//===-- main.cpp ------------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__APPLE__) __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2) int pthread_threadid_np(pthread_t, __uint64_t *); #elif defined(__linux__) #include #elif defined(__NetBSD__) #include #endif static const char *const RETVAL_PREFIX = "retval:"; static const char *const SLEEP_PREFIX = "sleep:"; static const char *const STDERR_PREFIX = "stderr:"; static const char *const SET_MESSAGE_PREFIX = "set-message:"; static const char *const PRINT_MESSAGE_COMMAND = "print-message:"; static const char *const GET_DATA_ADDRESS_PREFIX = "get-data-address-hex:"; static const char *const GET_STACK_ADDRESS_COMMAND = "get-stack-address-hex:"; static const char *const GET_HEAP_ADDRESS_COMMAND = "get-heap-address-hex:"; static const char *const GET_CODE_ADDRESS_PREFIX = "get-code-address-hex:"; static const char *const CALL_FUNCTION_PREFIX = "call-function:"; static const char *const THREAD_PREFIX = "thread:"; static const char *const THREAD_COMMAND_NEW = "new"; static const char *const THREAD_COMMAND_PRINT_IDS = "print-ids"; static const char *const THREAD_COMMAND_SEGFAULT = "segfault"; static const char *const PRINT_PID_COMMAND = "print-pid"; static bool g_print_thread_ids = false; static pthread_mutex_t g_print_mutex = PTHREAD_MUTEX_INITIALIZER; static bool g_threads_do_segfault = false; static pthread_mutex_t g_jump_buffer_mutex = PTHREAD_MUTEX_INITIALIZER; static jmp_buf g_jump_buffer; static bool g_is_segfaulting = false; static char g_message[256]; static volatile char g_c1 = '0'; static volatile char g_c2 = '1'; static void print_pid() { fprintf(stderr, "PID: %d\n", getpid()); } static void print_thread_id() { // Put in the right magic here for your platform to spit out the thread id (tid) // that debugserver/lldb-gdbserver would see as a TID. Otherwise, let the else // clause print out the unsupported text so that the unit test knows to skip // verifying thread ids. #if defined(__APPLE__) __uint64_t tid = 0; pthread_threadid_np(pthread_self(), &tid); printf("%" PRIx64, tid); #elif defined(__linux__) // This is a call to gettid() via syscall. printf("%" PRIx64, static_cast(syscall(__NR_gettid))); #elif defined(__NetBSD__) // Technically lwpid_t is 32-bit signed integer printf("%" PRIx64, static_cast(_lwp_self())); #else printf("{no-tid-support}"); #endif } static void signal_handler(int signo) { const char *signal_name = nullptr; switch (signo) { case SIGUSR1: signal_name = "SIGUSR1"; break; case SIGSEGV: signal_name = "SIGSEGV"; break; default: signal_name = nullptr; } // Print notice that we received the signal on a given thread. pthread_mutex_lock(&g_print_mutex); if (signal_name) printf("received %s on thread id: ", signal_name); else printf("received signo %d (%s) on thread id: ", signo, strsignal(signo)); print_thread_id(); printf("\n"); pthread_mutex_unlock(&g_print_mutex); // Reset the signal handler if we're one of the expected signal handlers. switch (signo) { case SIGSEGV: if (g_is_segfaulting) { // Fix up the pointer we're writing to. This needs to happen if nothing // intercepts the SIGSEGV (i.e. if somebody runs this from the command // line). longjmp(g_jump_buffer, 1); } break; case SIGUSR1: if (g_is_segfaulting) { // Fix up the pointer we're writing to. This is used to test gdb remote // signal delivery. A SIGSEGV will be raised when the thread is created, // switched out for a SIGUSR1, and then this code still needs to fix the // seg fault. (i.e. if somebody runs this from the command line). longjmp(g_jump_buffer, 1); } break; } // Reset the signal handler. sig_t sig_result = signal(signo, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set signal handler: errno=%d\n", errno); exit(1); } } static void swap_chars() { g_c1 = '1'; g_c2 = '0'; g_c1 = '0'; g_c2 = '1'; } static void hello() { pthread_mutex_lock(&g_print_mutex); printf("hello, world\n"); pthread_mutex_unlock(&g_print_mutex); } static void *thread_func(void *arg) { static pthread_mutex_t s_thread_index_mutex = PTHREAD_MUTEX_INITIALIZER; static int s_thread_index = 1; pthread_mutex_lock(&s_thread_index_mutex); const int this_thread_index = s_thread_index++; pthread_mutex_unlock(&s_thread_index_mutex); if (g_print_thread_ids) { pthread_mutex_lock(&g_print_mutex); printf("thread %d id: ", this_thread_index); print_thread_id(); printf("\n"); pthread_mutex_unlock(&g_print_mutex); } if (g_threads_do_segfault) { // Sleep for a number of seconds based on the thread index. // TODO add ability to send commands to test exe so we can // handle timing more precisely. This is clunky. All we're // trying to do is add predictability as to the timing of // signal generation by created threads. int sleep_seconds = 2 * (this_thread_index - 1); while (sleep_seconds > 0) sleep_seconds = sleep(sleep_seconds); // Test creating a SEGV. pthread_mutex_lock(&g_jump_buffer_mutex); g_is_segfaulting = true; int *bad_p = nullptr; if (setjmp(g_jump_buffer) == 0) { // Force a seg fault signal on this thread. *bad_p = 0; } else { // Tell the system we're no longer seg faulting. // Used by the SIGUSR1 signal handler that we inject // in place of the SIGSEGV so it only tries to // recover from the SIGSEGV if this seg fault code // was in play. g_is_segfaulting = false; } pthread_mutex_unlock(&g_jump_buffer_mutex); pthread_mutex_lock(&g_print_mutex); printf("thread "); print_thread_id(); printf(": past SIGSEGV\n"); pthread_mutex_unlock(&g_print_mutex); } int sleep_seconds_remaining = 60; while (sleep_seconds_remaining > 0) { sleep_seconds_remaining = sleep(sleep_seconds_remaining); } return nullptr; } int main(int argc, char **argv) { lldb_enable_attach(); std::vector threads; std::unique_ptr heap_array_up; int return_value = 0; // Set the signal handler. sig_t sig_result = signal(SIGALRM, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno); exit(1); } sig_result = signal(SIGUSR1, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno); exit(1); } sig_result = signal(SIGSEGV, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno); exit(1); } // Process command line args. for (int i = 1; i < argc; ++i) { if (std::strstr(argv[i], STDERR_PREFIX)) { // Treat remainder as text to go to stderr. fprintf(stderr, "%s\n", (argv[i] + strlen(STDERR_PREFIX))); } else if (std::strstr(argv[i], RETVAL_PREFIX)) { // Treat as the return value for the program. return_value = std::atoi(argv[i] + strlen(RETVAL_PREFIX)); } else if (std::strstr(argv[i], SLEEP_PREFIX)) { // Treat as the amount of time to have this process sleep (in seconds). int sleep_seconds_remaining = std::atoi(argv[i] + strlen(SLEEP_PREFIX)); // Loop around, sleeping until all sleep time is used up. Note that // signals will cause sleep to end early with the number of seconds // remaining. for (int i = 0; sleep_seconds_remaining > 0; ++i) { sleep_seconds_remaining = sleep(sleep_seconds_remaining); // std::cout << "sleep result (call " << i << "): " << // sleep_seconds_remaining << std::endl; } } else if (std::strstr(argv[i], SET_MESSAGE_PREFIX)) { // Copy the contents after "set-message:" to the g_message buffer. // Used for reading inferior memory and verifying contents match // expectations. strncpy(g_message, argv[i] + strlen(SET_MESSAGE_PREFIX), sizeof(g_message)); // Ensure we're null terminated. g_message[sizeof(g_message) - 1] = '\0'; } else if (std::strstr(argv[i], PRINT_MESSAGE_COMMAND)) { pthread_mutex_lock(&g_print_mutex); printf("message: %s\n", g_message); pthread_mutex_unlock(&g_print_mutex); } else if (std::strstr(argv[i], GET_DATA_ADDRESS_PREFIX)) { volatile void *data_p = nullptr; if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_message")) data_p = &g_message[0]; else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c1")) data_p = &g_c1; else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c2")) data_p = &g_c2; pthread_mutex_lock(&g_print_mutex); printf("data address: %p\n", data_p); pthread_mutex_unlock(&g_print_mutex); } else if (std::strstr(argv[i], GET_HEAP_ADDRESS_COMMAND)) { // Create a byte array if not already present. if (!heap_array_up) heap_array_up.reset(new uint8_t[32]); pthread_mutex_lock(&g_print_mutex); printf("heap address: %p\n", heap_array_up.get()); pthread_mutex_unlock(&g_print_mutex); } else if (std::strstr(argv[i], GET_STACK_ADDRESS_COMMAND)) { pthread_mutex_lock(&g_print_mutex); printf("stack address: %p\n", &return_value); pthread_mutex_unlock(&g_print_mutex); } else if (std::strstr(argv[i], GET_CODE_ADDRESS_PREFIX)) { void (*func_p)() = nullptr; if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "hello")) func_p = hello; else if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "swap_chars")) func_p = swap_chars; pthread_mutex_lock(&g_print_mutex); printf("code address: %p\n", func_p); pthread_mutex_unlock(&g_print_mutex); } else if (std::strstr(argv[i], CALL_FUNCTION_PREFIX)) { void (*func_p)() = nullptr; // Defaut to providing the address of main. if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "hello") == 0) func_p = hello; else if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "swap_chars") == 0) func_p = swap_chars; else { pthread_mutex_lock(&g_print_mutex); printf("unknown function: %s\n", argv[i] + strlen(CALL_FUNCTION_PREFIX)); pthread_mutex_unlock(&g_print_mutex); } if (func_p) func_p(); } else if (std::strstr(argv[i], THREAD_PREFIX)) { // Check if we're creating a new thread. if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_NEW)) { // Create a new thread. pthread_t new_thread; const int err = ::pthread_create(&new_thread, nullptr, thread_func, nullptr); if (err) { fprintf(stderr, "pthread_create() failed with error code %d\n", err); exit(err); } threads.push_back(new_thread); } else if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_PRINT_IDS)) { // Turn on thread id announcing. g_print_thread_ids = true; // And announce us. pthread_mutex_lock(&g_print_mutex); printf("thread 0 id: "); print_thread_id(); printf("\n"); pthread_mutex_unlock(&g_print_mutex); } else if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_SEGFAULT)) { g_threads_do_segfault = true; } else { // At this point we don't do anything else with threads. // Later use thread index and send command to thread. } } else if (std::strstr(argv[i], PRINT_PID_COMMAND)) { print_pid(); } else { // Treat the argument as text for stdout. printf("%s\n", argv[i]); } } // If we launched any threads, join them for (std::vector::iterator it = threads.begin(); it != threads.end(); ++it) { void *thread_retval = nullptr; const int err = ::pthread_join(*it, &thread_retval); if (err != 0) fprintf(stderr, "pthread_join() failed with error code %d\n", err); } return return_value; }