//===-- ClangFunction.cpp ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes // Other libraries and framework includes #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/CodeGen/CodeGenAction.h" #include "clang/CodeGen/ModuleBuilder.h" #include "clang/Frontend/CompilerInstance.h" #include "llvm/ADT/StringRef.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/Module.h" // Project includes #include "lldb/Expression/ClangFunction.h" #include "lldb/Symbol/Type.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/ValueObject.h" #include "lldb/Core/ValueObjectList.h" #include "lldb/Interpreter/CommandReturnObject.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/Function.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlan.h" #include "lldb/Target/ThreadPlanCallFunction.h" #include "lldb/Core/Log.h" using namespace lldb_private; //---------------------------------------------------------------------- // ClangFunction constructor //---------------------------------------------------------------------- ClangFunction::ClangFunction(const char *target_triple, ClangASTContext *ast_context, void *return_qualtype, const Address& functionAddress, const ValueList &arg_value_list) : ClangExpression (target_triple, NULL), m_function_addr (functionAddress), m_function_ptr (NULL), m_arg_values (arg_value_list), m_clang_ast_context (ast_context), m_function_return_qual_type(return_qualtype), m_wrapper_function_name ("__lldb_caller_function"), m_wrapper_struct_name ("__lldb_caller_struct"), m_return_offset(0), m_compiled (false), m_JITted (false) { } ClangFunction::ClangFunction(const char *target_triple, Function &function, ClangASTContext *ast_context, const ValueList &arg_value_list) : ClangExpression (target_triple, NULL), m_function_ptr (&function), m_arg_values (arg_value_list), m_clang_ast_context (ast_context), m_function_return_qual_type (NULL), m_wrapper_function_name ("__lldb_function_caller"), m_wrapper_struct_name ("__lldb_caller_struct"), m_return_offset(0), m_compiled (false), m_JITted (false) { m_function_addr = m_function_ptr->GetAddressRange().GetBaseAddress(); m_function_return_qual_type = m_function_ptr->GetReturnType().GetOpaqueClangQualType(); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- ClangFunction::~ClangFunction() { } unsigned ClangFunction::CompileFunction (Stream &errors) { // FIXME: How does clang tell us there's no return value? We need to handle that case. unsigned num_errors = 0; if (!m_compiled) { std::string return_type_str = ClangASTContext::GetTypeName(m_function_return_qual_type); // Cons up the function we're going to wrap our call in, then compile it... // We declare the function "extern "C"" because the compiler might be in C++ // mode which would mangle the name and then we couldn't find it again... std::string expression; expression.append ("extern \"C\" void "); expression.append (m_wrapper_function_name); expression.append (" (void *input)\n{\n struct "); expression.append (m_wrapper_struct_name); expression.append (" \n {\n"); expression.append (" "); expression.append (return_type_str); expression.append (" (*fn_ptr) ("); // Get the number of arguments. If we have a function type and it is prototyped, // trust that, otherwise use the values we were given. // FIXME: This will need to be extended to handle Variadic functions. We'll need // to pull the defined arguments out of the function, then add the types from the // arguments list for the variable arguments. size_t num_args = -1; bool trust_function = false; // GetArgumentCount returns -1 for an unprototyped function. if (m_function_ptr) { num_args = m_function_ptr->GetArgumentCount(); if (num_args != -1) trust_function = true; } if (num_args == -1) num_args = m_arg_values.GetSize(); std::string args_buffer; // This one stores the definition of all the args in "struct caller". std::string args_list_buffer; // This one stores the argument list called from the structure. for (int i = 0; i < num_args; i++) { const char *type_string; std::string type_stdstr; if (trust_function) { type_string = m_function_ptr->GetArgumentTypeAtIndex(i).GetName().AsCString(); } else { Value *arg_value = m_arg_values.GetValueAtIndex(i); void *clang_qual_type = arg_value->GetOpaqueClangQualType (); if (clang_qual_type != NULL) { type_stdstr = ClangASTContext::GetTypeName(clang_qual_type); type_string = type_stdstr.c_str(); } else { errors.Printf("Could not determine type of input value %d.", i); return 1; } } expression.append (type_string); if (i < num_args - 1) expression.append (", "); char arg_buf[32]; args_buffer.append (" "); args_buffer.append (type_string); snprintf(arg_buf, 31, "arg_%d", i); args_buffer.push_back (' '); args_buffer.append (arg_buf); args_buffer.append (";\n"); args_list_buffer.append ("__lldb_fn_data->"); args_list_buffer.append (arg_buf); if (i < num_args - 1) args_list_buffer.append (", "); } expression.append (");\n"); // Close off the function calling prototype. expression.append (args_buffer); expression.append (" "); expression.append (return_type_str); expression.append (" return_value;"); expression.append ("\n };\n struct "); expression.append (m_wrapper_struct_name); expression.append ("* __lldb_fn_data = (struct "); expression.append (m_wrapper_struct_name); expression.append (" *) input;\n"); expression.append (" __lldb_fn_data->return_value = __lldb_fn_data->fn_ptr ("); expression.append (args_list_buffer); expression.append (");\n}\n"); Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP); if (log) log->Printf ("Expression: \n\n%s\n\n", expression.c_str()); // Okay, now compile this expression: num_errors = ParseBareExpression (expression.c_str(), errors); m_compiled = (num_errors == 0); if (m_compiled) { using namespace clang; CompilerInstance *compiler_instance = GetCompilerInstance(); ASTContext &ast_context = compiler_instance->getASTContext(); DeclarationName wrapper_func_name(&ast_context.Idents.get(m_wrapper_function_name.c_str())); FunctionDecl::lookup_result func_lookup = ast_context.getTranslationUnitDecl()->lookup(wrapper_func_name); if (func_lookup.first == func_lookup.second) return false; FunctionDecl *wrapper_func = dyn_cast (*(func_lookup.first)); if (!wrapper_func) return false; DeclarationName wrapper_struct_name(&ast_context.Idents.get(m_wrapper_struct_name.c_str())); RecordDecl::lookup_result struct_lookup = wrapper_func->lookup(wrapper_struct_name); if (struct_lookup.first == struct_lookup.second) return false; RecordDecl *wrapper_struct = dyn_cast(*(struct_lookup.first)); if (!wrapper_struct) return false; m_struct_layout = &ast_context.getASTRecordLayout (wrapper_struct); if (!m_struct_layout) { m_compiled = false; return 1; } m_return_offset = m_struct_layout->getFieldOffset(m_struct_layout->getFieldCount() - 1); m_return_size = (m_struct_layout->getDataSize() - m_return_offset)/8; } } return num_errors; } bool ClangFunction::WriteFunctionWrapper (ExecutionContext &exc_context, Stream &errors) { Process *process = exc_context.process; if (process == NULL) return false; if (!m_JITted) { // Next we should JIT it and insert the result into the target program. if (!JITFunction (exc_context, m_wrapper_function_name.c_str())) return false; if (!WriteJITCode (exc_context)) return false; m_JITted = true; } // Next get the call address for the function: m_wrapper_fun_addr = GetFunctionAddress (m_wrapper_function_name.c_str()); if (m_wrapper_fun_addr == LLDB_INVALID_ADDRESS) return false; return true; } bool ClangFunction::WriteFunctionArguments (ExecutionContext &exc_context, lldb::addr_t &args_addr_ref, Stream &errors) { return WriteFunctionArguments(exc_context, args_addr_ref, m_function_addr, m_arg_values, errors); } // FIXME: Assure that the ValueList we were passed in is consistent with the one that defined this function. bool ClangFunction::WriteFunctionArguments (ExecutionContext &exc_context, lldb::addr_t &args_addr_ref, Address function_address, ValueList &arg_values, Stream &errors) { // Otherwise, allocate space for the argument passing struct, and write it. // We use the information in the expression parser AST to // figure out how to do this... // We should probably transcode this in this object so we can ditch the compiler instance // and all its associated data, and just keep the JITTed bytes. Error error; using namespace clang; ExecutionResults return_value = eExecutionSetupError; Process *process = exc_context.process; if (process == NULL) return return_value; uint64_t struct_size = m_struct_layout->getSize()/8; // Clang returns sizes in bytes. if (args_addr_ref == LLDB_INVALID_ADDRESS) { args_addr_ref = process->AllocateMemory(struct_size, lldb::ePermissionsReadable|lldb::ePermissionsWritable, error); if (args_addr_ref == LLDB_INVALID_ADDRESS) return false; m_wrapper_args_addrs.push_back (args_addr_ref); } else { // Make sure this is an address that we've already handed out. if (find (m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(), args_addr_ref) == m_wrapper_args_addrs.end()) { return false; } } // FIXME: This is fake, and just assumes that it matches that architecture. // Make a data extractor and put the address into the right byte order & size. uint64_t fun_addr = function_address.GetLoadAddress(exc_context.process); int first_offset = m_struct_layout->getFieldOffset(0)/8; process->WriteMemory(args_addr_ref + first_offset, &fun_addr, 8, error); // FIXME: We will need to extend this for Variadic functions. Error value_error; size_t num_args = arg_values.GetSize(); if (num_args != m_arg_values.GetSize()) { errors.Printf ("Wrong number of arguments - was: %d should be: %d", num_args, m_arg_values.GetSize()); return false; } for (int i = 0; i < num_args; i++) { // FIXME: We should sanity check sizes. int offset = m_struct_layout->getFieldOffset(i+1)/8; // Clang sizes are in bytes. Value *arg_value = arg_values.GetValueAtIndex(i); // FIXME: For now just do scalars: // Special case: if it's a pointer, don't do anything (the ABI supports passing cstrings) if (arg_value->GetValueType() == Value::eValueTypeHostAddress && arg_value->GetContextType() == Value::eContextTypeOpaqueClangQualType && ClangASTContext::IsPointerType(arg_value->GetValueOpaqueClangQualType())) continue; const Scalar &arg_scalar = arg_value->ResolveValue(&exc_context, m_clang_ast_context->getASTContext()); int byte_size = arg_scalar.GetByteSize(); std::vector buffer; buffer.resize(byte_size); DataExtractor value_data; arg_scalar.GetData (value_data); value_data.ExtractBytes(0, byte_size, process->GetByteOrder(), buffer.data()); process->WriteMemory(args_addr_ref + offset, buffer.data(), byte_size, error); } return true; } bool ClangFunction::InsertFunction (ExecutionContext &exc_context, lldb::addr_t &args_addr_ref, Stream &errors) { using namespace clang; if (CompileFunction(errors) != 0) return false; if (!WriteFunctionWrapper(exc_context, errors)) return false; if (!WriteFunctionArguments(exc_context, args_addr_ref, errors)) return false; Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP); if (log) log->Printf ("Call Address: 0x%llx Struct Address: 0x%llx.\n", m_wrapper_fun_addr, args_addr_ref); return true; } ThreadPlan * ClangFunction::GetThreadPlanToCallFunction (ExecutionContext &exc_context, lldb::addr_t &args_addr, Stream &errors, bool stop_others, bool discard_on_error) { // FIXME: Use the errors Stream for better error reporting. Process *process = exc_context.process; if (process == NULL) { errors.Printf("Can't call a function without a process."); return NULL; } // Okay, now run the function: Address wrapper_address (NULL, m_wrapper_fun_addr); ThreadPlan *new_plan = new ThreadPlanCallFunction (*exc_context.thread, wrapper_address, args_addr, stop_others, discard_on_error); return new_plan; } bool ClangFunction::FetchFunctionResults (ExecutionContext &exc_context, lldb::addr_t args_addr, Value &ret_value) { // Read the return value - it is the last field in the struct: // FIXME: How does clang tell us there's no return value? We need to handle that case. std::vector data_buffer; data_buffer.resize(m_return_size); Process *process = exc_context.process; Error error; size_t bytes_read = process->ReadMemory(args_addr + m_return_offset/8, data_buffer.data(), m_return_size, error); if (bytes_read == 0) { return false; } if (bytes_read < m_return_size) return false; DataExtractor data(data_buffer.data(), m_return_size, process->GetByteOrder(), process->GetAddressByteSize()); // FIXME: Assuming an integer scalar for now: uint32_t offset = 0; uint64_t return_integer = data.GetMaxU64(&offset, m_return_size); ret_value.SetContext (Value::eContextTypeOpaqueClangQualType, m_function_return_qual_type); ret_value.SetValueType(Value::eValueTypeScalar); ret_value.GetScalar() = return_integer; return true; } void ClangFunction::DeallocateFunctionResults (ExecutionContext &exc_context, lldb::addr_t args_addr) { std::list::iterator pos; pos = std::find(m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(), args_addr); if (pos != m_wrapper_args_addrs.end()) m_wrapper_args_addrs.erase(pos); exc_context.process->DeallocateMemory(args_addr); } ClangFunction::ExecutionResults ClangFunction::ExecuteFunction(ExecutionContext &exc_context, Stream &errors, Value &results) { return ExecuteFunction (exc_context, errors, 1000, true, results); } ClangFunction::ExecutionResults ClangFunction::ExecuteFunction(ExecutionContext &exc_context, Stream &errors, bool stop_others, Value &results) { return ExecuteFunction (exc_context, NULL, errors, stop_others, NULL, false, results); } ClangFunction::ExecutionResults ClangFunction::ExecuteFunction( ExecutionContext &exc_context, Stream &errors, uint32_t single_thread_timeout_usec, bool try_all_threads, Value &results) { return ExecuteFunction (exc_context, NULL, errors, true, single_thread_timeout_usec, try_all_threads, results); } ClangFunction::ExecutionResults ClangFunction::ExecuteFunction( ExecutionContext &exc_context, lldb::addr_t *args_addr_ptr, Stream &errors, bool stop_others, uint32_t single_thread_timeout_usec, bool try_all_threads, Value &results) { using namespace clang; ExecutionResults return_value = eExecutionSetupError; Process *process = exc_context.process; lldb::addr_t args_addr; if (args_addr_ptr != NULL) args_addr = *args_addr_ptr; else args_addr = LLDB_INVALID_ADDRESS; if (CompileFunction(errors) != 0) return eExecutionSetupError; if (args_addr == LLDB_INVALID_ADDRESS) { if (!InsertFunction(exc_context, args_addr, errors)) return eExecutionSetupError; } lldb::ThreadPlanSP call_plan_sp(GetThreadPlanToCallFunction(exc_context, args_addr, errors, stop_others, false)); ThreadPlanCallFunction *call_plan_ptr = static_cast (call_plan_sp.get()); if (args_addr_ptr != NULL) *args_addr_ptr = args_addr; if (call_plan_sp == NULL) return return_value; call_plan_sp->SetPrivate(true); exc_context.thread->QueueThreadPlan(call_plan_sp, true); // We need to call the function synchronously, so spin waiting for it to return. // If we get interrupted while executing, we're going to lose our context, and // won't be able to gather the result at this point. TimeValue* timeout_ptr = NULL; TimeValue real_timeout; if (single_thread_timeout_usec != 0) { real_timeout = TimeValue::Now(); real_timeout.OffsetWithMicroSeconds(single_thread_timeout_usec); timeout_ptr = &real_timeout; } process->Resume (); while (1) { lldb::EventSP event_sp; // Now wait for the process to stop again: // FIXME: Probably want a time out. lldb::StateType stop_state = process->WaitForStateChangedEvents (timeout_ptr, event_sp); if (stop_state == lldb::eStateInvalid && timeout_ptr != NULL) { // Right now this is the only way to tell we've timed out... // We should interrupt the process here... // Not really sure what to do if Halt fails here... Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP); if (log) log->Printf ("Running function with timeout: %d timed out, trying with all threads enabled.", single_thread_timeout_usec); if (process->Halt().Success()) { timeout_ptr = NULL; lldb::StateType stop_state = process->WaitForStateChangedEvents (timeout_ptr, event_sp); if (stop_state == lldb::eStateInvalid) { errors.Printf ("Got an invalid stop state after halt."); } else if (stop_state != lldb::eStateStopped) { StreamString s; event_sp->Dump (&s); errors.Printf("Didn't get a stopped event after Halting the target, got: \"%s\"", s.GetData()); } if (try_all_threads) { // Between the time that we got the timeout and the time we halted, but target // might have actually completed the plan. If so, we're done. if (exc_context.thread->IsThreadPlanDone (call_plan_sp.get())) { return_value = eExecutionCompleted; break; } call_plan_ptr->SetStopOthers (false); process->Resume(); continue; } else return eExecutionInterrupted; } } if (stop_state == lldb::eStateRunning || stop_state == lldb::eStateStepping) continue; if (exc_context.thread->IsThreadPlanDone (call_plan_sp.get())) { return_value = eExecutionCompleted; break; } else if (exc_context.thread->WasThreadPlanDiscarded (call_plan_sp.get())) { return_value = eExecutionDiscarded; break; } else { return_value = eExecutionInterrupted; break; } } if (return_value != eExecutionCompleted) return return_value; FetchFunctionResults(exc_context, args_addr, results); if (args_addr_ptr == NULL) DeallocateFunctionResults(exc_context, args_addr); return eExecutionCompleted; } ClangFunction::ExecutionResults ClangFunction::ExecuteFunctionWithABI(ExecutionContext &exc_context, Stream &errors, Value &results) { // FIXME: Use the errors Stream for better error reporting. using namespace clang; ExecutionResults return_value = eExecutionSetupError; Process *process = exc_context.process; if (process == NULL) { errors.Printf("Can't call a function without a process."); return return_value; } //unsigned int num_args = m_arg_values.GetSize(); //unsigned int arg_index; //for (arg_index = 0; arg_index < num_args; ++arg_index) // m_arg_values.GetValueAtIndex(arg_index)->ResolveValue(&exc_context, GetASTContext()); ThreadPlan *call_plan = exc_context.thread->QueueThreadPlanForCallFunction (false, m_function_addr, m_arg_values, true); if (call_plan == NULL) return return_value; call_plan->SetPrivate(true); // We need to call the function synchronously, so spin waiting for it to return. // If we get interrupted while executing, we're going to lose our context, and // won't be able to gather the result at this point. process->Resume (); while (1) { lldb::EventSP event_sp; // Now wait for the process to stop again: // FIXME: Probably want a time out. lldb::StateType stop_state = process->WaitForStateChangedEvents (NULL, event_sp); if (stop_state == lldb::eStateRunning || stop_state == lldb::eStateStepping) continue; if (exc_context.thread->IsThreadPlanDone (call_plan)) { return_value = eExecutionCompleted; break; } else if (exc_context.thread->WasThreadPlanDiscarded (call_plan)) { return_value = eExecutionDiscarded; break; } else { return_value = eExecutionInterrupted; break; } } return eExecutionCompleted; }