//===--- ByteCodeExprGen.cpp - Code generator for expressions ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ByteCodeExprGen.h" #include "ByteCodeEmitter.h" #include "ByteCodeGenError.h" #include "ByteCodeStmtGen.h" #include "Context.h" #include "Function.h" #include "PrimType.h" #include "Program.h" #include "State.h" using namespace clang; using namespace clang::interp; using APSInt = llvm::APSInt; template using Expected = llvm::Expected; template using Optional = llvm::Optional; namespace clang { namespace interp { /// Scope used to handle temporaries in toplevel variable declarations. template class DeclScope final : public LocalScope { public: DeclScope(ByteCodeExprGen *Ctx, const VarDecl *VD) : LocalScope(Ctx), Scope(Ctx->P, VD) {} void addExtended(const Scope::Local &Local) override { return this->addLocal(Local); } private: Program::DeclScope Scope; }; /// Scope used to handle initialization methods. template class OptionScope { public: using InitFnRef = typename ByteCodeExprGen::InitFnRef; using ChainedInitFnRef = std::function; /// Root constructor, compiling or discarding primitives. OptionScope(ByteCodeExprGen *Ctx, bool NewDiscardResult) : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), OldInitFn(std::move(Ctx->InitFn)) { Ctx->DiscardResult = NewDiscardResult; Ctx->InitFn = llvm::Optional{}; } /// Root constructor, setting up compilation state. OptionScope(ByteCodeExprGen *Ctx, InitFnRef NewInitFn) : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), OldInitFn(std::move(Ctx->InitFn)) { Ctx->DiscardResult = true; Ctx->InitFn = NewInitFn; } /// Extends the chain of initialisation pointers. OptionScope(ByteCodeExprGen *Ctx, ChainedInitFnRef NewInitFn) : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), OldInitFn(std::move(Ctx->InitFn)) { assert(OldInitFn && "missing initializer"); Ctx->InitFn = [this, NewInitFn] { return NewInitFn(*OldInitFn); }; } ~OptionScope() { Ctx->DiscardResult = OldDiscardResult; Ctx->InitFn = std::move(OldInitFn); } private: /// Parent context. ByteCodeExprGen *Ctx; /// Old discard flag to restore. bool OldDiscardResult; /// Old pointer emitter to restore. llvm::Optional OldInitFn; }; } // namespace interp } // namespace clang template bool ByteCodeExprGen::VisitCastExpr(const CastExpr *CE) { auto *SubExpr = CE->getSubExpr(); switch (CE->getCastKind()) { case CK_LValueToRValue: { return dereference( CE->getSubExpr(), DerefKind::Read, [](PrimType) { // Value loaded - nothing to do here. return true; }, [this, CE](PrimType T) { // Pointer on stack - dereference it. if (!this->emitLoadPop(T, CE)) return false; return DiscardResult ? this->emitPop(T, CE) : true; }); } case CK_ArrayToPointerDecay: case CK_AtomicToNonAtomic: case CK_ConstructorConversion: case CK_FunctionToPointerDecay: case CK_NonAtomicToAtomic: case CK_NoOp: case CK_UserDefinedConversion: case CK_NullToPointer: return this->Visit(SubExpr); case CK_IntegralToBoolean: case CK_IntegralCast: { Optional FromT = classify(SubExpr->getType()); Optional ToT = classify(CE->getType()); if (!FromT || !ToT) return false; if (!this->Visit(SubExpr)) return false; // TODO: Emit this only if FromT != ToT. return this->emitCast(*FromT, *ToT, CE); } case CK_ToVoid: return discard(SubExpr); default: assert(false && "Cast not implemented"); } llvm_unreachable("Unhandled clang::CastKind enum"); } template bool ByteCodeExprGen::VisitIntegerLiteral(const IntegerLiteral *LE) { if (DiscardResult) return true; auto Val = LE->getValue(); QualType LitTy = LE->getType(); if (Optional T = classify(LitTy)) return emitConst(*T, getIntWidth(LitTy), LE->getValue(), LE); return this->bail(LE); } template bool ByteCodeExprGen::VisitParenExpr(const ParenExpr *PE) { return this->Visit(PE->getSubExpr()); } template bool ByteCodeExprGen::VisitBinaryOperator(const BinaryOperator *BO) { const Expr *LHS = BO->getLHS(); const Expr *RHS = BO->getRHS(); // Deal with operations which have composite or void types. switch (BO->getOpcode()) { case BO_Comma: if (!discard(LHS)) return false; if (!this->Visit(RHS)) return false; return true; default: break; } // Typecheck the args. Optional LT = classify(LHS->getType()); Optional RT = classify(RHS->getType()); if (!LT || !RT) { return this->bail(BO); } if (Optional T = classify(BO->getType())) { if (!visit(LHS)) return false; if (!visit(RHS)) return false; auto Discard = [this, T, BO](bool Result) { if (!Result) return false; return DiscardResult ? this->emitPop(*T, BO) : true; }; switch (BO->getOpcode()) { case BO_EQ: return Discard(this->emitEQ(*LT, BO)); case BO_NE: return Discard(this->emitNE(*LT, BO)); case BO_LT: return Discard(this->emitLT(*LT, BO)); case BO_LE: return Discard(this->emitLE(*LT, BO)); case BO_GT: return Discard(this->emitGT(*LT, BO)); case BO_GE: return Discard(this->emitGE(*LT, BO)); case BO_Sub: return Discard(this->emitSub(*T, BO)); case BO_Add: return Discard(this->emitAdd(*T, BO)); case BO_Mul: return Discard(this->emitMul(*T, BO)); case BO_Assign: if (!this->emitStore(*T, BO)) return false; return DiscardResult ? this->emitPopPtr(BO) : true; default: return this->bail(BO); } } return this->bail(BO); } template bool ByteCodeExprGen::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { if (Optional T = classify(E)) return this->emitZero(*T, E); return false; } template bool ByteCodeExprGen::VisitArraySubscriptExpr( const ArraySubscriptExpr *E) { const Expr *Base = E->getBase(); const Expr *Index = E->getIdx(); // Take pointer of LHS, add offset from RHS, narrow result. // What's left on the stack after this is a pointer. if (Optional IndexT = classify(Index->getType())) { if (!this->Visit(Base)) return false; if (!this->Visit(Index)) return false; if (!this->emitAddOffset(*IndexT, E)) return false; if (!this->emitNarrowPtr(E)) return false; return true; } return false; } template bool ByteCodeExprGen::VisitInitListExpr(const InitListExpr *E) { for (const Expr *Init : E->inits()) { if (!this->visit(Init)) return false; } return true; } template bool ByteCodeExprGen::VisitSubstNonTypeTemplateParmExpr( const SubstNonTypeTemplateParmExpr *E) { return this->visit(E->getReplacement()); } template bool ByteCodeExprGen::VisitConstantExpr(const ConstantExpr *E) { // TODO: Check if the ConstantExpr already has a value set and if so, // use that instead of evaluating it again. return this->visit(E->getSubExpr()); } template bool ByteCodeExprGen::VisitUnaryExprOrTypeTraitExpr( const UnaryExprOrTypeTraitExpr *E) { if (E->getKind() == UETT_SizeOf) { QualType ArgType = E->getTypeOfArgument(); CharUnits Size; if (ArgType->isVoidType() || ArgType->isFunctionType()) Size = CharUnits::One(); else { if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) return false; Size = Ctx.getASTContext().getTypeSizeInChars(ArgType); } return this->emitConst(E, Size.getQuantity()); } return false; } template bool ByteCodeExprGen::VisitMemberExpr(const MemberExpr *E) { // 'Base.Member' const Expr *Base = E->getBase(); const ValueDecl *Member = E->getMemberDecl(); if (!this->visit(Base)) return false; // Base above gives us a pointer on the stack. // TODO: Implement non-FieldDecl members. if (const auto *FD = dyn_cast(Member)) { const RecordDecl *RD = FD->getParent(); const Record *R = getRecord(RD); const Record::Field *F = R->getField(FD); // Leave a pointer to the field on the stack. return this->emitGetPtrField(F->Offset, E); } return false; } template bool ByteCodeExprGen::VisitArrayInitIndexExpr( const ArrayInitIndexExpr *E) { assert(ArrayIndex); return this->emitConstUint64(*ArrayIndex, E); } template bool ByteCodeExprGen::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { return this->visit(E->getSourceExpr()); } template bool ByteCodeExprGen::discard(const Expr *E) { OptionScope Scope(this, /*NewDiscardResult=*/true); return this->Visit(E); } template bool ByteCodeExprGen::visit(const Expr *E) { OptionScope Scope(this, /*NewDiscardResult=*/false); return this->Visit(E); } template bool ByteCodeExprGen::visitBool(const Expr *E) { if (Optional T = classify(E->getType())) { return visit(E); } else { return this->bail(E); } } template bool ByteCodeExprGen::visitZeroInitializer(PrimType T, const Expr *E) { switch (T) { case PT_Bool: return this->emitZeroBool(E); case PT_Sint8: return this->emitZeroSint8(E); case PT_Uint8: return this->emitZeroUint8(E); case PT_Sint16: return this->emitZeroSint16(E); case PT_Uint16: return this->emitZeroUint16(E); case PT_Sint32: return this->emitZeroSint32(E); case PT_Uint32: return this->emitZeroUint32(E); case PT_Sint64: return this->emitZeroSint64(E); case PT_Uint64: return this->emitZeroUint64(E); case PT_Ptr: return this->emitNullPtr(E); } llvm_unreachable("unknown primitive type"); } template bool ByteCodeExprGen::dereference( const Expr *LV, DerefKind AK, llvm::function_ref Direct, llvm::function_ref Indirect) { if (Optional T = classify(LV->getType())) { if (!LV->refersToBitField()) { // Only primitive, non bit-field types can be dereferenced directly. if (auto *DE = dyn_cast(LV)) { if (!DE->getDecl()->getType()->isReferenceType()) { if (auto *PD = dyn_cast(DE->getDecl())) return dereferenceParam(LV, *T, PD, AK, Direct, Indirect); if (auto *VD = dyn_cast(DE->getDecl())) return dereferenceVar(LV, *T, VD, AK, Direct, Indirect); } } } if (!visit(LV)) return false; return Indirect(*T); } return false; } template bool ByteCodeExprGen::dereferenceParam( const Expr *LV, PrimType T, const ParmVarDecl *PD, DerefKind AK, llvm::function_ref Direct, llvm::function_ref Indirect) { auto It = this->Params.find(PD); if (It != this->Params.end()) { unsigned Idx = It->second; switch (AK) { case DerefKind::Read: return DiscardResult ? true : this->emitGetParam(T, Idx, LV); case DerefKind::Write: if (!Direct(T)) return false; if (!this->emitSetParam(T, Idx, LV)) return false; return DiscardResult ? true : this->emitGetPtrParam(Idx, LV); case DerefKind::ReadWrite: if (!this->emitGetParam(T, Idx, LV)) return false; if (!Direct(T)) return false; if (!this->emitSetParam(T, Idx, LV)) return false; return DiscardResult ? true : this->emitGetPtrParam(Idx, LV); } return true; } // If the param is a pointer, we can dereference a dummy value. if (!DiscardResult && T == PT_Ptr && AK == DerefKind::Read) { if (auto Idx = P.getOrCreateDummy(PD)) return this->emitGetPtrGlobal(*Idx, PD); return false; } // Value cannot be produced - try to emit pointer and do stuff with it. return visit(LV) && Indirect(T); } template bool ByteCodeExprGen::dereferenceVar( const Expr *LV, PrimType T, const VarDecl *VD, DerefKind AK, llvm::function_ref Direct, llvm::function_ref Indirect) { auto It = Locals.find(VD); if (It != Locals.end()) { const auto &L = It->second; switch (AK) { case DerefKind::Read: if (!this->emitGetLocal(T, L.Offset, LV)) return false; return DiscardResult ? this->emitPop(T, LV) : true; case DerefKind::Write: if (!Direct(T)) return false; if (!this->emitSetLocal(T, L.Offset, LV)) return false; return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV); case DerefKind::ReadWrite: if (!this->emitGetLocal(T, L.Offset, LV)) return false; if (!Direct(T)) return false; if (!this->emitSetLocal(T, L.Offset, LV)) return false; return DiscardResult ? true : this->emitGetPtrLocal(L.Offset, LV); } } else if (auto Idx = getGlobalIdx(VD)) { switch (AK) { case DerefKind::Read: if (!this->emitGetGlobal(T, *Idx, LV)) return false; return DiscardResult ? this->emitPop(T, LV) : true; case DerefKind::Write: if (!Direct(T)) return false; if (!this->emitSetGlobal(T, *Idx, LV)) return false; return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV); case DerefKind::ReadWrite: if (!this->emitGetGlobal(T, *Idx, LV)) return false; if (!Direct(T)) return false; if (!this->emitSetGlobal(T, *Idx, LV)) return false; return DiscardResult ? true : this->emitGetPtrGlobal(*Idx, LV); } } // If the declaration is a constant value, emit it here even // though the declaration was not evaluated in the current scope. // The access mode can only be read in this case. if (!DiscardResult && AK == DerefKind::Read) { if (VD->hasLocalStorage() && VD->hasInit() && !VD->isConstexpr()) { QualType VT = VD->getType(); if (VT.isConstQualified() && VT->isFundamentalType()) return this->Visit(VD->getInit()); } } // Value cannot be produced - try to emit pointer. return visit(LV) && Indirect(T); } template bool ByteCodeExprGen::emitConst(PrimType T, unsigned NumBits, const APInt &Value, const Expr *E) { switch (T) { case PT_Sint8: return this->emitConstSint8(Value.getSExtValue(), E); case PT_Uint8: return this->emitConstUint8(Value.getZExtValue(), E); case PT_Sint16: return this->emitConstSint16(Value.getSExtValue(), E); case PT_Uint16: return this->emitConstUint16(Value.getZExtValue(), E); case PT_Sint32: return this->emitConstSint32(Value.getSExtValue(), E); case PT_Uint32: return this->emitConstUint32(Value.getZExtValue(), E); case PT_Sint64: return this->emitConstSint64(Value.getSExtValue(), E); case PT_Uint64: return this->emitConstUint64(Value.getZExtValue(), E); case PT_Bool: return this->emitConstBool(Value.getBoolValue(), E); case PT_Ptr: llvm_unreachable("Invalid integral type"); break; } llvm_unreachable("unknown primitive type"); } template unsigned ByteCodeExprGen::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, bool IsConst, bool IsExtended) { Descriptor *D = P.createDescriptor(Src, Ty, IsConst, Src.is()); Scope::Local Local = this->createLocal(D); if (auto *VD = dyn_cast_or_null(Src.dyn_cast())) Locals.insert({VD, Local}); VarScope->add(Local, IsExtended); return Local.Offset; } template llvm::Optional ByteCodeExprGen::allocateLocal(DeclTy &&Src, bool IsExtended) { QualType Ty; const ValueDecl *Key = nullptr; const Expr *Init = nullptr; bool IsTemporary = false; if (auto *VD = dyn_cast_if_present(Src.dyn_cast())) { Key = VD; Ty = VD->getType(); if (const auto *VarD = dyn_cast(VD)) Init = VarD->getInit(); } if (auto *E = Src.dyn_cast()) { IsTemporary = true; Ty = E->getType(); } Descriptor *D = P.createDescriptor( Src, Ty.getTypePtr(), Ty.isConstQualified(), IsTemporary, false, Init); if (!D) return {}; Scope::Local Local = this->createLocal(D); if (Key) Locals.insert({Key, Local}); VarScope->add(Local, IsExtended); return Local.Offset; } // NB: When calling this function, we have a pointer to the // array-to-initialize on the stack. template bool ByteCodeExprGen::visitArrayInitializer(const Expr *Initializer) { assert(Initializer->getType()->isArrayType()); // TODO: Fillers? if (const auto *InitList = dyn_cast(Initializer)) { unsigned ElementIndex = 0; for (const Expr *Init : InitList->inits()) { QualType InitType = Init->getType(); if (InitType->isArrayType()) { // Advance the pointer currently on the stack to the given // dimension and narrow(). if (!this->emitDupPtr(Init)) return false; if (!this->emitConstUint32(ElementIndex, Init)) return false; if (!this->emitAddOffsetUint32(Init)) return false; if (!this->emitNarrowPtr(Init)) return false; if (!visitArrayInitializer(Init)) return false; if (!this->emitPopPtr(Init)) return false; } else if (Optional T = classify(InitType)) { // Visit the primitive element like normal. if (!this->emitDupPtr(Init)) return false; if (!this->visit(Init)) return false; if (!this->emitInitElemPop(*T, ElementIndex, Init)) return false; } else { assert(false && "Unhandled type in array initializer initlist"); } ++ElementIndex; } return true; } else if (const auto *DIE = dyn_cast(Initializer)) { return this->visitInitializer(DIE->getExpr()); } else if (const auto *AILE = dyn_cast(Initializer)) { // TODO: This compiles to quite a lot of bytecode if the array is larger. // Investigate compiling this to a loop, or at least try to use // the AILE's Common expr. const Expr *SubExpr = AILE->getSubExpr(); size_t Size = AILE->getArraySize().getZExtValue(); Optional ElemT = classify(SubExpr->getType()); if (!ElemT) return false; for (size_t I = 0; I != Size; ++I) { ArrayIndexScope IndexScope(this, I); if (!this->emitDupPtr(SubExpr)) return false; if (!this->visit(SubExpr)) return false; if (!this->emitInitElem(*ElemT, I, Initializer)) return false; if (!this->emitPopPtr(Initializer)) return false; } return true; } assert(false && "Unknown expression for array initialization"); return false; } template bool ByteCodeExprGen::visitRecordInitializer(const Expr *Initializer) { Initializer = Initializer->IgnoreParenImpCasts(); assert(Initializer->getType()->isRecordType()); if (const auto CtorExpr = dyn_cast(Initializer)) { const Function *Func = getFunction(CtorExpr->getConstructor()); if (!Func || !Func->isConstexpr()) return false; // The This pointer is already on the stack because this is an initializer, // but we need to dup() so the call() below has its own copy. if (!this->emitDupPtr(Initializer)) return false; // Constructor arguments. for (const auto *Arg : CtorExpr->arguments()) { if (!this->visit(Arg)) return false; } return this->emitCallVoid(Func, Initializer); } else if (const auto *InitList = dyn_cast(Initializer)) { const Record *R = getRecord(InitList->getType()); unsigned InitIndex = 0; for (const Expr *Init : InitList->inits()) { const Record::Field *FieldToInit = R->getField(InitIndex); if (!this->emitDupPtr(Initializer)) return false; if (Optional T = classify(Init->getType())) { if (!this->visit(Init)) return false; if (!this->emitInitField(*T, FieldToInit->Offset, Initializer)) return false; } else { // Non-primitive case. Get a pointer to the field-to-initialize // on the stack and recurse into visitInitializer(). if (!this->emitGetPtrField(FieldToInit->Offset, Init)) return false; if (!this->visitInitializer(Init)) return false; if (!this->emitPopPtr(Initializer)) return false; } ++InitIndex; } return true; } else if (const CallExpr *CE = dyn_cast(Initializer)) { const Decl *Callee = CE->getCalleeDecl(); const Function *Func = getFunction(dyn_cast(Callee)); if (!Func) return false; if (Func->hasRVO()) { // RVO functions expect a pointer to initialize on the stack. // Dup our existing pointer so it has its own copy to use. if (!this->emitDupPtr(Initializer)) return false; return this->visit(CE); } } else if (const auto *DIE = dyn_cast(Initializer)) { return this->visitInitializer(DIE->getExpr()); } return false; } template bool ByteCodeExprGen::visitInitializer(const Expr *Initializer) { QualType InitializerType = Initializer->getType(); if (InitializerType->isArrayType()) return visitArrayInitializer(Initializer); if (InitializerType->isRecordType()) return visitRecordInitializer(Initializer); // Otherwise, visit the expression like normal. return this->Visit(Initializer); } template bool ByteCodeExprGen::getPtrVarDecl(const VarDecl *VD, const Expr *E) { // Generate a pointer to the local, loading refs. if (Optional Idx = getGlobalIdx(VD)) { if (VD->getType()->isReferenceType()) return this->emitGetGlobalPtr(*Idx, E); else return this->emitGetPtrGlobal(*Idx, E); } return this->bail(VD); } template llvm::Optional ByteCodeExprGen::getGlobalIdx(const VarDecl *VD) { if (VD->isConstexpr()) { // Constexpr decl - it must have already been defined. return P.getGlobal(VD); } if (!VD->hasLocalStorage()) { // Not constexpr, but a global var - can have pointer taken. Program::DeclScope Scope(P, VD); return P.getOrCreateGlobal(VD); } return {}; } template const RecordType *ByteCodeExprGen::getRecordTy(QualType Ty) { if (const PointerType *PT = dyn_cast(Ty)) return PT->getPointeeType()->getAs(); else return Ty->getAs(); } template Record *ByteCodeExprGen::getRecord(QualType Ty) { if (auto *RecordTy = getRecordTy(Ty)) { return getRecord(RecordTy->getDecl()); } return nullptr; } template Record *ByteCodeExprGen::getRecord(const RecordDecl *RD) { return P.getOrCreateRecord(RD); } template const Function *ByteCodeExprGen::getFunction(const FunctionDecl *FD) { assert(FD); const Function *Func = P.getFunction(FD); if (!Func) { if (auto R = ByteCodeStmtGen(Ctx, P).compileFunc(FD)) Func = *R; else { llvm::consumeError(R.takeError()); return nullptr; } } return Func; } template bool ByteCodeExprGen::visitExpr(const Expr *Exp) { ExprScope RootScope(this); if (!visit(Exp)) return false; if (Optional T = classify(Exp)) return this->emitRet(*T, Exp); else return this->emitRetValue(Exp); } template bool ByteCodeExprGen::visitDecl(const VarDecl *VD) { const Expr *Init = VD->getInit(); if (Optional I = P.createGlobal(VD, Init)) { if (Optional T = classify(VD->getType())) { { // Primitive declarations - compute the value and set it. DeclScope LocalScope(this, VD); if (!visit(Init)) return false; } // If the declaration is global, save the value for later use. if (!this->emitDup(*T, VD)) return false; if (!this->emitInitGlobal(*T, *I, VD)) return false; return this->emitRet(*T, VD); } else { { // Composite declarations - allocate storage and initialize it. DeclScope LocalScope(this, VD); if (!visitGlobalInitializer(Init, *I)) return false; } // Return a pointer to the global. if (!this->emitGetPtrGlobal(*I, VD)) return false; return this->emitRetValue(VD); } } return this->bail(VD); } template bool ByteCodeExprGen::VisitCallExpr(const CallExpr *E) { assert(!E->getBuiltinCallee() && "Builtin functions aren't supported yet"); const Decl *Callee = E->getCalleeDecl(); if (const auto *FuncDecl = dyn_cast_or_null(Callee)) { const Function *Func = getFunction(FuncDecl); if (!Func) return false; // If the function is being compiled right now, this is a recursive call. // In that case, the function can't be valid yet, even though it will be // later. // If the function is already fully compiled but not constexpr, it was // found to be faulty earlier on, so bail out. if (Func->isFullyCompiled() && !Func->isConstexpr()) return false; QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); Optional T = classify(ReturnType); // Put arguments on the stack. for (const auto *Arg : E->arguments()) { if (!this->visit(Arg)) return false; } // Primitive return value, just call it. if (T) return this->emitCall(*T, Func, E); // Void Return value, easy. if (ReturnType->isVoidType()) return this->emitCallVoid(Func, E); // Non-primitive return value with Return Value Optimization, // we already have a pointer on the stack to write the result into. if (Func->hasRVO()) return this->emitCallVoid(Func, E); } else { assert(false && "We don't support non-FunctionDecl callees right now."); } return false; } template bool ByteCodeExprGen::VisitCXXMemberCallExpr( const CXXMemberCallExpr *E) { // Get a This pointer on the stack. if (!this->visit(E->getImplicitObjectArgument())) return false; return VisitCallExpr(E); } template bool ByteCodeExprGen::VisitCXXDefaultInitExpr( const CXXDefaultInitExpr *E) { return this->visit(E->getExpr()); } template bool ByteCodeExprGen::VisitCXXDefaultArgExpr( const CXXDefaultArgExpr *E) { return this->visit(E->getExpr()); } template bool ByteCodeExprGen::VisitCXXBoolLiteralExpr( const CXXBoolLiteralExpr *E) { if (DiscardResult) return true; return this->emitConstBool(E->getValue(), E); } template bool ByteCodeExprGen::VisitCXXNullPtrLiteralExpr( const CXXNullPtrLiteralExpr *E) { if (DiscardResult) return true; return this->emitNullPtr(E); } template bool ByteCodeExprGen::VisitCXXThisExpr(const CXXThisExpr *E) { return this->emitThis(E); } template bool ByteCodeExprGen::VisitUnaryOperator(const UnaryOperator *E) { const Expr *SubExpr = E->getSubExpr(); switch (E->getOpcode()) { case UO_PostInc: // x++ case UO_PostDec: // x-- case UO_PreInc: // --x case UO_PreDec: // ++x return false; case UO_LNot: // !x if (!this->Visit(SubExpr)) return false; return this->emitInvBool(E); case UO_Minus: // -x if (!this->Visit(SubExpr)) return false; if (Optional T = classify(E->getType())) return this->emitNeg(*T, E); return false; case UO_Plus: // +x return this->Visit(SubExpr); // noop case UO_AddrOf: // &x // We should already have a pointer when we get here. return this->Visit(SubExpr); case UO_Deref: // *x return dereference( SubExpr, DerefKind::Read, [](PrimType) { llvm_unreachable("Dereferencing requires a pointer"); return false; }, [this, E](PrimType T) { return DiscardResult ? this->emitPop(T, E) : true; }); case UO_Not: // ~x case UO_Real: // __real x case UO_Imag: // __imag x case UO_Extension: case UO_Coawait: assert(false && "Unhandled opcode"); } return false; } template bool ByteCodeExprGen::VisitDeclRefExpr(const DeclRefExpr *E) { const auto *Decl = E->getDecl(); bool IsReference = Decl->getType()->isReferenceType(); bool FoundDecl = false; if (auto It = Locals.find(Decl); It != Locals.end()) { const unsigned Offset = It->second.Offset; if (!this->emitGetPtrLocal(Offset, E)) return false; FoundDecl = true; } else if (auto GlobalIndex = P.getGlobal(Decl)) { if (!this->emitGetPtrGlobal(*GlobalIndex, E)) return false; FoundDecl = true; } else if (const auto *PVD = dyn_cast(Decl)) { if (auto It = this->Params.find(PVD); It != this->Params.end()) { if (!this->emitGetPtrParam(It->second, E)) return false; FoundDecl = true; } } else if (const auto *ECD = dyn_cast(Decl)) { PrimType T = *classify(ECD->getType()); return this->emitConst(T, getIntWidth(ECD->getType()), ECD->getInitVal(), E); } // References are implemented using pointers, so when we get here, // we have a pointer to a pointer, which we need to de-reference once. if (FoundDecl) { if (IsReference) { if (!this->emitLoadPopPtr(E)) return false; } return true; } return false; } template void ByteCodeExprGen::emitCleanup() { for (VariableScope *C = VarScope; C; C = C->getParent()) C->emitDestruction(); } namespace clang { namespace interp { template class ByteCodeExprGen; template class ByteCodeExprGen; } // namespace interp } // namespace clang