//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/AST.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Support/MathExtras.h" using namespace clang; using namespace CodeGen; //===--------------------------------------------------------------------===// // Miscellaneous Helper Methods //===--------------------------------------------------------------------===// /// CreateTempAlloca - This creates a alloca and inserts it into the entry /// block. llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, const char *Name) { return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); } /// EvaluateExprAsBool - Perform the usual unary conversions on the specified /// expression and compare the result against zero, returning an Int1Ty value. llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { QualType BoolTy = getContext().BoolTy; if (!E->getType()->isAnyComplexType()) return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); } /// EmitAnyExpr - Emit code to compute the specified expression which can have /// any type. The result is returned as an RValue struct. If this is an /// aggregate expression, the aggloc/agglocvolatile arguments indicate where /// the result should be returned. RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, bool isAggLocVolatile) { if (!hasAggregateLLVMType(E->getType())) return RValue::get(EmitScalarExpr(E)); else if (E->getType()->isAnyComplexType()) return RValue::getComplex(EmitComplexExpr(E)); EmitAggExpr(E, AggLoc, isAggLocVolatile); return RValue::getAggregate(AggLoc); } //===----------------------------------------------------------------------===// // LValue Expression Emission //===----------------------------------------------------------------------===// /// EmitLValue - Emit code to compute a designator that specifies the location /// of the expression. /// /// This can return one of two things: a simple address or a bitfield /// reference. In either case, the LLVM Value* in the LValue structure is /// guaranteed to be an LLVM pointer type. /// /// If this returns a bitfield reference, nothing about the pointee type of /// the LLVM value is known: For example, it may not be a pointer to an /// integer. /// /// If this returns a normal address, and if the lvalue's C type is fixed /// size, this method guarantees that the returned pointer type will point to /// an LLVM type of the same size of the lvalue's type. If the lvalue has a /// variable length type, this is not possible. /// LValue CodeGenFunction::EmitLValue(const Expr *E) { switch (E->getStmtClass()) { default: { printf("Statement class: %d\n", E->getStmtClass()); WarnUnsupported(E, "l-value expression"); llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); return LValue::MakeAddr(llvm::UndefValue::get(Ty)); } case Expr::CallExprClass: return EmitCallExprLValue(cast(E)); case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast(E)); case Expr::ParenExprClass:return EmitLValue(cast(E)->getSubExpr()); case Expr::PreDefinedExprClass: return EmitPreDefinedLValue(cast(E)); case Expr::StringLiteralClass: return EmitStringLiteralLValue(cast(E)); case Expr::ObjCIvarRefExprClass: return EmitObjCIvarRefLValue(cast(E)); case Expr::UnaryOperatorClass: return EmitUnaryOpLValue(cast(E)); case Expr::ArraySubscriptExprClass: return EmitArraySubscriptExpr(cast(E)); case Expr::ExtVectorElementExprClass: return EmitExtVectorElementExpr(cast(E)); case Expr::MemberExprClass: return EmitMemberExpr(cast(E)); case Expr::CompoundLiteralExprClass: return EmitCompoundLiteralLValue(cast(E)); } } /// EmitLoadOfLValue - Given an expression that represents a value lvalue, /// this method emits the address of the lvalue, then loads the result as an /// rvalue, returning the rvalue. RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { if (LV.isSimple()) { llvm::Value *Ptr = LV.getAddress(); const llvm::Type *EltTy = cast(Ptr->getType())->getElementType(); // Simple scalar l-value. if (EltTy->isFirstClassType()) { llvm::Value *V = Builder.CreateLoad(Ptr, "tmp"); // Bool can have different representation in memory than in registers. if (ExprType->isBooleanType()) { if (V->getType() != llvm::Type::Int1Ty) V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool"); } return RValue::get(V); } assert(ExprType->isFunctionType() && "Unknown scalar value"); return RValue::get(Ptr); } if (LV.isVectorElt()) { llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp"); return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), "vecext")); } // If this is a reference to a subset of the elements of a vector, either // shuffle the input or extract/insert them as appropriate. if (LV.isExtVectorElt()) return EmitLoadOfExtVectorElementLValue(LV, ExprType); if (LV.isBitfield()) return EmitLoadOfBitfieldLValue(LV, ExprType); assert(0 && "Unknown LValue type!"); //an invalid RValue, but the assert will //ensure that this point is never reached return RValue(); } RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType) { llvm::Value *Ptr = LV.getBitfieldAddr(); const llvm::Type *EltTy = cast(Ptr->getType())->getElementType(); unsigned EltTySize = EltTy->getPrimitiveSizeInBits(); unsigned short BitfieldSize = LV.getBitfieldSize(); unsigned short EndBit = LV.getBitfieldStartBit() + BitfieldSize; llvm::Value *V = Builder.CreateLoad(Ptr, "tmp"); llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - EndBit); V = Builder.CreateShl(V, ShAmt, "tmp"); ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - BitfieldSize); V = LV.isBitfieldSigned() ? Builder.CreateAShr(V, ShAmt, "tmp") : Builder.CreateLShr(V, ShAmt, "tmp"); return RValue::get(V); } // If this is a reference to a subset of the elements of a vector, either // shuffle the input or extract/insert them as appropriate. RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, QualType ExprType) { llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), "tmp"); const llvm::Constant *Elts = LV.getExtVectorElts(); // If the result of the expression is a non-vector type, we must be // extracting a single element. Just codegen as an extractelement. const VectorType *ExprVT = ExprType->getAsVectorType(); if (!ExprVT) { unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(0, Elts); llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx); return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); } // If the source and destination have the same number of elements, use a // vector shuffle instead of insert/extracts. unsigned NumResultElts = ExprVT->getNumElements(); unsigned NumSourceElts = cast(Vec->getType())->getNumElements(); if (NumResultElts == NumSourceElts) { llvm::SmallVector Mask; for (unsigned i = 0; i != NumResultElts; ++i) { unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(i, Elts); Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx)); } llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), MaskV, "tmp"); return RValue::get(Vec); } // Start out with an undef of the result type. llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType)); // Extract/Insert each element of the result. for (unsigned i = 0; i != NumResultElts; ++i) { unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(i, Elts); llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx); Elt = Builder.CreateExtractElement(Vec, Elt, "tmp"); llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp"); } return RValue::get(Result); } /// EmitStoreThroughLValue - Store the specified rvalue into the specified /// lvalue, where both are guaranteed to the have the same type, and that type /// is 'Ty'. void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty) { if (!Dst.isSimple()) { if (Dst.isVectorElt()) { // Read/modify/write the vector, inserting the new element. // FIXME: Volatility. llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp"); Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), Dst.getVectorIdx(), "vecins"); Builder.CreateStore(Vec, Dst.getVectorAddr()); return; } // If this is an update of extended vector elements, insert them as // appropriate. if (Dst.isExtVectorElt()) return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); if (Dst.isBitfield()) return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); assert(0 && "Unknown LValue type"); } llvm::Value *DstAddr = Dst.getAddress(); assert(Src.isScalar() && "Can't emit an agg store with this method"); // FIXME: Handle volatility etc. const llvm::Type *SrcTy = Src.getScalarVal()->getType(); const llvm::PointerType *DstPtr = cast(DstAddr->getType()); const llvm::Type *AddrTy = DstPtr->getElementType(); unsigned AS = DstPtr->getAddressSpace(); if (AddrTy != SrcTy) DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy, AS), "storetmp"); Builder.CreateStore(Src.getScalarVal(), DstAddr); } void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty) { unsigned short StartBit = Dst.getBitfieldStartBit(); unsigned short BitfieldSize = Dst.getBitfieldSize(); llvm::Value *Ptr = Dst.getBitfieldAddr(); const llvm::Type *EltTy = cast(Ptr->getType())->getElementType(); unsigned EltTySize = EltTy->getPrimitiveSizeInBits(); llvm::Value *NewVal = Src.getScalarVal(); llvm::Value *OldVal = Builder.CreateLoad(Ptr, "tmp"); llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, StartBit); NewVal = Builder.CreateShl(NewVal, ShAmt, "tmp"); llvm::Constant *Mask = llvm::ConstantInt::get( llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + BitfieldSize)); // Mask out any bits that shouldn't be set in the result. NewVal = Builder.CreateAnd(NewVal, Mask, "tmp"); // Next, mask out the bits this bit-field should include from the old value. Mask = llvm::ConstantExpr::getNot(Mask); OldVal = Builder.CreateAnd(OldVal, Mask, "tmp"); // Finally, merge the two together and store it. NewVal = Builder.CreateOr(OldVal, NewVal, "tmp"); Builder.CreateStore(NewVal, Ptr); } void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst, QualType Ty) { // This access turns into a read/modify/write of the vector. Load the input // value now. llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), "tmp"); // FIXME: Volatility. const llvm::Constant *Elts = Dst.getExtVectorElts(); llvm::Value *SrcVal = Src.getScalarVal(); if (const VectorType *VTy = Ty->getAsVectorType()) { unsigned NumSrcElts = VTy->getNumElements(); // Extract/Insert each element. for (unsigned i = 0; i != NumSrcElts; ++i) { llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp"); unsigned Idx = ExtVectorElementExpr::getAccessedFieldNo(i, Elts); llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx); Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp"); } } else { // If the Src is a scalar (not a vector) it must be updating one element. unsigned InIdx = ExtVectorElementExpr::getAccessedFieldNo(0, Elts); llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx); Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); } Builder.CreateStore(Vec, Dst.getExtVectorAddr()); } LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { const VarDecl *VD = dyn_cast(E->getDecl()); if (VD && (VD->isBlockVarDecl() || isa(VD))) { if (VD->getStorageClass() == VarDecl::Extern) return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD, false)); else { llvm::Value *V = LocalDeclMap[VD]; assert(V && "BlockVarDecl not entered in LocalDeclMap?"); return LValue::MakeAddr(V); } } else if (VD && VD->isFileVarDecl()) { return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD, false)); } else if (const FunctionDecl *FD = dyn_cast(E->getDecl())) { return LValue::MakeAddr(CGM.GetAddrOfFunctionDecl(FD, false)); } assert(0 && "Unimp declref"); //an invalid LValue, but the assert will //ensure that this point is never reached. return LValue(); } LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { // __extension__ doesn't affect lvalue-ness. if (E->getOpcode() == UnaryOperator::Extension) return EmitLValue(E->getSubExpr()); switch (E->getOpcode()) { default: assert(0 && "Unknown unary operator lvalue!"); case UnaryOperator::Deref: return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr())); case UnaryOperator::Real: case UnaryOperator::Imag: LValue LV = EmitLValue(E->getSubExpr()); unsigned Idx = E->getOpcode() == UnaryOperator::Imag; return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(), Idx, "idx")); } } LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { assert(!E->isWide() && "FIXME: Wide strings not supported yet!"); const char *StrData = E->getStrData(); unsigned Len = E->getByteLength(); std::string StringLiteral(StrData, StrData+Len); return LValue::MakeAddr(CGM.GetAddrOfConstantString(StringLiteral)); } LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) { std::string FunctionName; if(const FunctionDecl *FD = dyn_cast(CurFuncDecl)) { FunctionName = FD->getName(); } else { assert(0 && "Attempting to load predefined constant for invalid decl type"); } std::string GlobalVarName; switch (E->getIdentType()) { default: assert(0 && "unknown pre-defined ident type"); case PreDefinedExpr::Func: GlobalVarName = "__func__."; break; case PreDefinedExpr::Function: GlobalVarName = "__FUNCTION__."; break; case PreDefinedExpr::PrettyFunction: // FIXME:: Demangle C++ method names GlobalVarName = "__PRETTY_FUNCTION__."; break; } GlobalVarName += FunctionName; // FIXME: Can cache/reuse these within the module. llvm::Constant *C=llvm::ConstantArray::get(FunctionName); // Create a global variable for this. C = new llvm::GlobalVariable(C->getType(), true, llvm::GlobalValue::InternalLinkage, C, GlobalVarName, CurFn->getParent()); return LValue::MakeAddr(C); } LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { // The index must always be an integer, which is not an aggregate. Emit it. llvm::Value *Idx = EmitScalarExpr(E->getIdx()); // If the base is a vector type, then we are forming a vector element lvalue // with this subscript. if (E->getLHS()->getType()->isVectorType()) { // Emit the vector as an lvalue to get its address. LValue LHS = EmitLValue(E->getLHS()); assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); // FIXME: This should properly sign/zero/extend or truncate Idx to i32. return LValue::MakeVectorElt(LHS.getAddress(), Idx); } // The base must be a pointer, which is not an aggregate. Emit it. llvm::Value *Base = EmitScalarExpr(E->getBase()); // Extend or truncate the index type to 32 or 64-bits. QualType IdxTy = E->getIdx()->getType(); bool IdxSigned = IdxTy->isSignedIntegerType(); unsigned IdxBitwidth = cast(Idx->getType())->getBitWidth(); if (IdxBitwidth != LLVMPointerWidth) Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth), IdxSigned, "idxprom"); // We know that the pointer points to a type of the correct size, unless the // size is a VLA. if (!E->getType()->isConstantSizeType()) assert(0 && "VLA idx not implemented"); return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx")); } static llvm::Constant *GenerateConstantVector(llvm::SmallVector &Elts) { llvm::SmallVector CElts; for (unsigned i = 0, e = Elts.size(); i != e; ++i) CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, Elts[i])); return llvm::ConstantVector::get(&CElts[0], CElts.size()); } LValue CodeGenFunction:: EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { // Emit the base vector as an l-value. LValue Base = EmitLValue(E->getBase()); // Encode the element access list into a vector of unsigned indices. llvm::SmallVector Indices; E->getEncodedElementAccess(Indices); if (Base.isSimple()) { llvm::Constant *CV = GenerateConstantVector(Indices); return LValue::MakeExtVectorElt(Base.getAddress(), CV); } assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); llvm::Constant *BaseElts = Base.getExtVectorElts(); llvm::SmallVector CElts; for (unsigned i = 0, e = Indices.size(); i != e; ++i) { if (isa(BaseElts)) CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); else CElts.push_back(BaseElts->getOperand(Indices[i])); } llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size()); return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV); } LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { bool isUnion = false; Expr *BaseExpr = E->getBase(); llvm::Value *BaseValue = NULL; // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. if (E->isArrow()) { BaseValue = EmitScalarExpr(BaseExpr); const PointerType *PTy = cast(BaseExpr->getType().getCanonicalType()); if (PTy->getPointeeType()->isUnionType()) isUnion = true; } else { LValue BaseLV = EmitLValue(BaseExpr); // FIXME: this isn't right for bitfields. BaseValue = BaseLV.getAddress(); if (BaseExpr->getType()->isUnionType()) isUnion = true; } FieldDecl *Field = E->getMemberDecl(); return EmitLValueForField(BaseValue, Field, isUnion); } LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue, FieldDecl* Field, bool isUnion) { llvm::Value *V; unsigned idx = CGM.getTypes().getLLVMFieldNo(Field); if (!Field->isBitField()) { V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); } else { const llvm::Type *FieldTy = ConvertType(Field->getType()); const llvm::PointerType *BaseTy = cast(BaseValue->getType()); unsigned AS = BaseTy->getAddressSpace(); BaseValue = Builder.CreateBitCast(BaseValue, llvm::PointerType::get(FieldTy, AS), "tmp"); V = Builder.CreateGEP(BaseValue, llvm::ConstantInt::get(llvm::Type::Int32Ty, idx), "tmp"); } // Match union field type. if (isUnion) { const llvm::Type * FieldTy = ConvertType(Field->getType()); const llvm::PointerType * BaseTy = cast(BaseValue->getType()); if (FieldTy != BaseTy->getElementType()) { unsigned AS = BaseTy->getAddressSpace(); V = Builder.CreateBitCast(V, llvm::PointerType::get(FieldTy, AS), "tmp"); } } if (!Field->isBitField()) return LValue::MakeAddr(V); CodeGenTypes::BitFieldInfo bitFieldInfo = CGM.getTypes().getBitFieldInfo(Field); return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size, Field->getType()->isSignedIntegerType()); } LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E) { const llvm::Type *LTy = ConvertType(E->getType()); llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral"); const Expr* InitExpr = E->getInitializer(); LValue Result = LValue::MakeAddr(DeclPtr); if (E->getType()->isComplexType()) { EmitComplexExprIntoAddr(InitExpr, DeclPtr, false); } else if (hasAggregateLLVMType(E->getType())) { EmitAnyExpr(InitExpr, DeclPtr, false); } else { EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType()); } return Result; } //===--------------------------------------------------------------------===// // Expression Emission //===--------------------------------------------------------------------===// RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) { if (const ImplicitCastExpr *IcExpr = dyn_cast(E->getCallee())) if (const DeclRefExpr *DRExpr = dyn_cast(IcExpr->getSubExpr())) if (const FunctionDecl *FDecl = dyn_cast(DRExpr->getDecl())) if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID()) return EmitBuiltinExpr(builtinID, E); llvm::Value *Callee = EmitScalarExpr(E->getCallee()); return EmitCallExpr(Callee, E->getCallee()->getType(), E->arg_begin(), E->getNumArgs()); } RValue CodeGenFunction::EmitCallExpr(Expr *FnExpr, Expr *const *Args, unsigned NumArgs) { llvm::Value *Callee = EmitScalarExpr(FnExpr); return EmitCallExpr(Callee, FnExpr->getType(), Args, NumArgs); } LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { // Can only get l-value for call expression returning aggregate type RValue RV = EmitCallExpr(E); return LValue::MakeAddr(RV.getAggregateAddr()); } LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { // Objective-C objects are traditionally C structures with their layout // defined at compile-time. In some implementations, their layout is not // defined until run time in order to allow instance variables to be added to // a class without recompiling all of the subclasses. If this is the case // then the CGObjCRuntime subclass must return true to LateBoundIvars and // implement the lookup itself. if (CGM.getObjCRuntime()->LateBoundIVars()) { assert(0 && "FIXME: Implement support for late-bound instance variables"); return LValue(); // Not reached. } // Get a structure type for the object QualType ExprTy = E->getBase()->getType(); const llvm::Type *ObjectType = ConvertType(ExprTy); // TODO: Add a special case for isa (index 0) // Work out which index the ivar is const ObjCIvarDecl *Decl = E->getDecl(); unsigned Index = CGM.getTypes().getLLVMFieldNo(Decl); // Get object pointer and coerce object pointer to correct type. llvm::Value *Object = EmitLValue(E->getBase()).getAddress(); Object = Builder.CreateLoad(Object, E->getDecl()->getName()); if (Object->getType() != ObjectType) Object = Builder.CreateBitCast(Object, ObjectType); // Return a pointer to the right element. return LValue::MakeAddr(Builder.CreateStructGEP(Object, Index, Decl->getName())); } RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, QualType FnType, Expr *const *ArgExprs, unsigned NumArgs) { // The callee type will always be a pointer to function type, get the function // type. FnType = cast(FnType.getCanonicalType())->getPointeeType(); QualType ResultType = cast(FnType)->getResultType(); llvm::SmallVector Args; // Handle struct-return functions by passing a pointer to the location that // we would like to return into. if (hasAggregateLLVMType(ResultType)) { // Create a temporary alloca to hold the result of the call. :( Args.push_back(CreateTempAlloca(ConvertType(ResultType))); // FIXME: set the stret attribute on the argument. } for (unsigned i = 0, e = NumArgs; i != e; ++i) { QualType ArgTy = ArgExprs[i]->getType(); if (!hasAggregateLLVMType(ArgTy)) { // Scalar argument is passed by-value. Args.push_back(EmitScalarExpr(ArgExprs[i])); } else if (ArgTy->isAnyComplexType()) { // Make a temporary alloca to pass the argument. llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy)); EmitComplexExprIntoAddr(ArgExprs[i], DestMem, false); Args.push_back(DestMem); } else { llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy)); EmitAggExpr(ArgExprs[i], DestMem, false); Args.push_back(DestMem); } } llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size()); if (const llvm::Function *F = dyn_cast(Callee)) CI->setCallingConv(F->getCallingConv()); if (CI->getType() != llvm::Type::VoidTy) CI->setName("call"); else if (ResultType->isAnyComplexType()) return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); else if (hasAggregateLLVMType(ResultType)) // Struct return. return RValue::getAggregate(Args[0]); else { // void return. assert(ResultType->isVoidType() && "Should only have a void expr here"); CI = 0; } return RValue::get(CI); }