// RUN: %clang_cc1 -triple i686-linux -fsyntax-only -verify -std=c++11 -pedantic %s -Wno-comment namespace StaticAssertFoldTest { int x; static_assert(++x, "test"); // expected-error {{not an integral constant expression}} static_assert(false, "test"); // expected-error {{test}} } // FIXME: support const T& parameters here. //template constexpr T id(const T &t) { return t; } template constexpr T id(T t) { return t; } // FIXME: support templates here. //template constexpr T min(const T &a, const T &b) { // return a < b ? a : b; //} //template constexpr T max(const T &a, const T &b) { // return a < b ? b : a; //} constexpr int min(const int &a, const int &b) { return a < b ? a : b; } constexpr int max(const int &a, const int &b) { return a < b ? b : a; } struct MemberZero { constexpr int zero() { return 0; } }; namespace DerivedToVBaseCast { struct U { int n; }; struct V : U { int n; }; struct A : virtual V { int n; }; struct Aa { int n; }; struct B : virtual A, Aa {}; struct C : virtual A, Aa {}; struct D : B, C {}; D d; constexpr B *p = &d; constexpr C *q = &d; static_assert((void*)p != (void*)q, ""); static_assert((A*)p == (A*)q, ""); static_assert((Aa*)p != (Aa*)q, ""); constexpr B &pp = d; constexpr C &qq = d; static_assert((void*)&pp != (void*)&qq, ""); static_assert(&(A&)pp == &(A&)qq, ""); static_assert(&(Aa&)pp != &(Aa&)qq, ""); constexpr V *v = p; constexpr V *w = q; constexpr V *x = (A*)p; static_assert(v == w, ""); static_assert(v == x, ""); static_assert((U*)&d == p, ""); static_assert((U*)&d == q, ""); static_assert((U*)&d == v, ""); static_assert((U*)&d == w, ""); static_assert((U*)&d == x, ""); struct X {}; struct Y1 : virtual X {}; struct Y2 : X {}; struct Z : Y1, Y2 {}; Z z; static_assert((X*)(Y1*)&z != (X*)(Y2*)&z, ""); } namespace ConstCast { constexpr int n1 = 0; constexpr int n2 = const_cast(n1); constexpr int *n3 = const_cast(&n1); constexpr int n4 = *const_cast(&n1); constexpr const int * const *n5 = const_cast(&n3); constexpr int **n6 = const_cast(&n3); constexpr int n7 = **n5; constexpr int n8 = **n6; } namespace TemplateArgumentConversion { template struct IntParam {}; using IntParam0 = IntParam<0>; // FIXME: This should be accepted once we implement the new ICE rules. using IntParam0 = IntParam; // expected-error {{not an integral constant expression}} using IntParam0 = IntParam; // expected-error {{did you mean to call it with no arguments?}} expected-error {{not an integral constant expression}} } namespace CaseStatements { void f(int n) { switch (n) { // FIXME: Produce the 'add ()' fixit for this. case MemberZero().zero: // desired-error {{did you mean to call it with no arguments?}} expected-error {{not an integer constant expression}} // FIXME: This should be accepted once we implement the new ICE rules. case id(1): // expected-error {{not an integer constant expression}} return; } } } extern int &Recurse1; int &Recurse2 = Recurse1, &Recurse1 = Recurse2; constexpr int &Recurse3 = Recurse2; // expected-error {{must be initialized by a constant expression}} namespace MemberEnum { struct WithMemberEnum { enum E { A = 42 }; } wme; static_assert(wme.A == 42, ""); } namespace DefaultArguments { const int z = int(); constexpr int Sum(int a = 0, const int &b = 0, const int *c = &z, char d = 0) { return a + b + *c + d; } const int four = 4; constexpr int eight = 8; constexpr const int twentyseven = 27; static_assert(Sum() == 0, ""); static_assert(Sum(1) == 1, ""); static_assert(Sum(1, four) == 5, ""); static_assert(Sum(1, eight, &twentyseven) == 36, ""); static_assert(Sum(1, 2, &four, eight) == 15, ""); } namespace Ellipsis { // Note, values passed through an ellipsis can't actually be used. constexpr int F(int a, ...) { return a; } static_assert(F(0) == 0, ""); static_assert(F(1, 0) == 1, ""); static_assert(F(2, "test") == 2, ""); static_assert(F(3, &F) == 3, ""); int k = 0; static_assert(F(4, k) == 3, ""); // expected-error {{constant expression}} } namespace Recursion { constexpr int fib(int n) { return n > 1 ? fib(n-1) + fib(n-2) : n; } static_assert(fib(11) == 89, ""); constexpr int gcd_inner(int a, int b) { return b == 0 ? a : gcd_inner(b, a % b); } constexpr int gcd(int a, int b) { return gcd_inner(max(a, b), min(a, b)); } static_assert(gcd(1749237, 5628959) == 7, ""); } namespace FunctionCast { // When folding, we allow functions to be cast to different types. Such // cast functions cannot be called, even if they're constexpr. constexpr int f() { return 1; } typedef double (*DoubleFn)(); typedef int (*IntFn)(); int a[(int)DoubleFn(f)()]; // expected-error {{variable length array}} expected-warning{{extension}} int b[(int)IntFn(f)()]; // ok } namespace StaticMemberFunction { struct S { static constexpr int k = 42; static constexpr int f(int n) { return n * k + 2; } } s; constexpr int n = s.f(19); static_assert(S::f(19) == 800, ""); static_assert(s.f(19) == 800, ""); static_assert(n == 800, ""); constexpr int (*sf1)(int) = &S::f; constexpr int (*sf2)(int) = &s.f; constexpr const int *sk = &s.k; } namespace ParameterScopes { const int k = 42; constexpr const int &ObscureTheTruth(const int &a) { return a; } constexpr const int &MaybeReturnJunk(bool b, const int a) { return ObscureTheTruth(b ? a : k); } static_assert(MaybeReturnJunk(false, 0) == 42, ""); // ok constexpr int a = MaybeReturnJunk(true, 0); // expected-error {{constant expression}} constexpr const int MaybeReturnNonstaticRef(bool b, const int a) { // If ObscureTheTruth returns a reference to 'a', the result is not a // constant expression even though 'a' is still in scope. return ObscureTheTruth(b ? a : k); } static_assert(MaybeReturnNonstaticRef(false, 0) == 42, ""); // ok constexpr int b = MaybeReturnNonstaticRef(true, 0); // expected-error {{constant expression}} constexpr int InternalReturnJunk(int n) { // FIXME: We should reject this: it never produces a constant expression. return MaybeReturnJunk(true, n); } constexpr int n3 = InternalReturnJunk(0); // expected-error {{must be initialized by a constant expression}} constexpr int LToR(int &n) { return n; } constexpr int GrabCallersArgument(bool which, int a, int b) { return LToR(which ? b : a); } static_assert(GrabCallersArgument(false, 1, 2) == 1, ""); static_assert(GrabCallersArgument(true, 4, 8) == 8, ""); } namespace Pointers { constexpr int f(int n, const int *a, const int *b, const int *c) { return n == 0 ? 0 : *a + f(n-1, b, c, a); } const int x = 1, y = 10, z = 100; static_assert(f(23, &x, &y, &z) == 788, ""); constexpr int g(int n, int a, int b, int c) { return f(n, &a, &b, &c); } static_assert(g(23, x, y, z) == 788, ""); } namespace FunctionPointers { constexpr int Double(int n) { return 2 * n; } constexpr int Triple(int n) { return 3 * n; } constexpr int Twice(int (*F)(int), int n) { return F(F(n)); } constexpr int Quadruple(int n) { return Twice(Double, n); } constexpr auto Select(int n) -> int (*)(int) { return n == 2 ? &Double : n == 3 ? &Triple : n == 4 ? &Quadruple : 0; } constexpr int Apply(int (*F)(int), int n) { return F(n); } static_assert(1 + Apply(Select(4), 5) + Apply(Select(3), 7) == 42, ""); constexpr int Invalid = Apply(Select(0), 0); // expected-error {{must be initialized by a constant expression}} } namespace PointerComparison { int x, y; static_assert(&x == &y, "false"); // expected-error {{false}} static_assert(&x != &y, ""); constexpr bool g1 = &x == &y; constexpr bool g2 = &x != &y; constexpr bool g3 = &x <= &y; // expected-error {{must be initialized by a constant expression}} constexpr bool g4 = &x >= &y; // expected-error {{must be initialized by a constant expression}} constexpr bool g5 = &x < &y; // expected-error {{must be initialized by a constant expression}} constexpr bool g6 = &x > &y; // expected-error {{must be initialized by a constant expression}} struct S { int x, y; } s; static_assert(&s.x == &s.y, "false"); // expected-error {{false}} static_assert(&s.x != &s.y, ""); static_assert(&s.x <= &s.y, ""); static_assert(&s.x >= &s.y, "false"); // expected-error {{false}} static_assert(&s.x < &s.y, ""); static_assert(&s.x > &s.y, "false"); // expected-error {{false}} static_assert(0 == &y, "false"); // expected-error {{false}} static_assert(0 != &y, ""); constexpr bool n3 = 0 <= &y; // expected-error {{must be initialized by a constant expression}} constexpr bool n4 = 0 >= &y; // expected-error {{must be initialized by a constant expression}} constexpr bool n5 = 0 < &y; // expected-error {{must be initialized by a constant expression}} constexpr bool n6 = 0 > &y; // expected-error {{must be initialized by a constant expression}} static_assert(&x == 0, "false"); // expected-error {{false}} static_assert(&x != 0, ""); constexpr bool n9 = &x <= 0; // expected-error {{must be initialized by a constant expression}} constexpr bool n10 = &x >= 0; // expected-error {{must be initialized by a constant expression}} constexpr bool n11 = &x < 0; // expected-error {{must be initialized by a constant expression}} constexpr bool n12 = &x > 0; // expected-error {{must be initialized by a constant expression}} static_assert(&x == &x, ""); static_assert(&x != &x, "false"); // expected-error {{false}} static_assert(&x <= &x, ""); static_assert(&x >= &x, ""); static_assert(&x < &x, "false"); // expected-error {{false}} static_assert(&x > &x, "false"); // expected-error {{false}} constexpr S* sptr = &s; // FIXME: This is not a constant expression; check we reject this and move this // test elsewhere. constexpr bool dyncast = sptr == dynamic_cast(sptr); struct Str { // FIXME: In C++ mode, we should say 'integral' not 'integer' int a : dynamic_cast(sptr) == dynamic_cast(sptr); // \ expected-warning {{not integer constant expression}} \ expected-note {{dynamic_cast not allowed in a constant expression}} int b : reinterpret_cast(sptr) == reinterpret_cast(sptr); // \ expected-warning {{not integer constant expression}} \ expected-note {{reinterpret_cast not allowed in a constant expression}} int c : (S*)(long)(sptr) == (S*)(long)(sptr); // \ expected-warning {{not integer constant expression}} \ expected-note {{reinterpreting cast not allowed in a constant expression}} int d : (S*)(42) == (S*)(42); // \ expected-warning {{not integer constant expression}} \ expected-note {{reinterpreting cast not allowed in a constant expression}} int e : (Str*)(sptr) == (Str*)(sptr); // \ expected-warning {{not integer constant expression}} \ expected-note {{reinterpreting cast not allowed in a constant expression}} int f : &(Str&)(*sptr) == &(Str&)(*sptr); // \ expected-warning {{not integer constant expression}} \ expected-note {{reinterpreting cast not allowed in a constant expression}} int g : (S*)(void*)(sptr) == sptr; // \ expected-warning {{not integer constant expression}} \ expected-note {{reinterpreting cast not allowed in a constant expression}} }; extern char externalvar[]; // FIXME: This is not a constant expression; check we reject this and move this // test elsewhere. constexpr bool constaddress = (void *)externalvar == (void *)0x4000UL; // expected-error {{must be initialized by a constant expression}} constexpr bool litaddress = "foo" == "foo"; // expected-error {{must be initialized by a constant expression}} expected-warning {{unspecified}} static_assert(0 != "foo", ""); } namespace MaterializeTemporary { constexpr int f(const int &r) { return r; } constexpr int n = f(1); constexpr bool same(const int &a, const int &b) { return &a == &b; } constexpr bool sameTemporary(const int &n) { return same(n, n); } static_assert(n, ""); static_assert(!same(4, 4), ""); static_assert(same(n, n), ""); static_assert(sameTemporary(9), ""); } constexpr int strcmp_ce(const char *p, const char *q) { return (!*p || *p != *q) ? *p - *q : strcmp_ce(p+1, q+1); } namespace StringLiteral { // FIXME: Refactor this once we support constexpr templates. constexpr int MangleChars(const char *p) { return *p + 3 * (*p ? MangleChars(p+1) : 0); } constexpr int MangleChars(const char16_t *p) { return *p + 3 * (*p ? MangleChars(p+1) : 0); } constexpr int MangleChars(const char32_t *p) { return *p + 3 * (*p ? MangleChars(p+1) : 0); } static_assert(MangleChars("constexpr!") == 1768383, ""); static_assert(MangleChars(u"constexpr!") == 1768383, ""); static_assert(MangleChars(U"constexpr!") == 1768383, ""); constexpr char c0 = "nought index"[0]; constexpr char c1 = "nice index"[10]; constexpr char c2 = "nasty index"[12]; // expected-error {{must be initialized by a constant expression}} expected-warning {{is past the end}} constexpr char c3 = "negative index"[-1]; // expected-error {{must be initialized by a constant expression}} expected-warning {{is before the beginning}} constexpr char c4 = ((char*)(int*)"no reinterpret_casts allowed")[14]; // expected-error {{must be initialized by a constant expression}} constexpr const char *p = "test" + 2; static_assert(*p == 's', ""); constexpr const char *max_iter(const char *a, const char *b) { return *a < *b ? b : a; } constexpr const char *max_element(const char *a, const char *b) { return (a+1 >= b) ? a : max_iter(a, max_element(a+1, b)); } constexpr const char *begin(const char (&arr)[45]) { return arr; } constexpr const char *end(const char (&arr)[45]) { return arr + 45; } constexpr char str[] = "the quick brown fox jumped over the lazy dog"; constexpr const char *max = max_element(begin(str), end(str)); static_assert(*max == 'z', ""); static_assert(max == str + 38, ""); static_assert(strcmp_ce("hello world", "hello world") == 0, ""); static_assert(strcmp_ce("hello world", "hello clang") > 0, ""); static_assert(strcmp_ce("constexpr", "test") < 0, ""); static_assert(strcmp_ce("", " ") < 0, ""); } namespace Array { // FIXME: Use templates for these once we support constexpr templates. constexpr int Sum(const int *begin, const int *end) { return begin == end ? 0 : *begin + Sum(begin+1, end); } constexpr const int *begin(const int (&xs)[5]) { return xs; } constexpr const int *end(const int (&xs)[5]) { return xs + 5; } constexpr int xs[] = { 1, 2, 3, 4, 5 }; constexpr int ys[] = { 5, 4, 3, 2, 1 }; constexpr int sum_xs = Sum(begin(xs), end(xs)); static_assert(sum_xs == 15, ""); constexpr int ZipFoldR(int (*F)(int x, int y, int c), int n, const int *xs, const int *ys, int c) { return n ? F(*xs, *ys, ZipFoldR(F, n-1, xs+1, ys+1, c)) : c; } constexpr int MulAdd(int x, int y, int c) { return x * y + c; } constexpr int InnerProduct = ZipFoldR(MulAdd, 5, xs, ys, 0); static_assert(InnerProduct == 35, ""); constexpr int SubMul(int x, int y, int c) { return (x - y) * c; } constexpr int DiffProd = ZipFoldR(SubMul, 2, xs+3, ys+3, 1); static_assert(DiffProd == 8, ""); static_assert(ZipFoldR(SubMul, 3, xs+3, ys+3, 1), ""); // expected-error {{constant expression}} constexpr const int *p = xs + 3; constexpr int xs4 = p[1]; // ok constexpr int xs5 = p[2]; // expected-error {{constant expression}} constexpr int xs0 = p[-3]; // ok constexpr int xs_1 = p[-4]; // expected-error {{constant expression}} constexpr int zs[2][2][2][2] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; static_assert(zs[0][0][0][0] == 1, ""); static_assert(zs[1][1][1][1] == 16, ""); static_assert(zs[0][0][0][2] == 3, ""); // expected-error {{constant expression}} static_assert((&zs[0][0][0][2])[-1] == 2, ""); static_assert(**(**(zs + 1) + 1) == 11, ""); static_assert(*(&(&(*(*&(&zs[2] - 1)[0] + 2 - 2))[2])[-1][-1] + 1) == 11, ""); constexpr int arr[40] = { 1, 2, 3, [8] = 4 }; // expected-warning {{extension}} constexpr int SumNonzero(const int *p) { return *p + (*p ? SumNonzero(p+1) : 0); } constexpr int CountZero(const int *p, const int *q) { return p == q ? 0 : (*p == 0) + CountZero(p+1, q); } static_assert(SumNonzero(arr) == 6, ""); static_assert(CountZero(arr, arr + 40) == 36, ""); struct ArrayElem { constexpr ArrayElem() : n(0) {} int n; constexpr int f() { return n; } }; struct ArrayRVal { constexpr ArrayRVal() {} ArrayElem elems[10]; }; static_assert(ArrayRVal().elems[3].f() == 0, ""); } namespace DependentValues { struct I { int n; typedef I V[10]; }; I::V x, y; template struct S { int k; void f() { I::V &cells = B ? x : y; I &i = cells[k]; switch (i.n) {} } }; } namespace Class { struct A { constexpr A(int a, int b) : k(a + b) {} int k; }; constexpr int fn(const A &a) { return a.k; } static_assert(fn(A(4,5)) == 9, ""); struct B { int n; int m; } constexpr b = { 0, b.n }; // expected-warning {{uninitialized}} struct C { constexpr C(C *this_) : m(42), n(this_->m) {} // ok int m, n; }; struct D { C c; constexpr D() : c(&c) {} }; static_assert(D().c.n == 42, ""); struct E { constexpr E() : p(&p) {} void *p; }; constexpr const E &e1 = E(); // expected-error {{constant expression}} // This is a constant expression if we elide the copy constructor call, and // is not a constant expression if we don't! But we do, so it is. // FIXME: The move constructor is not currently implicitly defined as constexpr. // We notice this when evaluating an expression which uses it, but not when // checking its initializer. constexpr E e2 = E(); // unexpected-error {{constant expression}} static_assert(e2.p == &e2.p, ""); // unexpected-error {{constant expression}} // FIXME: We don't pass through the fact that 'this' is ::e3 when checking the // initializer of this declaration. constexpr E e3; // unexpected-error {{constant expression}} static_assert(e3.p == &e3.p, ""); extern const class F f; struct F { constexpr F() : p(&f.p) {} const void *p; }; constexpr F f = F(); struct G { struct T { constexpr T(T *p) : u1(), u2(p) {} union U1 { constexpr U1() {} int a, b = 42; } u1; union U2 { constexpr U2(T *p) : c(p->u1.b) {} int c, d; } u2; } t; constexpr G() : t(&t) {} } constexpr g; static_assert(g.t.u1.a == 42, ""); // expected-error {{constant expression}} static_assert(g.t.u1.b == 42, ""); static_assert(g.t.u2.c == 42, ""); static_assert(g.t.u2.d == 42, ""); // expected-error {{constant expression}} struct S { int a, b; const S *p; double d; const char *q; constexpr S(int n, const S *p) : a(5), b(n), p(p), d(n), q("hello") {} }; S global(43, &global); static_assert(S(15, &global).b == 15, ""); constexpr bool CheckS(const S &s) { return s.a == 5 && s.b == 27 && s.p == &global && s.d == 27. && s.q[3] == 'l'; } static_assert(CheckS(S(27, &global)), ""); struct Arr { char arr[3]; constexpr Arr() : arr{'x', 'y', 'z'} {} }; constexpr int hash(Arr &&a) { return a.arr[0] + a.arr[1] * 0x100 + a.arr[2] * 0x10000; } constexpr int k = hash(Arr()); static_assert(k == 0x007a7978, ""); struct AggregateInit { const char &c; int n; double d; int arr[5]; void *p; }; constexpr AggregateInit agg1 = { "hello"[0] }; static_assert(strcmp_ce(&agg1.c, "hello") == 0, ""); static_assert(agg1.n == 0, ""); static_assert(agg1.d == 0.0, ""); static_assert(agg1.arr[-1] == 0, ""); // expected-error {{constant expression}} static_assert(agg1.arr[0] == 0, ""); static_assert(agg1.arr[4] == 0, ""); static_assert(agg1.arr[5] == 0, ""); // expected-error {{constant expression}} static_assert(agg1.p == nullptr, ""); namespace SimpleDerivedClass { struct B { constexpr B(int n) : a(n) {} int a; }; struct D : B { constexpr D(int n) : B(n) {} }; constexpr D d(3); static_assert(d.a == 3, ""); } struct Bottom { constexpr Bottom() {} }; struct Base : Bottom { constexpr Base(int a = 42, const char *b = "test") : a(a), b(b) {} int a; const char *b; }; struct Base2 : Bottom { constexpr Base2(const int &r) : r(r) {} int q = 123; // FIXME: When we track the global for which we are computing the initializer, // use a reference here. //const int &r; int r; }; struct Derived : Base, Base2 { constexpr Derived() : Base(76), Base2(a) {} int c = r + b[1]; }; constexpr bool operator==(const Base &a, const Base &b) { return a.a == b.a && strcmp_ce(a.b, b.b) == 0; } constexpr Base base; constexpr Base base2(76); constexpr Derived derived; static_assert(derived.a == 76, ""); static_assert(derived.b[2] == 's', ""); static_assert(derived.c == 76 + 'e', ""); static_assert(derived.q == 123, ""); static_assert(derived.r == 76, ""); static_assert(&derived.r == &derived.a, ""); // expected-error {{}} static_assert(!(derived == base), ""); static_assert(derived == base2, ""); constexpr Bottom &bot1 = (Base&)derived; constexpr Bottom &bot2 = (Base2&)derived; static_assert(&bot1 != &bot2, ""); constexpr Bottom *pb1 = (Base*)&derived; constexpr Bottom *pb2 = (Base2*)&derived; static_assert(pb1 != pb2, ""); static_assert(pb1 == &bot1, ""); static_assert(pb2 == &bot2, ""); constexpr Base2 &fail = (Base2&)bot1; // expected-error {{constant expression}} constexpr Base &fail2 = (Base&)*pb2; // expected-error {{constant expression}} constexpr Base2 &ok2 = (Base2&)bot2; static_assert(&ok2 == &derived, ""); constexpr Base2 *pfail = (Base2*)pb1; // expected-error {{constant expression}} constexpr Base *pfail2 = (Base*)&bot2; // expected-error {{constant expression}} constexpr Base2 *pok2 = (Base2*)pb2; static_assert(pok2 == &derived, ""); static_assert(&ok2 == pok2, ""); static_assert((Base2*)(Derived*)(Base*)pb1 == pok2, ""); static_assert((Derived*)(Base*)pb1 == (Derived*)pok2, ""); constexpr Base *nullB = 42 - 6 * 7; static_assert((Bottom*)nullB == 0, ""); static_assert((Derived*)nullB == 0, ""); static_assert((void*)(Bottom*)nullB == (void*)(Derived*)nullB, ""); } namespace Temporaries { struct S { constexpr S() {} constexpr int f(); }; struct T : S { constexpr T(int n) : S(), n(n) {} int n; }; constexpr int S::f() { // 'this' must be the postfix-expression in a class member access expression, // so we can't just use // return static_cast(this)->n; return this->*(int(S::*))&T::n; } // The T temporary is implicitly cast to an S subobject, but we can recover the // T full-object via a base-to-derived cast, or a derived-to-base-casted member // pointer. static_assert(T(3).f() == 3, ""); constexpr int f(const S &s) { return static_cast(s).n; } constexpr int n = f(T(5)); static_assert(f(T(5)) == 5, ""); } namespace Union { union U { int a; int b; }; constexpr U u[4] = { { .a = 0 }, { .b = 1 }, { .a = 2 }, { .b = 3 } }; // expected-warning 4{{extension}} static_assert(u[0].a == 0, ""); static_assert(u[0].b, ""); // expected-error {{constant expression}} static_assert(u[1].b == 1, ""); static_assert((&u[1].b)[1] == 2, ""); // expected-error {{constant expression}} static_assert(*(&(u[1].b) + 1 + 1) == 3, ""); // expected-error {{constant expression}} static_assert((&(u[1]) + 1 + 1)->b == 3, ""); } namespace MemberPointer { struct A { constexpr A(int n) : n(n) {} int n; constexpr int f() { return n + 3; } }; constexpr A a(7); static_assert(A(5).*&A::n == 5, ""); static_assert((&a)->*&A::n == 7, ""); static_assert((A(8).*&A::f)() == 11, ""); static_assert(((&a)->*&A::f)() == 10, ""); struct B : A { constexpr B(int n, int m) : A(n), m(m) {} int m; constexpr int g() { return n + m + 1; } }; constexpr B b(9, 13); static_assert(B(4, 11).*&A::n == 4, ""); static_assert(B(4, 11).*&B::m == 11, ""); static_assert(B(4, 11).*(int(A::*))&B::m == 11, ""); static_assert((&b)->*&A::n == 9, ""); static_assert((&b)->*&B::m == 13, ""); static_assert((&b)->*(int(A::*))&B::m == 13, ""); static_assert((B(4, 11).*&A::f)() == 7, ""); static_assert((B(4, 11).*&B::g)() == 16, ""); static_assert((B(4, 11).*(int(A::*)()const)&B::g)() == 16, ""); static_assert(((&b)->*&A::f)() == 12, ""); static_assert(((&b)->*&B::g)() == 23, ""); static_assert(((&b)->*(int(A::*)()const)&B::g)() == 23, ""); struct S { constexpr S(int m, int n, int (S::*pf)() const, int S::*pn) : m(m), n(n), pf(pf), pn(pn) {} constexpr S() : m(), n(), pf(&S::f), pn(&S::n) {} constexpr int f() { return this->*pn; } virtual int g() const; int m, n; int (S::*pf)() const; int S::*pn; }; constexpr int S::*pm = &S::m; constexpr int S::*pn = &S::n; constexpr int (S::*pf)() const = &S::f; constexpr int (S::*pg)() const = &S::g; constexpr S s(2, 5, &S::f, &S::m); static_assert((s.*&S::f)() == 2, ""); static_assert((s.*s.pf)() == 2, ""); template struct T : T {}; template<> struct T<0> { int n; }; template<> struct T<30> : T<29> { int m; }; T<17> t17; T<30> t30; constexpr int (T<10>::*deepn) = &T<0>::n; static_assert(&(t17.*deepn) == &t17.n, ""); constexpr int (T<15>::*deepm) = (int(T<10>::*))&T<30>::m; constexpr int *pbad = &(t17.*deepm); // expected-error {{constant expression}} static_assert(&(t30.*deepm) == &t30.m, ""); constexpr T<5> *p17_5 = &t17; constexpr T<13> *p17_13 = (T<13>*)p17_5; constexpr T<23> *p17_23 = (T<23>*)p17_13; // expected-error {{constant expression}} static_assert(&(p17_5->*(int(T<3>::*))deepn) == &t17.n, ""); static_assert(&(p17_13->*deepn) == &t17.n, ""); constexpr int *pbad2 = &(p17_13->*(int(T<9>::*))deepm); // expected-error {{constant expression}} constexpr T<5> *p30_5 = &t30; constexpr T<23> *p30_23 = (T<23>*)p30_5; constexpr T<13> *p30_13 = p30_23; static_assert(&(p30_5->*(int(T<3>::*))deepn) == &t30.n, ""); static_assert(&(p30_13->*deepn) == &t30.n, ""); static_assert(&(p30_23->*deepn) == &t30.n, ""); static_assert(&(p30_5->*(int(T<2>::*))deepm) == &t30.m, ""); static_assert(&(((T<17>*)p30_13)->*deepm) == &t30.m, ""); static_assert(&(p30_23->*deepm) == &t30.m, ""); } namespace ArrayBaseDerived { struct Base { constexpr Base() {} int n = 0; }; struct Derived : Base { constexpr Derived() {} constexpr const int *f() { return &n; } }; constexpr Derived a[10]; constexpr Derived *pd3 = const_cast(&a[3]); constexpr Base *pb3 = const_cast(&a[3]); static_assert(pb3 == pd3, ""); // pb3 does not point to an array element. constexpr Base *pb4 = pb3 + 1; // ok, one-past-the-end pointer. constexpr int pb4n = pb4->n; // expected-error {{constant expression}} constexpr Base *err_pb5 = pb3 + 2; // FIXME: reject this. constexpr int err_pb5n = err_pb5->n; // expected-error {{constant expression}} constexpr Base *err_pb2 = pb3 - 1; // FIXME: reject this. constexpr int err_pb2n = err_pb2->n; // expected-error {{constant expression}} constexpr Base *pb3a = pb4 - 1; // pb4 does not point to a Derived. constexpr Derived *err_pd4 = (Derived*)pb4; // expected-error {{constant expression}} constexpr Derived *pd3a = (Derived*)pb3a; constexpr int pd3n = pd3a->n; // pd3a still points to the Derived array. constexpr Derived *pd6 = pd3a + 3; static_assert(pd6 == &a[6], ""); constexpr Derived *pd9 = pd6 + 3; constexpr Derived *pd10 = pd6 + 4; constexpr int pd9n = pd9->n; // ok constexpr int err_pd10n = pd10->n; // expected-error {{constant expression}} constexpr int pd0n = pd10[-10].n; constexpr int err_pdminus1n = pd10[-11].n; // expected-error {{constant expression}} constexpr Base *pb9 = pd9; constexpr const int *(Base::*pfb)() const = static_cast(&Derived::f); static_assert((pb9->*pfb)() == &a[9].n, ""); } namespace Complex { class complex { int re, im; public: constexpr complex(int re = 0, int im = 0) : re(re), im(im) {} constexpr complex(const complex &o) : re(o.re), im(o.im) {} constexpr complex operator-() const { return complex(-re, -im); } friend constexpr complex operator+(const complex &l, const complex &r) { return complex(l.re + r.re, l.im + r.im); } friend constexpr complex operator-(const complex &l, const complex &r) { return l + -r; } friend constexpr complex operator*(const complex &l, const complex &r) { return complex(l.re * r.re - l.im * r.im, l.re * r.im + l.im * r.re); } friend constexpr bool operator==(const complex &l, const complex &r) { return l.re == r.re && l.im == r.im; } constexpr bool operator!=(const complex &r) const { return re != r.re || im != r.im; } constexpr int real() const { return re; } constexpr int imag() const { return im; } }; constexpr complex i = complex(0, 1); constexpr complex k = (3 + 4*i) * (6 - 4*i); static_assert(complex(1,0).real() == 1, ""); static_assert(complex(1,0).imag() == 0, ""); static_assert(((complex)1).imag() == 0, ""); static_assert(k.real() == 34, ""); static_assert(k.imag() == 12, ""); static_assert(k - 34 == 12*i, ""); static_assert((complex)1 == complex(1), ""); static_assert((complex)1 != complex(0, 1), ""); static_assert(complex(1) == complex(1), ""); static_assert(complex(1) != complex(0, 1), ""); constexpr complex makeComplex(int re, int im) { return complex(re, im); } static_assert(makeComplex(1,0) == complex(1), ""); static_assert(makeComplex(1,0) != complex(0, 1), ""); class complex_wrap : public complex { public: constexpr complex_wrap(int re, int im = 0) : complex(re, im) {} constexpr complex_wrap(const complex_wrap &o) : complex(o) {} }; static_assert((complex_wrap)1 == complex(1), ""); static_assert((complex)1 != complex_wrap(0, 1), ""); static_assert(complex(1) == complex_wrap(1), ""); static_assert(complex_wrap(1) != complex(0, 1), ""); constexpr complex_wrap makeComplexWrap(int re, int im) { return complex_wrap(re, im); } static_assert(makeComplexWrap(1,0) == complex(1), ""); static_assert(makeComplexWrap(1,0) != complex(0, 1), ""); }