//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/StandardOps/Utils/Utils.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" #include "mlir/Dialect/Utils/StaticValueUtils.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "llvm/ADT/STLExtras.h" using namespace mlir; using namespace mlir::tensor; /// Materialize a single constant operation from a given attribute value with /// the desired resultant type. Operation *TensorDialect::materializeConstant(OpBuilder &builder, Attribute value, Type type, Location loc) { if (arith::ConstantOp::isBuildableWith(value, type)) return builder.create(loc, value, type); if (ConstantOp::isBuildableWith(value, type)) return builder.create(loc, value, type); return nullptr; } //===----------------------------------------------------------------------===// // CastOp //===----------------------------------------------------------------------===// /// Returns true if `target` is a ranked tensor type that preserves static /// information available in the `source` ranked tensor type. bool mlir::tensor::preservesStaticInformation(Type source, Type target) { auto sourceType = source.dyn_cast(); auto targetType = target.dyn_cast(); // Requires RankedTensorType. if (!sourceType || !targetType) return false; // Requires same elemental type. if (sourceType.getElementType() != targetType.getElementType()) return false; // Requires same rank. if (sourceType.getRank() != targetType.getRank()) return false; // If cast is towards more static sizes along any dimension, don't fold. for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { if (!ShapedType::isDynamic(std::get<0>(t)) && ShapedType::isDynamic(std::get<1>(t))) return false; } return true; } /// Determines whether tensor::CastOp casts to a more dynamic version of the /// source tensor. This is useful to fold a tensor.cast into a consuming op and /// implement canonicalization patterns for ops in different dialects that may /// consume the results of tensor.cast operations. Such foldable tensor.cast /// operations are typically inserted as `slice` ops and are canonicalized, /// to preserve the type compatibility of their uses. /// /// Returns true when all conditions are met: /// 1. source and result are ranked tensors with same element type and rank. /// 2. the tensor type has more static information than the result /// /// Example: /// ```mlir /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor /// %2 = consumer %1 ... : tensor ... /// ``` /// /// folds into: /// /// ```mlir /// %2 = consumer %0 ... : tensor<8x16xf32> ... /// ``` bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { if (!castOp) return false; // Can fold if the source of cast has at least as much static information as // its results. return preservesStaticInformation(castOp.getType(), castOp.source().getType()); } /// Performs folding of any operand of `op` if it comes from a tensor::CastOp /// that can be folded. LogicalResult mlir::tensor::foldTensorCast(Operation *op) { bool folded = false; for (OpOperand &operand : op->getOpOperands()) { auto castOp = operand.get().getDefiningOp(); if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { operand.set(castOp.getOperand()); folded = true; } } return success(folded); } bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { if (inputs.size() != 1 || outputs.size() != 1) return false; Type a = inputs.front(), b = outputs.front(); auto aT = a.dyn_cast(); auto bT = b.dyn_cast(); if (!aT || !bT) return false; if (aT.getElementType() != bT.getElementType()) return false; return succeeded(verifyCompatibleShape(aT, bT)); } /// Compute a TensorType that has the joined shape knowledge of the two /// given TensorTypes. The element types need to match. static TensorType joinShapes(TensorType one, TensorType two) { assert(one.getElementType() == two.getElementType()); if (!one.hasRank()) return two; if (!two.hasRank()) return one; int64_t rank = one.getRank(); if (rank != two.getRank()) return {}; SmallVector join; join.reserve(rank); for (int64_t i = 0; i < rank; ++i) { if (one.isDynamicDim(i)) { join.push_back(two.getDimSize(i)); continue; } if (two.isDynamicDim(i)) { join.push_back(one.getDimSize(i)); continue; } if (one.getDimSize(i) != two.getDimSize(i)) return {}; join.push_back(one.getDimSize(i)); } return RankedTensorType::get(join, one.getElementType()); } namespace { /// Replaces chains of two tensor.cast operations by a single tensor.cast /// operation if doing so does not remove runtime constraints. struct ChainedTensorCast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CastOp tensorCast, PatternRewriter &rewriter) const final { auto tensorCastOperand = tensorCast.getOperand().getDefiningOp(); if (!tensorCastOperand) return failure(); auto sourceType = tensorCastOperand.getOperand().getType().cast(); auto intermediateType = tensorCastOperand.getType().cast(); auto resultType = tensorCast.getType().cast(); // We can remove the intermediate cast if joining all three produces the // same result as just joining the source and result shapes. auto firstJoin = joinShapes(joinShapes(sourceType, intermediateType), resultType); // The join might not exist if the cast sequence would fail at runtime. if (!firstJoin) return failure(); // The newJoin always exists if the above join exists, it might just contain // less information. If so, we cannot drop the intermediate cast, as doing // so would remove runtime checks. auto newJoin = joinShapes(sourceType, resultType); if (firstJoin != newJoin) return failure(); rewriter.replaceOpWithNewOp(tensorCast, resultType, tensorCastOperand.getOperand()); return success(); } }; } // namespace void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // DimOp //===----------------------------------------------------------------------===// void DimOp::build(OpBuilder &builder, OperationState &result, Value source, int64_t index) { auto loc = result.location; Value indexValue = builder.create(loc, index); build(builder, result, source, indexValue); } Optional DimOp::getConstantIndex() { if (auto constantOp = index().getDefiningOp()) return constantOp.getValue().cast().getInt(); return {}; } static LogicalResult verify(DimOp op) { // Assume unknown index to be in range. Optional index = op.getConstantIndex(); if (!index.hasValue()) return success(); // Check that constant index is not knowingly out of range. auto type = op.source().getType(); if (auto tensorType = type.dyn_cast()) { if (index.getValue() >= tensorType.getRank()) return op.emitOpError("index is out of range"); } else if (type.isa()) { // Assume index to be in range. } else { llvm_unreachable("expected operand with tensor type"); } return success(); } OpFoldResult DimOp::fold(ArrayRef operands) { // All forms of folding require a known index. auto index = operands[1].dyn_cast_or_null(); if (!index) return {}; // Folding for unranked types (UnrankedTensorType) is not supported. auto tensorType = source().getType().dyn_cast(); if (!tensorType) return {}; // Fold if the shape extent along the given index is known. if (!tensorType.isDynamicDim(index.getInt())) { Builder builder(getContext()); return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); } Operation *definingOp = source().getDefiningOp(); // Fold dim to the operand of tensor.generate. if (auto fromElements = dyn_cast_or_null(definingOp)) { auto resultType = fromElements.getResult().getType().cast(); // The case where the type encodes the size of the dimension is handled // above. assert(resultType.getShape()[index.getInt()] == RankedTensorType::kDynamicSize); // Find the operand of the fromElements that corresponds to this index. auto dynExtents = fromElements.dynamicExtents().begin(); for (auto dim : resultType.getShape().take_front(index.getInt())) if (dim == RankedTensorType::kDynamicSize) dynExtents++; return Value{*dynExtents}; } // The size at the given index is now known to be a dynamic size. unsigned unsignedIndex = index.getValue().getZExtValue(); if (auto sliceOp = dyn_cast_or_null(definingOp)) { // Fold only for non-rank reduced ops. For the rank-reduced version, rely on // `resolve-shaped-type-result-dims` pass. if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && sliceOp.isDynamicSize(unsignedIndex)) { return {sliceOp.getDynamicSize(unsignedIndex)}; } } // dim(cast) -> dim if (succeeded(foldTensorCast(*this))) return getResult(); return {}; } namespace { /// Fold dim of a cast into the dim of the source of the tensor cast. struct DimOfCastOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(DimOp dimOp, PatternRewriter &rewriter) const override { auto castOp = dimOp.source().getDefiningOp(); if (!castOp) return failure(); Value newSource = castOp.getOperand(); rewriter.replaceOpWithNewOp(dimOp, newSource, dimOp.index()); return success(); } }; } // namespace void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ExtractOp //===----------------------------------------------------------------------===// static LogicalResult verify(ExtractOp op) { // Verify the # indices match if we have a ranked type. if (auto tensorType = op.tensor().getType().dyn_cast()) if (tensorType.getRank() != static_cast(op.indices().size())) return op.emitOpError("incorrect number of indices for extract_element"); return success(); } OpFoldResult ExtractOp::fold(ArrayRef operands) { // The tensor operand must be a known constant. Attribute tensor = operands.front(); if (!tensor) return {}; // If this is a splat elements attribute, simply return the value. All of the // elements of a splat attribute are the same. if (auto splatTensor = tensor.dyn_cast()) return splatTensor.getSplatValue(); // Otherwise, collect the constant indices into the tensor. SmallVector indices; for (Attribute indice : llvm::drop_begin(operands, 1)) { if (!indice || !indice.isa()) return {}; indices.push_back(indice.cast().getInt()); } // If this is an elements attribute, query the value at the given indices. auto elementsAttr = tensor.dyn_cast(); if (elementsAttr && elementsAttr.isValidIndex(indices)) return elementsAttr.getValues()[indices]; return {}; } //===----------------------------------------------------------------------===// // FromElementsOp //===----------------------------------------------------------------------===// void FromElementsOp::build(OpBuilder &builder, OperationState &result, Type elementType, ValueRange elements) { Type resultTy = RankedTensorType::get({static_cast(elements.size())}, elementType); result.addOperands(elements); result.addTypes(resultTy); } void FromElementsOp::build(OpBuilder &builder, OperationState &result, ValueRange elements) { assert(!elements.empty() && "expected at least one element"); build(builder, result, elements.front().getType(), elements); } OpFoldResult FromElementsOp::fold(ArrayRef operands) { if (!llvm::is_contained(operands, nullptr)) return DenseElementsAttr::get(getType(), operands); return {}; } namespace { // Canonicalizes the pattern of the form // // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32> // // to just %element. struct ExtractElementFromTensorFromElements : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::ExtractOp extract, PatternRewriter &rewriter) const final { if (extract.indices().size() != 1) return failure(); auto tensorFromElements = extract.tensor().getDefiningOp(); if (tensorFromElements == nullptr) return failure(); APInt index; if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index))) return failure(); // Prevent out of bounds accesses. This can happen in invalid code that will // never execute. if (tensorFromElements->getNumOperands() <= index.getZExtValue() || index.getSExtValue() < 0) return failure(); rewriter.replaceOp(extract, tensorFromElements.getOperand(index.getZExtValue())); return success(); } }; } // namespace void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // InsertOp //===----------------------------------------------------------------------===// static LogicalResult verify(InsertOp op) { // Verify the # indices match if we have a ranked type. if (auto destType = op.dest().getType().dyn_cast()) if (destType.getRank() != static_cast(op.indices().size())) return op.emitOpError("incorrect number of indices"); return success(); } OpFoldResult InsertOp::fold(ArrayRef operands) { Attribute scalar = operands[0]; Attribute dest = operands[1]; if (scalar && dest) if (auto splatDest = dest.dyn_cast()) if (scalar == splatDest.getSplatValue()) return dest; return {}; } //===----------------------------------------------------------------------===// // GenerateOp //===----------------------------------------------------------------------===// static LogicalResult verify(GenerateOp op) { // Ensure that the tensor type has as many dynamic dimensions as are specified // by the operands. RankedTensorType resultTy = op.getType().cast(); if (op.getNumOperands() != resultTy.getNumDynamicDims()) return op.emitError("must have as many index operands as dynamic extents " "in the result type"); // Ensure that region arguments span the index space. if (!llvm::all_of(op.body().getArgumentTypes(), [](Type ty) { return ty.isIndex(); })) return op.emitError("all body arguments must be index"); if (op.body().getNumArguments() != resultTy.getRank()) return op.emitError("must have one body argument per input dimension"); // Ensure that the region yields an element of the right type. auto yieldOp = llvm::cast(op.body().getBlocks().front().getTerminator()); if (yieldOp.value().getType() != resultTy.getElementType()) return op.emitOpError( "body must be terminated with a `yield` operation of the tensor " "element type"); return success(); } void GenerateOp::build( OpBuilder &b, OperationState &result, Type resultTy, ValueRange dynamicExtents, function_ref bodyBuilder) { build(b, result, resultTy, dynamicExtents); // Build and populate body. OpBuilder::InsertionGuard guard(b); Region *bodyRegion = result.regions.front().get(); auto rank = resultTy.cast().getRank(); SmallVector argumentTypes(rank, b.getIndexType()); Block *bodyBlock = b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes); bodyBuilder(b, result.location, bodyBlock->getArguments()); } namespace { /// Canonicalizes tensor.generate operations with a constant /// operand into the equivalent operation with the operand expressed in the /// result type, instead. We also insert a type cast to make sure that the /// resulting IR is still well-typed. struct StaticTensorGenerate : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(GenerateOp tensorFromElements, PatternRewriter &rewriter) const final { auto resultType = tensorFromElements.getResult().getType().cast(); if (resultType.hasStaticShape()) return failure(); SmallVector newOperands; SmallVector newShape; auto operandsIt = tensorFromElements.dynamicExtents().begin(); for (int64_t dim : resultType.getShape()) { if (dim != RankedTensorType::kDynamicSize) { newShape.push_back(dim); continue; } APInt index; if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { newShape.push_back(RankedTensorType::kDynamicSize); newOperands.push_back(*operandsIt++); continue; } newShape.push_back(index.getSExtValue()); operandsIt++; } if (newOperands.size() == tensorFromElements.dynamicExtents().size()) return failure(); auto loc = tensorFromElements.getLoc(); auto newOp = rewriter.create( loc, RankedTensorType::get(newShape, resultType.getElementType()), newOperands); rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), newOp.body().begin()); rewriter.replaceOpWithNewOp(tensorFromElements, resultType, newOp); return success(); } }; /// Canonicalizes the pattern of the form /// /// %tensor = tensor.generate %x { /// ^bb0(%arg0: index): // no predecessors /// /// yield %1 : index /// } : tensor /// %extracted_element = tensor.extract %tensor[%c0] : tensor /// /// to just with %arg0 replaced by %c0. We only do this if the /// tensor.generate operation has no side-effects. struct ExtractFromTensorGenerate : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::ExtractOp extract, PatternRewriter &rewriter) const final { auto tensorFromElements = extract.tensor().getDefiningOp(); if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) return failure(); BlockAndValueMapping mapping; Block *body = tensorFromElements.getBody(); mapping.map(body->getArguments(), extract.indices()); for (auto &op : body->without_terminator()) rewriter.clone(op, mapping); auto yield = cast(body->getTerminator()); rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); return success(); } }; /// Canonicalizes the pattern of the form /// /// %val = tensor.cast %source : : tensor to tensor<2xi32> /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> /// /// to /// /// %extracted_element = tensor.extract %source[%c0] : tensor struct ExtractFromTensorCast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::ExtractOp extract, PatternRewriter &rewriter) const final { auto tensorCast = extract.tensor().getDefiningOp(); if (!tensorCast) return failure(); rewriter.replaceOpWithNewOp(extract, tensorCast.source(), extract.indices()); return success(); } }; } // namespace void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { // TODO: Move extract patterns to tensor::ExtractOp. results.add(context); } //===----------------------------------------------------------------------===// // ReshapeOp //===----------------------------------------------------------------------===// static int64_t GetNumElements(ShapedType type) { int64_t numElements = 1; for (auto dim : type.getShape()) numElements *= dim; return numElements; } static LogicalResult verify(ReshapeOp op) { TensorType operandType = op.source().getType().cast(); TensorType resultType = op.result().getType().cast(); if (operandType.getElementType() != resultType.getElementType()) return op.emitOpError("element types of source and destination tensor " "types should be the same"); int64_t shapeSize = op.shape().getType().cast().getDimSize(0); auto resultRankedType = resultType.dyn_cast(); auto operandRankedType = operandType.dyn_cast(); if (resultRankedType) { if (operandRankedType && resultRankedType.hasStaticShape() && operandRankedType.hasStaticShape()) { if (GetNumElements(operandRankedType) != GetNumElements(resultRankedType)) return op.emitOpError("source and destination tensor should have the " "same number of elements"); } if (shapeSize == TensorType::kDynamicSize) return op.emitOpError("cannot use shape operand with dynamic length to " "reshape to statically-ranked tensor type"); if (shapeSize != resultRankedType.getRank()) return op.emitOpError( "length of shape operand differs from the result's tensor rank"); } return success(); } //===----------------------------------------------------------------------===// // Reassociative reshape ops //===----------------------------------------------------------------------===// SmallVector CollapseShapeOp::getReassociationMaps() { return getSymbolLessAffineMaps(getReassociationExprs()); } SmallVector CollapseShapeOp::getReassociationExprs() { return convertReassociationIndicesToExprs(getContext(), getReassociationIndices()); } SmallVector ExpandShapeOp::getReassociationMaps() { return getSymbolLessAffineMaps(getReassociationExprs()); } SmallVector ExpandShapeOp::getReassociationExprs() { return convertReassociationIndicesToExprs(getContext(), getReassociationIndices()); } static void print(OpAsmPrinter &p, ExpandShapeOp op) { ::mlir::printReshapeOp(p, op); } static void print(OpAsmPrinter &p, CollapseShapeOp op) { ::mlir::printReshapeOp(p, op); } /// Compute the RankedTensorType obtained by applying `reassociation` to `type`. static RankedTensorType computeTensorReshapeCollapsedType(RankedTensorType type, ArrayRef reassociation) { auto shape = type.getShape(); SmallVector newShape; newShape.reserve(reassociation.size()); // Use the fact that reassociation is valid to simplify the logic: only use // each map's rank. assert(isReassociationValid(reassociation) && "invalid reassociation"); unsigned currentDim = 0; for (AffineMap m : reassociation) { unsigned dim = m.getNumResults(); auto band = shape.slice(currentDim, dim); int64_t size = 1; if (llvm::is_contained(band, ShapedType::kDynamicSize)) size = ShapedType::kDynamicSize; else for (unsigned d = 0; d < dim; ++d) size *= shape[currentDim + d]; newShape.push_back(size); currentDim += dim; } return RankedTensorType::get(newShape, type.getElementType()); } void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, ArrayRef reassociation, ArrayRef attrs) { auto resultType = computeTensorReshapeCollapsedType( src.getType().cast(), getSymbolLessAffineMaps( convertReassociationIndicesToExprs(b.getContext(), reassociation))); build(b, result, resultType, src, attrs); result.addAttribute(getReassociationAttrName(), getReassociationIndicesAttribute(b, reassociation)); } void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src, ArrayRef reassociation, ArrayRef attrs) { auto resultType = computeTensorReshapeCollapsedType( src.getType().cast(), getSymbolLessAffineMaps( convertReassociationIndicesToExprs(b.getContext(), reassociation))); build(b, result, resultType, src, attrs); result.addAttribute(getReassociationAttrName(), getReassociationIndicesAttribute(b, reassociation)); } template ::value> static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, RankedTensorType expandedType, RankedTensorType collapsedType) { if (failed( verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) return failure(); auto maps = op.getReassociationMaps(); RankedTensorType expectedType = computeTensorReshapeCollapsedType(expandedType, maps); if (collapsedType != expectedType) return op.emitOpError("expected collapsed type to be ") << expectedType << ", but got " << collapsedType; return success(); } static LogicalResult verify(ExpandShapeOp op) { return verifyTensorReshapeOp(op, op.getResultType(), op.getSrcType()); } static LogicalResult verify(CollapseShapeOp op) { return verifyTensorReshapeOp(op, op.getSrcType(), op.getResultType()); } namespace { /// Reshape of a splat constant can be replaced with a constant of the result /// type. template struct FoldReshapeWithConstant : OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, PatternRewriter &rewriter) const override { DenseElementsAttr attr; if (!matchPattern(reshapeOp.src(), m_Constant(&attr))) return failure(); if (!attr || !attr.isSplat()) return failure(); DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( reshapeOp.getResultType(), attr.getRawData(), true); rewriter.replaceOpWithNewOp(reshapeOp, newAttr); return success(); } }; } // namespace void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add, CollapseMixedReshapeOps, FoldReshapeWithConstant>(context); } void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add, CollapseMixedReshapeOps, FoldReshapeWithConstant>(context); } OpFoldResult ExpandShapeOp::fold(ArrayRef operands) { return foldReshapeOp(*this, operands); } OpFoldResult CollapseShapeOp::fold(ArrayRef operands) { return foldReshapeOp(*this, operands); } //===----------------------------------------------------------------------===// // ExtractSliceOp //===----------------------------------------------------------------------===// /// An extract_slice op result type can be fully inferred from the source type /// and the static representation of offsets, sizes and strides. Special /// sentinels encode the dynamic case. RankedTensorType ExtractSliceOp::inferResultType(RankedTensorType sourceRankedTensorType, ArrayRef leadingStaticOffsets, ArrayRef leadingStaticSizes, ArrayRef leadingStaticStrides) { // An extract_slice op may specify only a leading subset of offset/sizes/ // strides in which case we complete with offset=0, sizes from memref type and // strides=1. unsigned rank = sourceRankedTensorType.getRank(); assert(leadingStaticSizes.size() <= rank && "unexpected leadingStaticSizes overflow"); auto staticSizes = llvm::to_vector<4>(leadingStaticSizes); unsigned numTrailingSizes = rank - staticSizes.size(); llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back( numTrailingSizes)); return RankedTensorType::get(staticSizes, sourceRankedTensorType.getElementType()); } RankedTensorType ExtractSliceOp::inferResultType(RankedTensorType sourceRankedTensorType, ArrayRef leadingStaticOffsets, ArrayRef leadingStaticSizes, ArrayRef leadingStaticStrides) { SmallVector staticOffsets, staticSizes, staticStrides; SmallVector dynamicOffsets, dynamicSizes, dynamicStrides; dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, staticOffsets, ShapedType::kDynamicStrideOrOffset); dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, ShapedType::kDynamicSize); dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, staticStrides, ShapedType::kDynamicStrideOrOffset); return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, staticSizes, staticStrides); } /// An extract_slice op result type can be fully inferred from the source type /// and the static representation of offsets, sizes and strides. Special /// sentinels encode the dynamic case. RankedTensorType ExtractSliceOp::inferRankReducedResultType( unsigned resultRank, RankedTensorType sourceRankedTensorType, ArrayRef leadingStaticOffsets, ArrayRef leadingStaticSizes, ArrayRef leadingStaticStrides) { auto inferredType = inferResultType(sourceRankedTensorType, leadingStaticOffsets, leadingStaticSizes, leadingStaticStrides) .cast(); int rankDiff = inferredType.getRank() - resultRank; if (rankDiff > 0) { auto shape = inferredType.getShape(); llvm::SmallDenseSet dimsToProject; mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject); SmallVector projectedShape; for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) if (!dimsToProject.contains(pos)) projectedShape.push_back(shape[pos]); inferredType = RankedTensorType::get(projectedShape, inferredType.getElementType()); } return inferredType; } RankedTensorType ExtractSliceOp::inferRankReducedResultType( unsigned resultRank, RankedTensorType sourceRankedTensorType, ArrayRef leadingStaticOffsets, ArrayRef leadingStaticSizes, ArrayRef leadingStaticStrides) { SmallVector staticOffsets, staticSizes, staticStrides; SmallVector dynamicOffsets, dynamicSizes, dynamicStrides; dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, staticOffsets, ShapedType::kDynamicStrideOrOffset); dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, ShapedType::kDynamicSize); dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, staticStrides, ShapedType::kDynamicStrideOrOffset); return ExtractSliceOp::inferRankReducedResultType( resultRank, sourceRankedTensorType, staticOffsets, staticSizes, staticStrides); } /// Build an ExtractSliceOp with mixed static and dynamic entries and custom /// result type. If the type passed is nullptr, it is inferred. void ExtractSliceOp::build(OpBuilder &b, OperationState &result, RankedTensorType resultType, Value source, ArrayRef offsets, ArrayRef sizes, ArrayRef strides, ArrayRef attrs) { SmallVector staticOffsets, staticSizes, staticStrides; SmallVector dynamicOffsets, dynamicSizes, dynamicStrides; dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, ShapedType::kDynamicStrideOrOffset); dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, ShapedType::kDynamicSize); dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, ShapedType::kDynamicStrideOrOffset); auto sourceRankedTensorType = source.getType().cast(); // Structuring implementation this way avoids duplication between builders. if (!resultType) { resultType = ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, staticSizes, staticStrides) .cast(); } build(b, result, resultType, source, dynamicOffsets, dynamicSizes, dynamicStrides, b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred /// result type. void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, ArrayRef offsets, ArrayRef sizes, ArrayRef strides, ArrayRef attrs) { build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); } /// Build an ExtractSliceOp with dynamic entries and custom result type. If the /// type passed is nullptr, it is inferred. void ExtractSliceOp::build(OpBuilder &b, OperationState &result, RankedTensorType resultType, Value source, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { SmallVector offsetValues = llvm::to_vector<4>( llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); SmallVector sizeValues = llvm::to_vector<4>( llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); SmallVector strideValues = llvm::to_vector<4>( llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); build(b, result, resultType, source, offsetValues, sizeValues, strideValues); } /// Build an ExtractSliceOp with dynamic entries and inferred result type. void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); } template static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, OpTy op, Type expectedType) { auto memrefType = expectedType.cast(); switch (result) { case SliceVerificationResult::Success: return success(); case SliceVerificationResult::RankTooLarge: return op.emitError("expected rank to be smaller or equal to ") << "the other rank. "; case SliceVerificationResult::SizeMismatch: return op.emitError("expected type to be ") << expectedType << " or a rank-reduced version. (size mismatch) "; case SliceVerificationResult::ElemTypeMismatch: return op.emitError("expected element type to be ") << memrefType.getElementType(); default: llvm_unreachable("unexpected extract_slice op verification result"); } } /// Verifier for ExtractSliceOp. static LogicalResult verify(ExtractSliceOp op) { // Verify result type against inferred type. auto expectedType = ExtractSliceOp::inferResultType(op.getSourceType(), op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides()); auto result = isRankReducedType(expectedType.cast(), op.getType()); return produceSliceErrorMsg(result, op, expectedType); } /// Infer the canonical type of the result of an extract_slice op. Returns a /// type with rank `resultRank` that is either the rank of the rank-reduced /// type, or the non-rank-reduced type. static RankedTensorType getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, ArrayRef mixedOffsets, ArrayRef mixedSizes, ArrayRef mixedStrides) { auto resultType = ExtractSliceOp::inferRankReducedResultType( resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) .cast(); if (resultType.getRank() != resultRank) { resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, mixedSizes, mixedStrides) .cast(); } return resultType; } llvm::SmallDenseSet ExtractSliceOp::getDroppedDims() { llvm::SmallDenseSet droppedDims; ArrayRef resultShape = getType().getShape(); SmallVector mixedSizes = getMixedSizes(); unsigned shapePos = 0; for (auto size : enumerate(mixedSizes)) { Optional sizeVal = getConstantIntValue(size.value()); // If the size is not 1, or if the current matched dimension of the result // is the same static shape as the size value (which is 1), then the // dimension is preserved. if (!sizeVal || sizeVal.getValue() != 1 || (shapePos < resultShape.size() && resultShape[shapePos] == 1)) { shapePos++; continue; } droppedDims.insert(size.index()); } return droppedDims; } LogicalResult ExtractSliceOp::reifyResultShapes( OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { reifiedReturnShapes.resize(1); reifiedReturnShapes[0].reserve(getType().getRank()); SmallVector mixedSizes = getMixedSizes(); llvm::SmallDenseSet droppedDims = getDroppedDims(); Location loc = getLoc(); for (auto size : enumerate(mixedSizes)) { if (droppedDims.count(size.index())) continue; if (auto attr = size.value().dyn_cast()) { reifiedReturnShapes[0].push_back(builder.create( loc, attr.cast().getInt())); continue; } reifiedReturnShapes[0].push_back(size.value().get()); } return success(); } namespace { /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. /// This essentially pushes memref_cast past its consuming slice when /// `canFoldIntoConsumerOp` is true. /// /// Example: /// ``` /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor to /// tensor<3x4xf32> /// ``` /// is rewritten into: /// ``` /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> /// ``` class ExtractSliceOpCastFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, PatternRewriter &rewriter) const override { // Any constant operand, just return to let SubViewOpConstantFolder kick in. if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { return matchPattern(operand, matchConstantIndex()); })) return failure(); auto castOp = sliceOp.source().getDefiningOp(); if (!castOp) return failure(); if (!canFoldIntoConsumerOp(castOp)) return failure(); /// Deduce the type of the result to use for the canonicalized operation. RankedTensorType resultType = getCanonicalSliceResultType( sliceOp.getType().getRank(), sliceOp.getSourceType(), sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), sliceOp.getMixedStrides()); Value newSlice = rewriter.create( sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(), sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), sliceOp.static_sizes(), sliceOp.static_strides()); rewriter.replaceOpWithNewOp(sliceOp, sliceOp.getType(), newSlice); return success(); } }; } // namespace /// Return the canonical type of the result of an extract_slice op. struct SliceReturnTypeCanonicalizer { RankedTensorType operator()(ExtractSliceOp op, ArrayRef mixedOffsets, ArrayRef mixedSizes, ArrayRef mixedStrides) { return getCanonicalSliceResultType(op.getType().getRank(), op.getSourceType(), mixedOffsets, mixedSizes, mixedStrides); } }; /// A canonicalizer wrapper to replace ExtractSliceOps. struct SliceCanonicalizer { void operator()(PatternRewriter &rewriter, ExtractSliceOp op, ExtractSliceOp newOp) { Value replacement = newOp.getResult(); if (replacement.getType() != op.getType()) replacement = rewriter.create(op.getLoc(), op.getType(), replacement); rewriter.replaceOp(op, replacement); } }; void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add< OpWithOffsetSizesAndStridesConstantArgumentFolder< ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, ExtractSliceOpCastFolder>(context); } // static LogicalResult foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, ShapedType shapedType) { OpBuilder b(op.getContext()); for (OpFoldResult ofr : op.getMixedOffsets()) if (getConstantIntValue(ofr) != static_cast(0)) return failure(); // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip // is appropriate. auto shape = shapedType.getShape(); for (auto it : llvm::zip(op.getMixedSizes(), shape)) if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) return failure(); for (OpFoldResult ofr : op.getMixedStrides()) if (getConstantIntValue(ofr) != static_cast(1)) return failure(); return success(); } /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice, /// we can return the InsertSliceOp's source directly. // TODO: This only checks the immediate producer; extend to go up the // insert/extract chain if the slices are disjoint. static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) { auto insertOp = extractOp.source().getDefiningOp(); auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; if (insertOp && insertOp.source().getType() == extractOp.getType() && insertOp.isSameAs(extractOp, isSame)) return insertOp.source(); return {}; } OpFoldResult ExtractSliceOp::fold(ArrayRef) { if (getSourceType() == getType() && succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) return this->source(); if (Value slice = foldExtractAfterInsertSlice(*this)) return slice; return OpFoldResult(); } Value mlir::tensor::createCanonicalRankReducingExtractSliceOp( OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { auto rankedTensorType = tensor.getType().cast(); unsigned rank = rankedTensorType.getRank(); auto shape = rankedTensorType.getShape(); SmallVector offsets(rank, b.getIndexAttr(0)); SmallVector sizes; for (unsigned i = 0, e = rank; i < e; ++i) { OpFoldResult dim; if (rankedTensorType.isDynamicDim(i)) dim = b.createOrFold( loc, tensor, b.create(loc, i)); else dim = b.getIndexAttr(shape[i]); sizes.push_back(dim); } SmallVector strides(rank, b.getIndexAttr(1)); return b.createOrFold(loc, targetType, tensor, offsets, sizes, strides); } //===----------------------------------------------------------------------===// // InsertSliceOp //===----------------------------------------------------------------------===// // Build a InsertSliceOp with mixed static and dynamic entries. void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, Value dest, ArrayRef offsets, ArrayRef sizes, ArrayRef strides, ArrayRef attrs) { SmallVector staticOffsets, staticSizes, staticStrides; SmallVector dynamicOffsets, dynamicSizes, dynamicStrides; dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, ShapedType::kDynamicStrideOrOffset); dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, ShapedType::kDynamicSize); dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, ShapedType::kDynamicStrideOrOffset); build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, dynamicStrides, b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } // Build a InsertSliceOp with dynamic entries. void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, Value dest, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { SmallVector offsetValues = llvm::to_vector<4>( llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); SmallVector sizeValues = llvm::to_vector<4>( llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); SmallVector strideValues = llvm::to_vector<4>( llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); build(b, result, source, dest, offsetValues, sizeValues, strideValues); } /// Verifier for InsertSliceOp. static LogicalResult verify(InsertSliceOp op) { // insert_slice is the inverse of extract_slice, use the same type inference. auto expectedType = ExtractSliceOp::inferRankReducedResultType( op.getSourceType().getRank(), op.getType(), extractFromI64ArrayAttr(op.static_offsets()), extractFromI64ArrayAttr(op.static_sizes()), extractFromI64ArrayAttr(op.static_strides())); auto result = isRankReducedType(expectedType.cast(), op.getSourceType()); return produceSliceErrorMsg(result, op, expectedType); } /// If we have two consecutive InsertSliceOp writing to the same slice, we /// can mutate the second InsertSliceOp's destination to the first one's. /// /// Example: /// /// ```mlir /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] /// ``` /// /// folds into: /// /// ```mlir /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] /// ``` static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { auto prevInsertOp = insertOp.dest().getDefiningOp(); auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; if (!prevInsertOp || prevInsertOp.source().getType() != insertOp.source().getType() || !prevInsertOp.isSameAs(insertOp, isSame)) return failure(); insertOp.destMutable().assign(prevInsertOp.dest()); return success(); } OpFoldResult InsertSliceOp::fold(ArrayRef) { if (getSourceType().hasStaticShape() && getType().hasStaticShape() && getSourceType() == getType() && succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) return this->source(); if (succeeded(foldInsertAfterInsertSlice(*this))) return getResult(); return OpFoldResult(); } LogicalResult InsertSliceOp::reifyResultShapes( OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { reifiedReturnShapes.resize(1, SmallVector(getType().getRank())); for (auto dim : llvm::seq(0, getType().getRank())) { reifiedReturnShapes[0][dim] = builder.createOrFold(getLoc(), dest(), dim); } return success(); } namespace { /// Pattern to rewrite a insert_slice op with constant arguments. class InsertSliceOpConstantArgumentFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, PatternRewriter &rewriter) const override { // No constant operand, just return. if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { return matchPattern(operand, matchConstantIndex()); })) return failure(); // At least one of offsets/sizes/strides is a new constant. // Form the new list of operands and constant attributes from the // existing. SmallVector mixedOffsets(insertSliceOp.getMixedOffsets()); SmallVector mixedSizes(insertSliceOp.getMixedSizes()); SmallVector mixedStrides(insertSliceOp.getMixedStrides()); canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); // Create the new op in canonical form. auto sourceType = ExtractSliceOp::inferRankReducedResultType( insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(), mixedOffsets, mixedSizes, mixedStrides); Value toInsert = insertSliceOp.source(); if (sourceType != insertSliceOp.getSourceType()) toInsert = rewriter.create(insertSliceOp.getLoc(), sourceType, toInsert); rewriter.replaceOpWithNewOp( insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes, mixedStrides); return success(); } }; /// Fold tensor_casts with insert_slice operations. If the source or destination /// tensor is a tensor_cast that removes static type information, the cast is /// folded into the insert_slice operation. E.g.: /// /// ```mlir /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor /// %2 = tensor.insert_slice %1 into ... : tensor into ... /// ``` /// /// folds into: /// /// ```mlir /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... /// ``` /// /// Note: When folding a cast on the destination tensor, the result of the /// insert_slice operation is casted to ensure that the type of the result did /// not change. struct InsertSliceOpCastFolder final : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, PatternRewriter &rewriter) const override { if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { return matchPattern(operand, matchConstantIndex()); })) return failure(); auto getSourceOfCastOp = [](Value v) -> Optional { auto castOp = v.getDefiningOp(); if (!castOp || !canFoldIntoConsumerOp(castOp)) return llvm::None; return castOp.source(); }; Optional sourceCastSource = getSourceOfCastOp(insertSliceOp.source()); Optional destCastSource = getSourceOfCastOp(insertSliceOp.dest()); if (!sourceCastSource && !destCastSource) return failure(); Value replacement = rewriter.create( insertSliceOp.getLoc(), (sourceCastSource ? *sourceCastSource : insertSliceOp.source()), (destCastSource ? *destCastSource : insertSliceOp.dest()), insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides()); if (replacement.getType() != insertSliceOp.getType()) { replacement = rewriter.create( insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); } rewriter.replaceOp(insertSliceOp, replacement); return success(); } }; /// If additional static type information can be deduced from a insert_slice's /// size operands, insert an explicit cast of the op's source operand. This /// enables other canonicalization patterns that are matching for tensor_cast /// ops such as `ForOpTensorCastFolder` in SCF. /// /// Example: /// /// ```mlir /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] /// : tensor into ... /// ``` /// /// folds into: /// /// ```mlir /// %tmp = tensor.cast %0 : tensor to tensor<64x64xf32> /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] /// : tensor<64x64xf32> into ... /// ``` struct InsertSliceOpSourceCastInserter final : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, PatternRewriter &rewriter) const override { RankedTensorType srcType = insertSliceOp.getSourceType(); if (srcType.getRank() != insertSliceOp.getType().getRank()) return failure(); SmallVector newSrcShape(srcType.getShape().begin(), srcType.getShape().end()); for (int64_t i = 0; i < srcType.getRank(); ++i) { if (Optional constInt = getConstantIntValue(insertSliceOp.getMixedSizes()[i])) newSrcShape[i] = *constInt; } RankedTensorType newSrcType = RankedTensorType::get(newSrcShape, srcType.getElementType()); if (srcType == newSrcType || !preservesStaticInformation(srcType, newSrcType) || !tensor::CastOp::areCastCompatible(srcType, newSrcType)) return failure(); // newSrcType is: // 1) Different from srcType. // 2) "More static" than srcType. // 3) Cast-compatible with srcType. // Insert the cast. Value cast = rewriter.create( insertSliceOp.getLoc(), newSrcType, insertSliceOp.source()); rewriter.replaceOpWithNewOp( insertSliceOp, cast, insertSliceOp.dest(), insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides()); return success(); } }; } // namespace void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, Location loc, Value tensor, Value dest) { auto rankedTensorType = dest.getType().cast(); unsigned rank = rankedTensorType.getRank(); auto shape = rankedTensorType.getShape(); SmallVector offsets(rank, b.getIndexAttr(0)); SmallVector sizes; for (unsigned i = 0, e = rank; i < e; ++i) { OpFoldResult dim; if (rankedTensorType.isDynamicDim(i)) dim = b.createOrFold( loc, dest, b.create(loc, i)); else dim = b.getIndexAttr(shape[i]); sizes.push_back(dim); } SmallVector strides(rank, b.getIndexAttr(1)); return b.createOrFold(loc, tensor, dest, offsets, sizes, strides); } //===----------------------------------------------------------------------===// // TableGen'd op method definitions //===----------------------------------------------------------------------===// #define GET_OP_CLASSES #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"