() const { return use_iterator(*this, /*end=*/true); } ResultRange::user_range ResultRange::getUsers() { return {user_begin(), user_end()}; } ResultRange::user_iterator ResultRange::user_begin() { return user_iterator(use_begin()); } ResultRange::user_iterator ResultRange::user_end() { return user_iterator(use_end()); } ResultRange::UseIterator::UseIterator(ResultRange results, bool end) : it(end ? results.end() : results.begin()), endIt(results.end()) { // Only initialize current use if there are results/can be uses. if (it != endIt) skipOverResultsWithNoUsers(); } ResultRange::UseIterator &ResultRange::UseIterator::operator++() { // We increment over uses, if we reach the last use then move to next // result. if (use != (*it).use_end()) ++use; if (use == (*it).use_end()) { ++it; skipOverResultsWithNoUsers(); } return *this; } void ResultRange::UseIterator::skipOverResultsWithNoUsers() { while (it != endIt && (*it).use_empty()) ++it; // If we are at the last result, then set use to first use of // first result (sentinel value used for end). if (it == endIt) use = {}; else use = (*it).use_begin(); } void ResultRange::replaceAllUsesWith(Operation *op) { replaceAllUsesWith(op->getResults()); } void ResultRange::replaceUsesWithIf( Operation *op, function_ref shouldReplace) { replaceUsesWithIf(op->getResults(), shouldReplace); } //===----------------------------------------------------------------------===// // ValueRange ValueRange::ValueRange(ArrayRef values) : ValueRange(values.data(), values.size()) {} ValueRange::ValueRange(OperandRange values) : ValueRange(values.begin().getBase(), values.size()) {} ValueRange::ValueRange(ResultRange values) : ValueRange(values.getBase(), values.size()) {} /// See `llvm::detail::indexed_accessor_range_base` for details. ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner, ptrdiff_t index) { if (const auto *value = llvm::dyn_cast_if_present(owner)) return {value + index}; if (auto *operand = llvm::dyn_cast_if_present(owner)) return {operand + index}; return cast(owner)->getNextResultAtOffset(index); } /// See `llvm::detail::indexed_accessor_range_base` for details. Value ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) { if (const auto *value = llvm::dyn_cast_if_present(owner)) return value[index]; if (auto *operand = llvm::dyn_cast_if_present(owner)) return operand[index].get(); return cast(owner)->getNextResultAtOffset(index); } //===----------------------------------------------------------------------===// // Operation Equivalency //===----------------------------------------------------------------------===// llvm::hash_code OperationEquivalence::computeHash( Operation *op, function_ref hashOperands, function_ref hashResults, Flags flags) { // Hash operations based upon their: // - Operation Name // - Attributes // - Result Types llvm::hash_code hash = llvm::hash_combine(op->getName(), op->getRawDictionaryAttrs(), op->getResultTypes(), op->hashProperties()); // - Location if required if (!(flags & Flags::IgnoreLocations)) hash = llvm::hash_combine(hash, op->getLoc()); // - Operands if (op->hasTrait() && op->getNumOperands() > 0) { size_t operandHash = hashOperands(op->getOperand(0)); for (auto operand : op->getOperands().drop_front()) operandHash += hashOperands(operand); hash = llvm::hash_combine(hash, operandHash); } else { for (Value operand : op->getOperands()) hash = llvm::hash_combine(hash, hashOperands(operand)); } // - Results for (Value result : op->getResults()) hash = llvm::hash_combine(hash, hashResults(result)); return hash; } /*static*/ bool OperationEquivalence::isRegionEquivalentTo( Region *lhs, Region *rhs, function_ref checkEquivalent, function_ref markEquivalent, OperationEquivalence::Flags flags, function_ref checkCommutativeEquivalent) { DenseMap blocksMap; auto blocksEquivalent = [&](Block &lBlock, Block &rBlock) { // Check block arguments. if (lBlock.getNumArguments() != rBlock.getNumArguments()) return false; // Map the two blocks. auto insertion = blocksMap.insert({&lBlock, &rBlock}); if (insertion.first->getSecond() != &rBlock) return false; for (auto argPair : llvm::zip(lBlock.getArguments(), rBlock.getArguments())) { Value curArg = std::get<0>(argPair); Value otherArg = std::get<1>(argPair); if (curArg.getType() != otherArg.getType()) return false; if (!(flags & OperationEquivalence::IgnoreLocations) && curArg.getLoc() != otherArg.getLoc()) return false; // Corresponding bbArgs are equivalent. if (markEquivalent) markEquivalent(curArg, otherArg); } auto opsEquivalent = [&](Operation &lOp, Operation &rOp) { // Check for op equality (recursively). if (!OperationEquivalence::isEquivalentTo(&lOp, &rOp, checkEquivalent, markEquivalent, flags, checkCommutativeEquivalent)) return false; // Check successor mapping. for (auto successorsPair : llvm::zip(lOp.getSuccessors(), rOp.getSuccessors())) { Block *curSuccessor = std::get<0>(successorsPair); Block *otherSuccessor = std::get<1>(successorsPair); auto insertion = blocksMap.insert({curSuccessor, otherSuccessor}); if (insertion.first->getSecond() != otherSuccessor) return false; } return true; }; return llvm::all_of_zip(lBlock, rBlock, opsEquivalent); }; return llvm::all_of_zip(*lhs, *rhs, blocksEquivalent); } // Value equivalence cache to be used with `isRegionEquivalentTo` and // `isEquivalentTo`. struct ValueEquivalenceCache { DenseMap equivalentValues; LogicalResult checkEquivalent(Value lhsValue, Value rhsValue) { return success(lhsValue == rhsValue || equivalentValues.lookup(lhsValue) == rhsValue); } LogicalResult checkCommutativeEquivalent(ValueRange lhsRange, ValueRange rhsRange) { // Handle simple case where sizes mismatch. if (lhsRange.size() != rhsRange.size()) return failure(); // Handle where operands in order are equivalent. auto lhsIt = lhsRange.begin(); auto rhsIt = rhsRange.begin(); for (; lhsIt != lhsRange.end(); ++lhsIt, ++rhsIt) { if (failed(checkEquivalent(*lhsIt, *rhsIt))) break; } if (lhsIt == lhsRange.end()) return success(); // Handle another simple case where operands are just a permutation. // Note: This is not sufficient, this handles simple cases relatively // cheaply. auto sortValues = [](ValueRange values) { SmallVector sortedValues = llvm::to_vector(values); llvm::sort(sortedValues, [](Value a, Value b) { return a.getAsOpaquePointer() < b.getAsOpaquePointer(); }); return sortedValues; }; auto lhsSorted = sortValues({lhsIt, lhsRange.end()}); auto rhsSorted = sortValues({rhsIt, rhsRange.end()}); return success(lhsSorted == rhsSorted); } void markEquivalent(Value lhsResult, Value rhsResult) { auto insertion = equivalentValues.insert({lhsResult, rhsResult}); // Make sure that the value was not already marked equivalent to some other // value. (void)insertion; assert(insertion.first->second == rhsResult && "inconsistent OperationEquivalence state"); } }; /*static*/ bool OperationEquivalence::isRegionEquivalentTo(Region *lhs, Region *rhs, OperationEquivalence::Flags flags) { ValueEquivalenceCache cache; return isRegionEquivalentTo( lhs, rhs, [&](Value lhsValue, Value rhsValue) -> LogicalResult { return cache.checkEquivalent(lhsValue, rhsValue); }, [&](Value lhsResult, Value rhsResult) { cache.markEquivalent(lhsResult, rhsResult); }, flags, [&](ValueRange lhs, ValueRange rhs) -> LogicalResult { return cache.checkCommutativeEquivalent(lhs, rhs); }); } /*static*/ bool OperationEquivalence::isEquivalentTo( Operation *lhs, Operation *rhs, function_ref checkEquivalent, function_ref markEquivalent, Flags flags, function_ref checkCommutativeEquivalent) { if (lhs == rhs) return true; // 1. Compare the operation properties. if (lhs->getName() != rhs->getName() || lhs->getRawDictionaryAttrs() != rhs->getRawDictionaryAttrs() || lhs->getNumRegions() != rhs->getNumRegions() || lhs->getNumSuccessors() != rhs->getNumSuccessors() || lhs->getNumOperands() != rhs->getNumOperands() || lhs->getNumResults() != rhs->getNumResults() || !lhs->getName().compareOpProperties(lhs->getPropertiesStorage(), rhs->getPropertiesStorage())) return false; if (!(flags & IgnoreLocations) && lhs->getLoc() != rhs->getLoc()) return false; // 2. Compare operands. if (checkCommutativeEquivalent && lhs->hasTrait()) { auto lhsRange = lhs->getOperands(); auto rhsRange = rhs->getOperands(); if (failed(checkCommutativeEquivalent(lhsRange, rhsRange))) return false; } else { // Check pair wise for equivalence. for (auto operandPair : llvm::zip(lhs->getOperands(), rhs->getOperands())) { Value curArg = std::get<0>(operandPair); Value otherArg = std::get<1>(operandPair); if (curArg == otherArg) continue; if (curArg.getType() != otherArg.getType()) return false; if (failed(checkEquivalent(curArg, otherArg))) return false; } } // 3. Compare result types and mark results as equivalent. for (auto resultPair : llvm::zip(lhs->getResults(), rhs->getResults())) { Value curArg = std::get<0>(resultPair); Value otherArg = std::get<1>(resultPair); if (curArg.getType() != otherArg.getType()) return false; if (markEquivalent) markEquivalent(curArg, otherArg); } // 4. Compare regions. for (auto regionPair : llvm::zip(lhs->getRegions(), rhs->getRegions())) if (!isRegionEquivalentTo(&std::get<0>(regionPair), &std::get<1>(regionPair), checkEquivalent, markEquivalent, flags)) return false; return true; } /*static*/ bool OperationEquivalence::isEquivalentTo(Operation *lhs, Operation *rhs, Flags flags) { ValueEquivalenceCache cache; return OperationEquivalence::isEquivalentTo( lhs, rhs, [&](Value lhsValue, Value rhsValue) -> LogicalResult { return cache.checkEquivalent(lhsValue, rhsValue); }, [&](Value lhsResult, Value rhsResult) { cache.markEquivalent(lhsResult, rhsResult); }, flags, [&](ValueRange lhs, ValueRange rhs) -> LogicalResult { return cache.checkCommutativeEquivalent(lhs, rhs); }); } //===----------------------------------------------------------------------===// // OperationFingerPrint //===----------------------------------------------------------------------===// template static void addDataToHash(llvm::SHA1 &hasher, const T &data) { hasher.update( ArrayRef(reinterpret_cast(&data), sizeof(T))); } OperationFingerPrint::OperationFingerPrint(Operation *topOp, bool includeNested) { llvm::SHA1 hasher; // Helper function that hashes an operation based on its mutable bits: auto addOperationToHash = [&](Operation *op) { // - Operation pointer addDataToHash(hasher, op); // - Parent operation pointer (to take into account the nesting structure) if (op != topOp) addDataToHash(hasher, op->getParentOp()); // - Attributes addDataToHash(hasher, op->getRawDictionaryAttrs()); // - Properties addDataToHash(hasher, op->hashProperties()); // - Blocks in Regions for (Region ®ion : op->getRegions()) { for (Block &block : region) { addDataToHash(hasher, &block); for (BlockArgument arg : block.getArguments()) addDataToHash(hasher, arg); } } // - Location addDataToHash(hasher, op->getLoc().getAsOpaquePointer()); // - Operands for (Value operand : op->getOperands()) addDataToHash(hasher, operand); // - Successors for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) addDataToHash(hasher, op->getSuccessor(i)); // - Result types for (Type t : op->getResultTypes()) addDataToHash(hasher, t); }; if (includeNested) topOp->walk(addOperationToHash); else addOperationToHash(topOp); hash = hasher.result(); }