//===--- CodeGenFunction.h - Per-Function state for LLVM CodeGen ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the internal per-function state used for llvm translation. // //===----------------------------------------------------------------------===// #ifndef CODEGEN_CODEGENFUNCTION_H #define CODEGEN_CODEGENFUNCTION_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/LLVMBuilder.h" #include namespace llvm { class Module; } namespace clang { class ASTContext; class Decl; class FunctionDecl; class TargetInfo; class QualType; class FunctionTypeProto; class Stmt; class CompoundStmt; class LabelStmt; class GotoStmt; class IfStmt; class WhileStmt; class DoStmt; class ForStmt; class ReturnStmt; class DeclStmt; class CaseStmt; class DefaultStmt; class SwitchStmt; class Expr; class DeclRefExpr; class StringLiteral; class IntegerLiteral; class FloatingLiteral; class CharacterLiteral; class TypesCompatibleExpr; class ImplicitCastExpr; class CastExpr; class CallExpr; class UnaryOperator; class BinaryOperator; class CompoundAssignOperator; class ArraySubscriptExpr; class OCUVectorElementExpr; class ConditionalOperator; class ChooseExpr; class PreDefinedExpr; class ObjCStringLiteral; class BlockVarDecl; class EnumConstantDecl; class ParmVarDecl; namespace CodeGen { class CodeGenModule; /// RValue - This trivial value class is used to represent the result of an /// expression that is evaluated. It can be one of three things: either a /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the /// address of an aggregate value in memory. class RValue { llvm::Value *V1, *V2; // TODO: Encode this into the low bit of pointer for more efficient // return-by-value. enum { Scalar, Complex, Aggregate } Flavor; // FIXME: Aggregate rvalues need to retain information about whether they are // volatile or not. public: bool isScalar() const { return Flavor == Scalar; } bool isComplex() const { return Flavor == Complex; } bool isAggregate() const { return Flavor == Aggregate; } /// getScalar() - Return the Value* of this scalar value. llvm::Value *getScalarVal() const { assert(isScalar() && "Not a scalar!"); return V1; } /// getComplexVal - Return the real/imag components of this complex value. /// std::pair getComplexVal() const { return std::pair(V1, V2); } /// getAggregateAddr() - Return the Value* of the address of the aggregate. llvm::Value *getAggregateAddr() const { assert(isAggregate() && "Not an aggregate!"); return V1; } static RValue get(llvm::Value *V) { RValue ER; ER.V1 = V; ER.Flavor = Scalar; return ER; } static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { RValue ER; ER.V1 = V1; ER.V2 = V2; ER.Flavor = Complex; return ER; } static RValue getComplex(const std::pair &C) { RValue ER; ER.V1 = C.first; ER.V2 = C.second; ER.Flavor = Complex; return ER; } static RValue getAggregate(llvm::Value *V) { RValue ER; ER.V1 = V; ER.Flavor = Aggregate; return ER; } }; /// LValue - This represents an lvalue references. Because C/C++ allow /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a /// bitrange. class LValue { // FIXME: Volatility. Restrict? // alignment? enum { Simple, // This is a normal l-value, use getAddress(). VectorElt, // This is a vector element l-value (V[i]), use getVector* BitField, // This is a bitfield l-value, use getBitfield*. OCUVectorElt // This is an ocu vector subset, use getOCUVectorComp } LVType; llvm::Value *V; union { llvm::Value *VectorIdx; // Index into a vector subscript: V[i] unsigned VectorElts; // Encoded OCUVector element subset: V.xyx }; public: bool isSimple() const { return LVType == Simple; } bool isVectorElt() const { return LVType == VectorElt; } bool isBitfield() const { return LVType == BitField; } bool isOCUVectorElt() const { return LVType == OCUVectorElt; } // simple lvalue llvm::Value *getAddress() const { assert(isSimple()); return V; } // vector elt lvalue llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } // ocu vector elements. llvm::Value *getOCUVectorAddr() const { assert(isOCUVectorElt()); return V; } unsigned getOCUVectorElts() const { assert(isOCUVectorElt()); return VectorElts; } static LValue MakeAddr(llvm::Value *V) { LValue R; R.LVType = Simple; R.V = V; return R; } static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx) { LValue R; R.LVType = VectorElt; R.V = Vec; R.VectorIdx = Idx; return R; } static LValue MakeOCUVectorElt(llvm::Value *Vec, unsigned Elements) { LValue R; R.LVType = OCUVectorElt; R.V = Vec; R.VectorElts = Elements; return R; } }; /// CodeGenFunction - This class organizes the per-function state that is used /// while generating LLVM code. class CodeGenFunction { public: CodeGenModule &CGM; // Per-module state. TargetInfo &Target; typedef std::pair ComplexPairTy; llvm::LLVMBuilder Builder; const FunctionDecl *CurFuncDecl; llvm::Function *CurFn; /// AllocaInsertPoint - This is an instruction in the entry block before which /// we prefer to insert allocas. llvm::Instruction *AllocaInsertPt; const llvm::Type *LLVMIntTy; unsigned LLVMPointerWidth; private: /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C /// decls. llvm::DenseMap LocalDeclMap; /// LabelMap - This keeps track of the LLVM basic block for each C label. llvm::DenseMap LabelMap; // BreakContinueStack - This keeps track of where break and continue // statements should jump to. struct BreakContinue { BreakContinue(llvm::BasicBlock *bb, llvm::BasicBlock *cb) : BreakBlock(bb), ContinueBlock(cb) {} llvm::BasicBlock *BreakBlock; llvm::BasicBlock *ContinueBlock; }; llvm::SmallVector BreakContinueStack; /// SwitchInsn - This is nearest current switch instruction. It is null if /// if current context is not in a switch. llvm::SwitchInst *SwitchInsn; /// CaseRangeBlock - This block holds if condition check for last case /// statement range in current switch instruction. llvm::BasicBlock *CaseRangeBlock; public: CodeGenFunction(CodeGenModule &cgm); ASTContext &getContext() const; void GenerateCode(const FunctionDecl *FD); const llvm::Type *ConvertType(QualType T); /// hasAggregateLLVMType - Return true if the specified AST type will map into /// an aggregate LLVM type or is void. static bool hasAggregateLLVMType(QualType T); /// getBasicBlockForLabel - Return the LLVM basicblock that the specified /// label maps to. llvm::BasicBlock *getBasicBlockForLabel(const LabelStmt *S); void EmitBlock(llvm::BasicBlock *BB); //===--------------------------------------------------------------------===// // Helpers //===--------------------------------------------------------------------===// /// CreateTempAlloca - This creates a alloca and inserts it into the entry /// block. llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty, const char *Name = "tmp"); /// EvaluateExprAsBool - Perform the usual unary conversions on the specified /// expression and compare the result against zero, returning an Int1Ty value. llvm::Value *EvaluateExprAsBool(const Expr *E); /// EmitAnyExpr - Emit code to compute the specified expression which can have /// any type. The result is returned as an RValue struct. If this is an /// aggregate expression, the aggloc/agglocvolatile arguments indicate where /// the result should be returned. RValue EmitAnyExpr(const Expr *E, llvm::Value *AggLoc = 0, bool isAggLocVolatile = false); /// isDummyBlock - Return true if BB is an empty basic block /// with no predecessors. static bool isDummyBlock(const llvm::BasicBlock *BB); /// StartBlock - Start new block named N. If insert block is a dummy block /// then reuse it. void StartBlock(const char *N); //===--------------------------------------------------------------------===// // Declaration Emission //===--------------------------------------------------------------------===// void EmitDecl(const Decl &D); void EmitEnumConstantDecl(const EnumConstantDecl &D); void EmitBlockVarDecl(const BlockVarDecl &D); void EmitLocalBlockVarDecl(const BlockVarDecl &D); void EmitParmDecl(const ParmVarDecl &D, llvm::Value *Arg); //===--------------------------------------------------------------------===// // Statement Emission //===--------------------------------------------------------------------===// void EmitStmt(const Stmt *S); RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, llvm::Value *AggLoc = 0, bool isAggVol = false); void EmitLabelStmt(const LabelStmt &S); void EmitGotoStmt(const GotoStmt &S); void EmitIfStmt(const IfStmt &S); void EmitWhileStmt(const WhileStmt &S); void EmitDoStmt(const DoStmt &S); void EmitForStmt(const ForStmt &S); void EmitReturnStmt(const ReturnStmt &S); void EmitDeclStmt(const DeclStmt &S); void EmitBreakStmt(); void EmitContinueStmt(); void EmitSwitchStmt(const SwitchStmt &S); void EmitDefaultStmt(const DefaultStmt &S); void EmitCaseStmt(const CaseStmt &S); void EmitCaseStmtRange(const CaseStmt &S); //===--------------------------------------------------------------------===// // LValue Expression Emission //===--------------------------------------------------------------------===// /// EmitLValue - Emit code to compute a designator that specifies the location /// of the expression. /// /// This can return one of two things: a simple address or a bitfield /// reference. In either case, the LLVM Value* in the LValue structure is /// guaranteed to be an LLVM pointer type. /// /// If this returns a bitfield reference, nothing about the pointee type of /// the LLVM value is known: For example, it may not be a pointer to an /// integer. /// /// If this returns a normal address, and if the lvalue's C type is fixed /// size, this method guarantees that the returned pointer type will point to /// an LLVM type of the same size of the lvalue's type. If the lvalue has a /// variable length type, this is not possible. /// LValue EmitLValue(const Expr *E); /// EmitLoadOfLValue - Given an expression that represents a value lvalue, /// this method emits the address of the lvalue, then loads the result as an /// rvalue, returning the rvalue. RValue EmitLoadOfLValue(LValue V, QualType LVType); RValue EmitLoadOfOCUElementLValue(LValue V, QualType LVType); /// EmitStoreThroughLValue - Store the specified rvalue into the specified /// lvalue, where both are guaranteed to the have the same type, and that type /// is 'Ty'. void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty); void EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst, QualType Ty); LValue EmitDeclRefLValue(const DeclRefExpr *E); LValue EmitStringLiteralLValue(const StringLiteral *E); LValue EmitPreDefinedLValue(const PreDefinedExpr *E); LValue EmitUnaryOpLValue(const UnaryOperator *E); LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); LValue EmitOCUVectorElementExpr(const OCUVectorElementExpr *E); //===--------------------------------------------------------------------===// // Scalar Expression Emission //===--------------------------------------------------------------------===// RValue EmitCallExpr(const CallExpr *E); RValue EmitCallExpr(llvm::Value *Callee, const CallExpr *E); RValue EmitBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); //===--------------------------------------------------------------------===// // Expression Emission //===--------------------------------------------------------------------===// // Expressions are broken into three classes: scalar, complex, aggregate. /// EmitScalarExpr - Emit the computation of the specified expression of /// LLVM scalar type, returning the result. llvm::Value *EmitScalarExpr(const Expr *E); /// EmitScalarConversion - Emit a conversion from the specified type to the /// specified destination type, both of which are LLVM scalar types. llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy); /// EmitComplexToScalarConversion - Emit a conversion from the specified /// complex type to the specified destination type, where the destination /// type is an LLVM scalar type. llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy); /// EmitAggExpr - Emit the computation of the specified expression of /// aggregate type. The result is computed into DestPtr. Note that if /// DestPtr is null, the value of the aggregate expression is not needed. void EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest); /// EmitComplexExpr - Emit the computation of the specified expression of /// complex type, returning the result. ComplexPairTy EmitComplexExpr(const Expr *E); /// EmitComplexExprIntoAddr - Emit the computation of the specified expression /// of complex type, storing into the specified Value*. void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, bool DestIsVolatile); /// LoadComplexFromAddr - Load a complex number from the specified address. ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); }; } // end namespace CodeGen } // end namespace clang #endif