//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/BuiltinAttributes.h" #include "AttributeDetail.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/Operation.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Types.h" #include "mlir/Interfaces/DecodeAttributesInterfaces.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/Sequence.h" #include "llvm/Support/Endian.h" using namespace mlir; using namespace mlir::detail; //===----------------------------------------------------------------------===// /// Tablegen Attribute Definitions //===----------------------------------------------------------------------===// #define GET_ATTRDEF_CLASSES #include "mlir/IR/BuiltinAttributes.cpp.inc" //===----------------------------------------------------------------------===// // BuiltinDialect //===----------------------------------------------------------------------===// void BuiltinDialect::registerAttributes() { addAttributes(); } //===----------------------------------------------------------------------===// // ArrayAttr //===----------------------------------------------------------------------===// void ArrayAttr::walkImmediateSubElements( function_ref walkAttrsFn, function_ref walkTypesFn) const { for (Attribute attr : getValue()) walkAttrsFn(attr); } SubElementAttrInterface ArrayAttr::replaceImmediateSubAttribute( ArrayRef> replacements) const { std::vector vector = getValue().vec(); for (auto &it : replacements) { vector[it.first] = it.second; } return get(getContext(), vector); } //===----------------------------------------------------------------------===// // DictionaryAttr //===----------------------------------------------------------------------===// /// Helper function that does either an in place sort or sorts from source array /// into destination. If inPlace then storage is both the source and the /// destination, else value is the source and storage destination. Returns /// whether source was sorted. template static bool dictionaryAttrSort(ArrayRef value, SmallVectorImpl &storage) { // Specialize for the common case. switch (value.size()) { case 0: // Zero already sorted. if (!inPlace) storage.clear(); break; case 1: // One already sorted but may need to be copied. if (!inPlace) storage.assign({value[0]}); break; case 2: { bool isSorted = value[0] < value[1]; if (inPlace) { if (!isSorted) std::swap(storage[0], storage[1]); } else if (isSorted) { storage.assign({value[0], value[1]}); } else { storage.assign({value[1], value[0]}); } return !isSorted; } default: if (!inPlace) storage.assign(value.begin(), value.end()); // Check to see they are sorted already. bool isSorted = llvm::is_sorted(value); // If not, do a general sort. if (!isSorted) llvm::array_pod_sort(storage.begin(), storage.end()); return !isSorted; } return false; } /// Returns an entry with a duplicate name from the given sorted array of named /// attributes. Returns llvm::None if all elements have unique names. static Optional findDuplicateElement(ArrayRef value) { const Optional none{llvm::None}; if (value.size() < 2) return none; if (value.size() == 2) return value[0].getName() == value[1].getName() ? value[0] : none; const auto *it = std::adjacent_find(value.begin(), value.end(), [](NamedAttribute l, NamedAttribute r) { return l.getName() == r.getName(); }); return it != value.end() ? *it : none; } bool DictionaryAttr::sort(ArrayRef value, SmallVectorImpl &storage) { bool isSorted = dictionaryAttrSort(value, storage); assert(!findDuplicateElement(storage) && "DictionaryAttr element names must be unique"); return isSorted; } bool DictionaryAttr::sortInPlace(SmallVectorImpl &array) { bool isSorted = dictionaryAttrSort(array, array); assert(!findDuplicateElement(array) && "DictionaryAttr element names must be unique"); return isSorted; } Optional DictionaryAttr::findDuplicate(SmallVectorImpl &array, bool isSorted) { if (!isSorted) dictionaryAttrSort(array, array); return findDuplicateElement(array); } DictionaryAttr DictionaryAttr::get(MLIRContext *context, ArrayRef value) { if (value.empty()) return DictionaryAttr::getEmpty(context); // We need to sort the element list to canonicalize it. SmallVector storage; if (dictionaryAttrSort(value, storage)) value = storage; assert(!findDuplicateElement(value) && "DictionaryAttr element names must be unique"); return Base::get(context, value); } /// Construct a dictionary with an array of values that is known to already be /// sorted by name and uniqued. DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context, ArrayRef value) { if (value.empty()) return DictionaryAttr::getEmpty(context); // Ensure that the attribute elements are unique and sorted. assert(llvm::is_sorted( value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) && "expected attribute values to be sorted"); assert(!findDuplicateElement(value) && "DictionaryAttr element names must be unique"); return Base::get(context, value); } /// Return the specified attribute if present, null otherwise. Attribute DictionaryAttr::get(StringRef name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? it.first->getValue() : Attribute(); } Attribute DictionaryAttr::get(StringAttr name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? it.first->getValue() : Attribute(); } /// Return the specified named attribute if present, None otherwise. Optional DictionaryAttr::getNamed(StringRef name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? *it.first : Optional(); } Optional DictionaryAttr::getNamed(StringAttr name) const { auto it = impl::findAttrSorted(begin(), end(), name); return it.second ? *it.first : Optional(); } /// Return whether the specified attribute is present. bool DictionaryAttr::contains(StringRef name) const { return impl::findAttrSorted(begin(), end(), name).second; } bool DictionaryAttr::contains(StringAttr name) const { return impl::findAttrSorted(begin(), end(), name).second; } DictionaryAttr::iterator DictionaryAttr::begin() const { return getValue().begin(); } DictionaryAttr::iterator DictionaryAttr::end() const { return getValue().end(); } size_t DictionaryAttr::size() const { return getValue().size(); } DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) { return Base::get(context, ArrayRef()); } void DictionaryAttr::walkImmediateSubElements( function_ref walkAttrsFn, function_ref walkTypesFn) const { for (const NamedAttribute &attr : getValue()) walkAttrsFn(attr.getValue()); } SubElementAttrInterface DictionaryAttr::replaceImmediateSubAttribute( ArrayRef> replacements) const { std::vector vec = getValue().vec(); for (auto &it : replacements) vec[it.first].setValue(it.second); // The above only modifies the mapped value, but not the key, and therefore // not the order of the elements. It remains sorted return getWithSorted(getContext(), vec); } //===----------------------------------------------------------------------===// // StringAttr //===----------------------------------------------------------------------===// StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) { return Base::get(context, "", NoneType::get(context)); } /// Twine support for StringAttr. StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) { // Fast-path empty twine. if (twine.isTriviallyEmpty()) return get(context); SmallVector tempStr; return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context)); } /// Twine support for StringAttr. StringAttr StringAttr::get(const Twine &twine, Type type) { SmallVector tempStr; return Base::get(type.getContext(), twine.toStringRef(tempStr), type); } StringRef StringAttr::getValue() const { return getImpl()->value; } Dialect *StringAttr::getReferencedDialect() const { return getImpl()->referencedDialect; } //===----------------------------------------------------------------------===// // FloatAttr //===----------------------------------------------------------------------===// double FloatAttr::getValueAsDouble() const { return getValueAsDouble(getValue()); } double FloatAttr::getValueAsDouble(APFloat value) { if (&value.getSemantics() != &APFloat::IEEEdouble()) { bool losesInfo = false; value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); } return value.convertToDouble(); } LogicalResult FloatAttr::verify(function_ref emitError, Type type, APFloat value) { // Verify that the type is correct. if (!type.isa()) return emitError() << "expected floating point type"; // Verify that the type semantics match that of the value. if (&type.cast().getFloatSemantics() != &value.getSemantics()) { return emitError() << "FloatAttr type doesn't match the type implied by its value"; } return success(); } //===----------------------------------------------------------------------===// // SymbolRefAttr //===----------------------------------------------------------------------===// SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value, ArrayRef nestedRefs) { return get(StringAttr::get(ctx, value), nestedRefs); } FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) { return get(ctx, value, {}).cast(); } FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) { return get(value, {}).cast(); } FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) { auto symName = symbol->getAttrOfType(SymbolTable::getSymbolAttrName()); assert(symName && "value does not have a valid symbol name"); return SymbolRefAttr::get(symName); } StringAttr SymbolRefAttr::getLeafReference() const { ArrayRef nestedRefs = getNestedReferences(); return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr(); } //===----------------------------------------------------------------------===// // IntegerAttr //===----------------------------------------------------------------------===// int64_t IntegerAttr::getInt() const { assert((getType().isIndex() || getType().isSignlessInteger()) && "must be signless integer"); return getValue().getSExtValue(); } int64_t IntegerAttr::getSInt() const { assert(getType().isSignedInteger() && "must be signed integer"); return getValue().getSExtValue(); } uint64_t IntegerAttr::getUInt() const { assert(getType().isUnsignedInteger() && "must be unsigned integer"); return getValue().getZExtValue(); } /// Return the value as an APSInt which carries the signed from the type of /// the attribute. This traps on signless integers types! APSInt IntegerAttr::getAPSInt() const { assert(!getType().isSignlessInteger() && "Signless integers don't carry a sign for APSInt"); return APSInt(getValue(), getType().isUnsignedInteger()); } LogicalResult IntegerAttr::verify(function_ref emitError, Type type, APInt value) { if (IntegerType integerType = type.dyn_cast()) { if (integerType.getWidth() != value.getBitWidth()) return emitError() << "integer type bit width (" << integerType.getWidth() << ") doesn't match value bit width (" << value.getBitWidth() << ")"; return success(); } if (type.isa()) return success(); return emitError() << "expected integer or index type"; } BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) { auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value)); return attr.cast(); } //===----------------------------------------------------------------------===// // BoolAttr //===----------------------------------------------------------------------===// bool BoolAttr::getValue() const { auto *storage = reinterpret_cast(impl); return storage->value.getBoolValue(); } bool BoolAttr::classof(Attribute attr) { IntegerAttr intAttr = attr.dyn_cast(); return intAttr && intAttr.getType().isSignlessInteger(1); } //===----------------------------------------------------------------------===// // OpaqueAttr //===----------------------------------------------------------------------===// LogicalResult OpaqueAttr::verify(function_ref emitError, StringAttr dialect, StringRef attrData, Type type) { if (!Dialect::isValidNamespace(dialect.strref())) return emitError() << "invalid dialect namespace '" << dialect << "'"; // Check that the dialect is actually registered. MLIRContext *context = dialect.getContext(); if (!context->allowsUnregisteredDialects() && !context->getLoadedDialect(dialect.strref())) { return emitError() << "#" << dialect << "<\"" << attrData << "\"> : " << type << " attribute created with unregistered dialect. If this is " "intended, please call allowUnregisteredDialects() on the " "MLIRContext, or use -allow-unregistered-dialect with " "the MLIR opt tool used"; } return success(); } //===----------------------------------------------------------------------===// // DenseElementsAttr Utilities //===----------------------------------------------------------------------===// /// Get the bitwidth of a dense element type within the buffer. /// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8. static size_t getDenseElementStorageWidth(size_t origWidth) { return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth); } static size_t getDenseElementStorageWidth(Type elementType) { return getDenseElementStorageWidth(getDenseElementBitWidth(elementType)); } /// Set a bit to a specific value. static void setBit(char *rawData, size_t bitPos, bool value) { if (value) rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT)); else rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT)); } /// Return the value of the specified bit. static bool getBit(const char *rawData, size_t bitPos) { return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0; } /// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for /// BE format. static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes, char *result) { assert(llvm::support::endian::system_endianness() == // NOLINT llvm::support::endianness::big); // NOLINT assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes); // Copy the words filled with data. // For example, when `value` has 2 words, the first word is filled with data. // `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--| size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE; std::copy_n(reinterpret_cast(value.getRawData()), numFilledWords, result); // Convert last word of APInt to LE format and store it in char // array(`valueLE`). // ex. last word of `value` (BE): |------ij| ==> `valueLE` (LE): |ji------| size_t lastWordPos = numFilledWords; SmallVector valueLE(APInt::APINT_WORD_SIZE); DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( reinterpret_cast(value.getRawData()) + lastWordPos, valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1); // Extract actual APInt data from `valueLE`, convert endianness to BE format, // and store it in `result`. // ex. `valueLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|ij| DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( valueLE.begin(), result + lastWordPos, (numBytes - lastWordPos) * CHAR_BIT, 1); } /// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE /// format. static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes, APInt &result) { assert(llvm::support::endian::system_endianness() == // NOLINT llvm::support::endianness::big); // NOLINT assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes); // Copy the data that fills the word of `result` from `inArray`. // For example, when `result` has 2 words, the first word will be filled with // data. So, the first 8 bytes are copied from `inArray` here. // `inArray` (10 bytes, BE): |abcdefgh|ij| // ==> `result` (2 words, BE): |abcdefgh|--------| size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE; std::copy_n( inArray, numFilledWords, const_cast(reinterpret_cast(result.getRawData()))); // Convert array data which will be last word of `result` to LE format, and // store it in char array(`inArrayLE`). // ex. `inArray` (last two bytes, BE): |ij| ==> `inArrayLE` (LE): |ji------| size_t lastWordPos = numFilledWords; SmallVector inArrayLE(APInt::APINT_WORD_SIZE); DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( inArray + lastWordPos, inArrayLE.begin(), (numBytes - lastWordPos) * CHAR_BIT, 1); // Convert `inArrayLE` to BE format, and store it in last word of `result`. // ex. `inArrayLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|------ij| DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( inArrayLE.begin(), const_cast(reinterpret_cast(result.getRawData())) + lastWordPos, APInt::APINT_BITS_PER_WORD, 1); } /// Writes value to the bit position `bitPos` in array `rawData`. static void writeBits(char *rawData, size_t bitPos, APInt value) { size_t bitWidth = value.getBitWidth(); // If the bitwidth is 1 we just toggle the specific bit. if (bitWidth == 1) return setBit(rawData, bitPos, value.isOneValue()); // Otherwise, the bit position is guaranteed to be byte aligned. assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); if (llvm::support::endian::system_endianness() == llvm::support::endianness::big) { // Copy from `value` to `rawData + (bitPos / CHAR_BIT)`. // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't // work correctly in BE format. // ex. `value` (2 words including 10 bytes) // ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT), rawData + (bitPos / CHAR_BIT)); } else { std::copy_n(reinterpret_cast(value.getRawData()), llvm::divideCeil(bitWidth, CHAR_BIT), rawData + (bitPos / CHAR_BIT)); } } /// Reads the next `bitWidth` bits from the bit position `bitPos` in array /// `rawData`. static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) { // Handle a boolean bit position. if (bitWidth == 1) return APInt(1, getBit(rawData, bitPos) ? 1 : 0); // Otherwise, the bit position must be 8-bit aligned. assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); APInt result(bitWidth, 0); if (llvm::support::endian::system_endianness() == llvm::support::endianness::big) { // Copy from `rawData + (bitPos / CHAR_BIT)` to `result`. // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't // work correctly in BE format. // ex. `result` (2 words including 10 bytes) // ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| This function copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT), llvm::divideCeil(bitWidth, CHAR_BIT), result); } else { std::copy_n(rawData + (bitPos / CHAR_BIT), llvm::divideCeil(bitWidth, CHAR_BIT), const_cast( reinterpret_cast(result.getRawData()))); } return result; } /// Returns true if 'values' corresponds to a splat, i.e. one element, or has /// the same element count as 'type'. template static bool hasSameElementsOrSplat(ShapedType type, const Values &values) { return (values.size() == 1) || (type.getNumElements() == static_cast(values.size())); } //===----------------------------------------------------------------------===// // DenseElementsAttr Iterators //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // AttributeElementIterator DenseElementsAttr::AttributeElementIterator::AttributeElementIterator( DenseElementsAttr attr, size_t index) : llvm::indexed_accessor_iterator( attr.getAsOpaquePointer(), index) {} Attribute DenseElementsAttr::AttributeElementIterator::operator*() const { auto owner = getFromOpaquePointer(base).cast(); Type eltTy = owner.getElementType(); if (auto intEltTy = eltTy.dyn_cast()) return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); if (eltTy.isa()) return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); if (auto floatEltTy = eltTy.dyn_cast()) { IntElementIterator intIt(owner, index); FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt); return FloatAttr::get(eltTy, *floatIt); } if (auto complexTy = eltTy.dyn_cast()) { auto complexEltTy = complexTy.getElementType(); ComplexIntElementIterator complexIntIt(owner, index); if (complexEltTy.isa()) { auto value = *complexIntIt; auto real = IntegerAttr::get(complexEltTy, value.real()); auto imag = IntegerAttr::get(complexEltTy, value.imag()); return ArrayAttr::get(complexTy.getContext(), ArrayRef{real, imag}); } ComplexFloatElementIterator complexFloatIt( complexEltTy.cast().getFloatSemantics(), complexIntIt); auto value = *complexFloatIt; auto real = FloatAttr::get(complexEltTy, value.real()); auto imag = FloatAttr::get(complexEltTy, value.imag()); return ArrayAttr::get(complexTy.getContext(), ArrayRef{real, imag}); } if (owner.isa()) { ArrayRef vals = owner.getRawStringData(); return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy); } llvm_unreachable("unexpected element type"); } //===----------------------------------------------------------------------===// // BoolElementIterator DenseElementsAttr::BoolElementIterator::BoolElementIterator( DenseElementsAttr attr, size_t dataIndex) : DenseElementIndexedIteratorImpl( attr.getRawData().data(), attr.isSplat(), dataIndex) {} bool DenseElementsAttr::BoolElementIterator::operator*() const { return getBit(getData(), getDataIndex()); } //===----------------------------------------------------------------------===// // IntElementIterator DenseElementsAttr::IntElementIterator::IntElementIterator( DenseElementsAttr attr, size_t dataIndex) : DenseElementIndexedIteratorImpl( attr.getRawData().data(), attr.isSplat(), dataIndex), bitWidth(getDenseElementBitWidth(attr.getElementType())) {} APInt DenseElementsAttr::IntElementIterator::operator*() const { return readBits(getData(), getDataIndex() * getDenseElementStorageWidth(bitWidth), bitWidth); } //===----------------------------------------------------------------------===// // ComplexIntElementIterator DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator( DenseElementsAttr attr, size_t dataIndex) : DenseElementIndexedIteratorImpl, std::complex, std::complex>( attr.getRawData().data(), attr.isSplat(), dataIndex) { auto complexType = attr.getElementType().cast(); bitWidth = getDenseElementBitWidth(complexType.getElementType()); } std::complex DenseElementsAttr::ComplexIntElementIterator::operator*() const { size_t storageWidth = getDenseElementStorageWidth(bitWidth); size_t offset = getDataIndex() * storageWidth * 2; return {readBits(getData(), offset, bitWidth), readBits(getData(), offset + storageWidth, bitWidth)}; } //===----------------------------------------------------------------------===// // DenseElementsAttr //===----------------------------------------------------------------------===// /// Method for support type inquiry through isa, cast and dyn_cast. bool DenseElementsAttr::classof(Attribute attr) { return attr.isa(); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(hasSameElementsOrSplat(type, values)); // If the element type is not based on int/float/index, assume it is a string // type. auto eltType = type.getElementType(); if (!type.getElementType().isIntOrIndexOrFloat()) { SmallVector stringValues; stringValues.reserve(values.size()); for (Attribute attr : values) { assert(attr.isa() && "expected string value for non integer/index/float element"); stringValues.push_back(attr.cast().getValue()); } return get(type, stringValues); } // Otherwise, get the raw storage width to use for the allocation. size_t bitWidth = getDenseElementBitWidth(eltType); size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); // Compress the attribute values into a character buffer. SmallVector data( llvm::divideCeil(storageBitWidth * values.size(), CHAR_BIT)); APInt intVal; for (unsigned i = 0, e = values.size(); i < e; ++i) { assert(eltType == values[i].getType() && "expected attribute value to have element type"); if (eltType.isa()) intVal = values[i].cast().getValue().bitcastToAPInt(); else if (eltType.isa()) intVal = values[i].cast().getValue(); else llvm_unreachable("unexpected element type"); assert(intVal.getBitWidth() == bitWidth && "expected value to have same bitwidth as element type"); writeBits(data.data(), i * storageBitWidth, intVal); } return DenseIntOrFPElementsAttr::getRaw(type, data, /*isSplat=*/(values.size() == 1)); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(hasSameElementsOrSplat(type, values)); assert(type.getElementType().isInteger(1)); std::vector buff(llvm::divideCeil(values.size(), CHAR_BIT)); for (int i = 0, e = values.size(); i != e; ++i) setBit(buff.data(), i, values[i]); return DenseIntOrFPElementsAttr::getRaw(type, buff, /*isSplat=*/(values.size() == 1)); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(!type.getElementType().isIntOrFloat()); return DenseStringElementsAttr::get(type, values); } /// Constructs a dense integer elements attribute from an array of APInt /// values. Each APInt value is expected to have the same bitwidth as the /// element type of 'type'. DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(type.getElementType().isIntOrIndex()); assert(hasSameElementsOrSplat(type, values)); size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values, /*isSplat=*/(values.size() == 1)); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef> values) { ComplexType complex = type.getElementType().cast(); assert(complex.getElementType().isa()); assert(hasSameElementsOrSplat(type, values)); size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; ArrayRef intVals(reinterpret_cast(values.data()), values.size() * 2); return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals, /*isSplat=*/(values.size() == 1)); } // Constructs a dense float elements attribute from an array of APFloat // values. Each APFloat value is expected to have the same bitwidth as the // element type of 'type'. DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef values) { assert(type.getElementType().isa()); assert(hasSameElementsOrSplat(type, values)); size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values, /*isSplat=*/(values.size() == 1)); } DenseElementsAttr DenseElementsAttr::get(ShapedType type, ArrayRef> values) { ComplexType complex = type.getElementType().cast(); assert(complex.getElementType().isa()); assert(hasSameElementsOrSplat(type, values)); ArrayRef apVals(reinterpret_cast(values.data()), values.size() * 2); size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals, /*isSplat=*/(values.size() == 1)); } /// Construct a dense elements attribute from a raw buffer representing the /// data for this attribute. Users should generally not use this methods as /// the expected buffer format may not be a form the user expects. DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type, ArrayRef rawBuffer, bool isSplatBuffer) { return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer); } /// Returns true if the given buffer is a valid raw buffer for the given type. bool DenseElementsAttr::isValidRawBuffer(ShapedType type, ArrayRef rawBuffer, bool &detectedSplat) { size_t storageWidth = getDenseElementStorageWidth(type.getElementType()); size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT; // Storage width of 1 is special as it is packed by the bit. if (storageWidth == 1) { // Check for a splat, or a buffer equal to the number of elements which // consists of either all 0's or all 1's. detectedSplat = false; if (rawBuffer.size() == 1) { auto rawByte = static_cast(rawBuffer[0]); if (rawByte == 0 || rawByte == 0xff) { detectedSplat = true; return true; } } return rawBufferWidth == llvm::alignTo<8>(type.getNumElements()); } // All other types are 8-bit aligned. if ((detectedSplat = rawBufferWidth == storageWidth)) return true; return rawBufferWidth == (storageWidth * type.getNumElements()); } /// Check the information for a C++ data type, check if this type is valid for /// the current attribute. This method is used to verify specific type /// invariants that the templatized 'getValues' method cannot. static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt, bool isSigned) { // Make sure that the data element size is the same as the type element width. if (getDenseElementBitWidth(type) != static_cast(dataEltSize * CHAR_BIT)) return false; // Check that the element type is either float or integer or index. if (!isInt) return type.isa(); if (type.isIndex()) return true; auto intType = type.dyn_cast(); if (!intType) return false; // Make sure signedness semantics is consistent. if (intType.isSignless()) return true; return intType.isSigned() ? isSigned : !isSigned; } /// Defaults down the subclass implementation. DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt, isSigned); } DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize, isInt, isSigned); } bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt, bool isSigned) const { return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned); } bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt, bool isSigned) const { return ::isValidIntOrFloat( getElementType().cast().getElementType(), dataEltSize / 2, isInt, isSigned); } /// Returns true if this attribute corresponds to a splat, i.e. if all element /// values are the same. bool DenseElementsAttr::isSplat() const { return static_cast(impl)->isSplat; } /// Return if the given complex type has an integer element type. LLVM_ATTRIBUTE_UNUSED static bool isComplexOfIntType(Type type) { return type.cast().getElementType().isa(); } auto DenseElementsAttr::getComplexIntValues() const -> iterator_range_impl { assert(isComplexOfIntType(getElementType()) && "expected complex integral type"); return {getType(), ComplexIntElementIterator(*this, 0), ComplexIntElementIterator(*this, getNumElements())}; } auto DenseElementsAttr::complex_value_begin() const -> ComplexIntElementIterator { assert(isComplexOfIntType(getElementType()) && "expected complex integral type"); return ComplexIntElementIterator(*this, 0); } auto DenseElementsAttr::complex_value_end() const -> ComplexIntElementIterator { assert(isComplexOfIntType(getElementType()) && "expected complex integral type"); return ComplexIntElementIterator(*this, getNumElements()); } /// Return the held element values as a range of APFloat. The element type of /// this attribute must be of float type. auto DenseElementsAttr::getFloatValues() const -> iterator_range_impl { auto elementType = getElementType().cast(); const auto &elementSemantics = elementType.getFloatSemantics(); return {getType(), FloatElementIterator(elementSemantics, raw_int_begin()), FloatElementIterator(elementSemantics, raw_int_end())}; } auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator { auto elementType = getElementType().cast(); return FloatElementIterator(elementType.getFloatSemantics(), raw_int_begin()); } auto DenseElementsAttr::float_value_end() const -> FloatElementIterator { auto elementType = getElementType().cast(); return FloatElementIterator(elementType.getFloatSemantics(), raw_int_end()); } auto DenseElementsAttr::getComplexFloatValues() const -> iterator_range_impl { Type eltTy = getElementType().cast().getElementType(); assert(eltTy.isa() && "expected complex float type"); const auto &semantics = eltTy.cast().getFloatSemantics(); return {getType(), {semantics, {*this, 0}}, {semantics, {*this, static_cast(getNumElements())}}}; } auto DenseElementsAttr::complex_float_value_begin() const -> ComplexFloatElementIterator { Type eltTy = getElementType().cast().getElementType(); assert(eltTy.isa() && "expected complex float type"); return {eltTy.cast().getFloatSemantics(), {*this, 0}}; } auto DenseElementsAttr::complex_float_value_end() const -> ComplexFloatElementIterator { Type eltTy = getElementType().cast().getElementType(); assert(eltTy.isa() && "expected complex float type"); return {eltTy.cast().getFloatSemantics(), {*this, static_cast(getNumElements())}}; } /// Return the raw storage data held by this attribute. ArrayRef DenseElementsAttr::getRawData() const { return static_cast(impl)->data; } ArrayRef DenseElementsAttr::getRawStringData() const { return static_cast(impl)->data; } /// Return a new DenseElementsAttr that has the same data as the current /// attribute, but has been reshaped to 'newType'. The new type must have the /// same total number of elements as well as element type. DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) { ShapedType curType = getType(); if (curType == newType) return *this; assert(newType.getElementType() == curType.getElementType() && "expected the same element type"); assert(newType.getNumElements() == curType.getNumElements() && "expected the same number of elements"); return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat()); } DenseElementsAttr DenseElementsAttr::resizeSplat(ShapedType newType) { assert(isSplat() && "expected a splat type"); ShapedType curType = getType(); if (curType == newType) return *this; assert(newType.getElementType() == curType.getElementType() && "expected the same element type"); return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), true); } /// Return a new DenseElementsAttr that has the same data as the current /// attribute, but has bitcast elements such that it is now 'newType'. The new /// type must have the same shape and element types of the same bitwidth as the /// current type. DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) { ShapedType curType = getType(); Type curElType = curType.getElementType(); if (curElType == newElType) return *this; assert(getDenseElementBitWidth(newElType) == getDenseElementBitWidth(curElType) && "expected element types with the same bitwidth"); return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType), getRawData(), isSplat()); } DenseElementsAttr DenseElementsAttr::mapValues(Type newElementType, function_ref mapping) const { return cast().mapValues(newElementType, mapping); } DenseElementsAttr DenseElementsAttr::mapValues( Type newElementType, function_ref mapping) const { return cast().mapValues(newElementType, mapping); } ShapedType DenseElementsAttr::getType() const { return Attribute::getType().cast(); } Type DenseElementsAttr::getElementType() const { return getType().getElementType(); } int64_t DenseElementsAttr::getNumElements() const { return getType().getNumElements(); } //===----------------------------------------------------------------------===// // DenseIntOrFPElementsAttr //===----------------------------------------------------------------------===// /// Utility method to write a range of APInt values to a buffer. template static void writeAPIntsToBuffer(size_t storageWidth, std::vector &data, APRangeT &&values) { data.resize(llvm::divideCeil(storageWidth * llvm::size(values), CHAR_BIT)); size_t offset = 0; for (auto it = values.begin(), e = values.end(); it != e; ++it, offset += storageWidth) { assert((*it).getBitWidth() <= storageWidth); writeBits(data.data(), offset, *it); } } /// Constructs a dense elements attribute from an array of raw APFloat values. /// Each APFloat value is expected to have the same bitwidth as the element /// type of 'type'. 'type' must be a vector or tensor with static shape. DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, size_t storageWidth, ArrayRef values, bool isSplat) { std::vector data; auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); }; writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat)); return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat); } /// Constructs a dense elements attribute from an array of raw APInt values. /// Each APInt value is expected to have the same bitwidth as the element type /// of 'type'. DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, size_t storageWidth, ArrayRef values, bool isSplat) { std::vector data; writeAPIntsToBuffer(storageWidth, data, values); return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat); } DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, ArrayRef data, bool isSplat) { assert((type.isa()) && "type must be ranked tensor or vector"); assert(type.hasStaticShape() && "type must have static shape"); return Base::get(type.getContext(), type, data, isSplat); } /// Overload of the raw 'get' method that asserts that the given type is of /// complex type. This method is used to verify type invariants that the /// templatized 'get' method cannot. DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { assert(::isValidIntOrFloat( type.getElementType().cast().getElementType(), dataEltSize / 2, isInt, isSigned)); int64_t numElements = data.size() / dataEltSize; assert(numElements == 1 || numElements == type.getNumElements()); return getRaw(type, data, /*isSplat=*/numElements == 1); } /// Overload of the 'getRaw' method that asserts that the given type is of /// integer type. This method is used to verify type invariants that the /// templatized 'get' method cannot. DenseElementsAttr DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef data, int64_t dataEltSize, bool isInt, bool isSigned) { assert( ::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned)); int64_t numElements = data.size() / dataEltSize; assert(numElements == 1 || numElements == type.getNumElements()); return getRaw(type, data, /*isSplat=*/numElements == 1); } void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( const char *inRawData, char *outRawData, size_t elementBitWidth, size_t numElements) { using llvm::support::ulittle16_t; using llvm::support::ulittle32_t; using llvm::support::ulittle64_t; assert(llvm::support::endian::system_endianness() == // NOLINT llvm::support::endianness::big); // NOLINT // NOLINT to avoid warning message about replacing by static_assert() // Following std::copy_n always converts endianness on BE machine. switch (elementBitWidth) { case 16: { const ulittle16_t *inRawDataPos = reinterpret_cast(inRawData); uint16_t *outDataPos = reinterpret_cast(outRawData); std::copy_n(inRawDataPos, numElements, outDataPos); break; } case 32: { const ulittle32_t *inRawDataPos = reinterpret_cast(inRawData); uint32_t *outDataPos = reinterpret_cast(outRawData); std::copy_n(inRawDataPos, numElements, outDataPos); break; } case 64: { const ulittle64_t *inRawDataPos = reinterpret_cast(inRawData); uint64_t *outDataPos = reinterpret_cast(outRawData); std::copy_n(inRawDataPos, numElements, outDataPos); break; } default: { size_t nBytes = elementBitWidth / CHAR_BIT; for (size_t i = 0; i < nBytes; i++) std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i); break; } } } void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine( ArrayRef inRawData, MutableArrayRef outRawData, ShapedType type) { size_t numElements = type.getNumElements(); Type elementType = type.getElementType(); if (ComplexType complexTy = elementType.dyn_cast()) { elementType = complexTy.getElementType(); numElements = numElements * 2; } size_t elementBitWidth = getDenseElementStorageWidth(elementType); assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT && inRawData.size() <= outRawData.size()); convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(), elementBitWidth, numElements); } //===----------------------------------------------------------------------===// // DenseFPElementsAttr //===----------------------------------------------------------------------===// template static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType, Type newElementType, llvm::SmallVectorImpl &data) { size_t bitWidth = getDenseElementBitWidth(newElementType); size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); ShapedType newArrayType; if (inType.isa()) newArrayType = RankedTensorType::get(inType.getShape(), newElementType); else if (inType.isa()) newArrayType = RankedTensorType::get(inType.getShape(), newElementType); else if (auto vType = inType.dyn_cast()) newArrayType = VectorType::get(vType.getShape(), newElementType, vType.getNumScalableDims()); else assert(newArrayType && "Unhandled tensor type"); size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements(); data.resize(llvm::divideCeil(storageBitWidth * numRawElements, CHAR_BIT)); // Functor used to process a single element value of the attribute. auto processElt = [&](decltype(*attr.begin()) value, size_t index) { auto newInt = mapping(value); assert(newInt.getBitWidth() == bitWidth); writeBits(data.data(), index * storageBitWidth, newInt); }; // Check for the splat case. if (attr.isSplat()) { processElt(*attr.begin(), /*index=*/0); return newArrayType; } // Otherwise, process all of the element values. uint64_t elementIdx = 0; for (auto value : attr) processElt(value, elementIdx++); return newArrayType; } DenseElementsAttr DenseFPElementsAttr::mapValues( Type newElementType, function_ref mapping) const { llvm::SmallVector elementData; auto newArrayType = mappingHelper(mapping, *this, getType(), newElementType, elementData); return getRaw(newArrayType, elementData, isSplat()); } /// Method for supporting type inquiry through isa, cast and dyn_cast. bool DenseFPElementsAttr::classof(Attribute attr) { return attr.isa() && attr.getType().cast().getElementType().isa(); } //===----------------------------------------------------------------------===// // DenseIntElementsAttr //===----------------------------------------------------------------------===// DenseElementsAttr DenseIntElementsAttr::mapValues( Type newElementType, function_ref mapping) const { llvm::SmallVector elementData; auto newArrayType = mappingHelper(mapping, *this, getType(), newElementType, elementData); return getRaw(newArrayType, elementData, isSplat()); } /// Method for supporting type inquiry through isa, cast and dyn_cast. bool DenseIntElementsAttr::classof(Attribute attr) { return attr.isa() && attr.getType().cast().getElementType().isIntOrIndex(); } //===----------------------------------------------------------------------===// // OpaqueElementsAttr //===----------------------------------------------------------------------===// bool OpaqueElementsAttr::decode(ElementsAttr &result) { Dialect *dialect = getContext()->getLoadedDialect(getDialect()); if (!dialect) return true; auto *interface = llvm::dyn_cast(dialect); if (!interface) return true; return failed(interface->decode(*this, result)); } LogicalResult OpaqueElementsAttr::verify(function_ref emitError, StringAttr dialect, StringRef value, ShapedType type) { if (!Dialect::isValidNamespace(dialect.strref())) return emitError() << "invalid dialect namespace '" << dialect << "'"; return success(); } //===----------------------------------------------------------------------===// // SparseElementsAttr //===----------------------------------------------------------------------===// /// Get a zero APFloat for the given sparse attribute. APFloat SparseElementsAttr::getZeroAPFloat() const { auto eltType = getElementType().cast(); return APFloat(eltType.getFloatSemantics()); } /// Get a zero APInt for the given sparse attribute. APInt SparseElementsAttr::getZeroAPInt() const { auto eltType = getElementType().cast(); return APInt::getZero(eltType.getWidth()); } /// Get a zero attribute for the given attribute type. Attribute SparseElementsAttr::getZeroAttr() const { auto eltType = getElementType(); // Handle floating point elements. if (eltType.isa()) return FloatAttr::get(eltType, 0); // Handle string type. if (getValues().isa()) return StringAttr::get("", eltType); // Otherwise, this is an integer. return IntegerAttr::get(eltType, 0); } /// Flatten, and return, all of the sparse indices in this attribute in /// row-major order. std::vector SparseElementsAttr::getFlattenedSparseIndices() const { std::vector flatSparseIndices; // The sparse indices are 64-bit integers, so we can reinterpret the raw data // as a 1-D index array. auto sparseIndices = getIndices(); auto sparseIndexValues = sparseIndices.getValues(); if (sparseIndices.isSplat()) { SmallVector indices(getType().getRank(), *sparseIndexValues.begin()); flatSparseIndices.push_back(getFlattenedIndex(indices)); return flatSparseIndices; } // Otherwise, reinterpret each index as an ArrayRef when flattening. auto numSparseIndices = sparseIndices.getType().getDimSize(0); size_t rank = getType().getRank(); for (size_t i = 0, e = numSparseIndices; i != e; ++i) flatSparseIndices.push_back(getFlattenedIndex( {&*std::next(sparseIndexValues.begin(), i * rank), rank})); return flatSparseIndices; } LogicalResult SparseElementsAttr::verify(function_ref emitError, ShapedType type, DenseIntElementsAttr sparseIndices, DenseElementsAttr values) { ShapedType valuesType = values.getType(); if (valuesType.getRank() != 1) return emitError() << "expected 1-d tensor for sparse element values"; // Verify the indices and values shape. ShapedType indicesType = sparseIndices.getType(); auto emitShapeError = [&]() { return emitError() << "expected shape ([" << type.getShape() << "]); inferred shape of indices literal ([" << indicesType.getShape() << "]); inferred shape of values literal ([" << valuesType.getShape() << "])"; }; // Verify indices shape. size_t rank = type.getRank(), indicesRank = indicesType.getRank(); if (indicesRank == 2) { if (indicesType.getDimSize(1) != static_cast(rank)) return emitShapeError(); } else if (indicesRank != 1 || rank != 1) { return emitShapeError(); } // Verify the values shape. int64_t numSparseIndices = indicesType.getDimSize(0); if (numSparseIndices != valuesType.getDimSize(0)) return emitShapeError(); // Verify that the sparse indices are within the value shape. auto emitIndexError = [&](unsigned indexNum, ArrayRef index) { return emitError() << "sparse index #" << indexNum << " is not contained within the value shape, with index=[" << index << "], and type=" << type; }; // Handle the case where the index values are a splat. auto sparseIndexValues = sparseIndices.getValues(); if (sparseIndices.isSplat()) { SmallVector indices(rank, *sparseIndexValues.begin()); if (!ElementsAttr::isValidIndex(type, indices)) return emitIndexError(0, indices); return success(); } // Otherwise, reinterpret each index as an ArrayRef. for (size_t i = 0, e = numSparseIndices; i != e; ++i) { ArrayRef index(&*std::next(sparseIndexValues.begin(), i * rank), rank); if (!ElementsAttr::isValidIndex(type, index)) return emitIndexError(i, index); } return success(); } //===----------------------------------------------------------------------===// // TypeAttr //===----------------------------------------------------------------------===// void TypeAttr::walkImmediateSubElements( function_ref walkAttrsFn, function_ref walkTypesFn) const { walkTypesFn(getValue()); }