//===-- main.cpp ------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #include #if !defined(_WIN32) #include #include #include #endif #include #include #include #include #include #include #include #if defined(__APPLE__) __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2) int pthread_threadid_np(pthread_t, __uint64_t *); #elif defined(__linux__) #include #elif defined(__NetBSD__) #include #elif defined(_WIN32) #include #endif static const char *const RETVAL_PREFIX = "retval:"; static const char *const SLEEP_PREFIX = "sleep:"; static const char *const STDERR_PREFIX = "stderr:"; static const char *const SET_MESSAGE_PREFIX = "set-message:"; static const char *const PRINT_MESSAGE_COMMAND = "print-message:"; static const char *const GET_DATA_ADDRESS_PREFIX = "get-data-address-hex:"; static const char *const GET_STACK_ADDRESS_COMMAND = "get-stack-address-hex:"; static const char *const GET_HEAP_ADDRESS_COMMAND = "get-heap-address-hex:"; static const char *const GET_CODE_ADDRESS_PREFIX = "get-code-address-hex:"; static const char *const CALL_FUNCTION_PREFIX = "call-function:"; static const char *const THREAD_PREFIX = "thread:"; static const char *const THREAD_COMMAND_NEW = "new"; static const char *const THREAD_COMMAND_PRINT_IDS = "print-ids"; static const char *const THREAD_COMMAND_SEGFAULT = "segfault"; static const char *const PRINT_PID_COMMAND = "print-pid"; static bool g_print_thread_ids = false; static std::mutex g_print_mutex; static bool g_threads_do_segfault = false; static std::mutex g_jump_buffer_mutex; static jmp_buf g_jump_buffer; static bool g_is_segfaulting = false; static char g_message[256]; static volatile char g_c1 = '0'; static volatile char g_c2 = '1'; static void print_pid() { #if defined(_WIN32) fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId()); #else fprintf(stderr, "PID: %d\n", getpid()); #endif } static void print_thread_id() { // Put in the right magic here for your platform to spit out the thread id (tid) // that debugserver/lldb-gdbserver would see as a TID. Otherwise, let the else // clause print out the unsupported text so that the unit test knows to skip // verifying thread ids. #if defined(__APPLE__) __uint64_t tid = 0; pthread_threadid_np(pthread_self(), &tid); printf("%" PRIx64, tid); #elif defined(__linux__) // This is a call to gettid() via syscall. printf("%" PRIx64, static_cast(syscall(__NR_gettid))); #elif defined(__NetBSD__) // Technically lwpid_t is 32-bit signed integer printf("%" PRIx64, static_cast(_lwp_self())); #elif defined(_WIN32) printf("%" PRIx64, static_cast(::GetCurrentThreadId())); #else printf("{no-tid-support}"); #endif } static void signal_handler(int signo) { #if defined(_WIN32) // No signal support on Windows. #else const char *signal_name = nullptr; switch (signo) { case SIGUSR1: signal_name = "SIGUSR1"; break; case SIGSEGV: signal_name = "SIGSEGV"; break; default: signal_name = nullptr; } // Print notice that we received the signal on a given thread. { std::lock_guard lock(g_print_mutex); if (signal_name) printf("received %s on thread id: ", signal_name); else printf("received signo %d (%s) on thread id: ", signo, strsignal(signo)); print_thread_id(); printf("\n"); } // Reset the signal handler if we're one of the expected signal handlers. switch (signo) { case SIGSEGV: if (g_is_segfaulting) { // Fix up the pointer we're writing to. This needs to happen if nothing // intercepts the SIGSEGV (i.e. if somebody runs this from the command // line). longjmp(g_jump_buffer, 1); } break; case SIGUSR1: if (g_is_segfaulting) { // Fix up the pointer we're writing to. This is used to test gdb remote // signal delivery. A SIGSEGV will be raised when the thread is created, // switched out for a SIGUSR1, and then this code still needs to fix the // seg fault. (i.e. if somebody runs this from the command line). longjmp(g_jump_buffer, 1); } break; } // Reset the signal handler. sig_t sig_result = signal(signo, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set signal handler: errno=%d\n", errno); exit(1); } #endif } static void swap_chars() { g_c1 = '1'; g_c2 = '0'; g_c1 = '0'; g_c2 = '1'; } static void hello() { std::lock_guard lock(g_print_mutex); printf("hello, world\n"); } static void *thread_func(void *arg) { static std::atomic s_thread_index(1); const int this_thread_index = s_thread_index++; if (g_print_thread_ids) { std::lock_guard lock(g_print_mutex); printf("thread %d id: ", this_thread_index); print_thread_id(); printf("\n"); } if (g_threads_do_segfault) { // Sleep for a number of seconds based on the thread index. // TODO add ability to send commands to test exe so we can // handle timing more precisely. This is clunky. All we're // trying to do is add predictability as to the timing of // signal generation by created threads. int sleep_seconds = 2 * (this_thread_index - 1); std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds)); // Test creating a SEGV. { std::lock_guard lock(g_jump_buffer_mutex); g_is_segfaulting = true; int *bad_p = nullptr; if (setjmp(g_jump_buffer) == 0) { // Force a seg fault signal on this thread. *bad_p = 0; } else { // Tell the system we're no longer seg faulting. // Used by the SIGUSR1 signal handler that we inject // in place of the SIGSEGV so it only tries to // recover from the SIGSEGV if this seg fault code // was in play. g_is_segfaulting = false; } } { std::lock_guard lock(g_print_mutex); printf("thread "); print_thread_id(); printf(": past SIGSEGV\n"); } } int sleep_seconds_remaining = 60; std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining)); return nullptr; } int main(int argc, char **argv) { lldb_enable_attach(); std::vector threads; std::unique_ptr heap_array_up; int return_value = 0; #if !defined(_WIN32) // Set the signal handler. sig_t sig_result = signal(SIGALRM, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno); exit(1); } sig_result = signal(SIGUSR1, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno); exit(1); } sig_result = signal(SIGSEGV, signal_handler); if (sig_result == SIG_ERR) { fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno); exit(1); } #endif // Process command line args. for (int i = 1; i < argc; ++i) { if (std::strstr(argv[i], STDERR_PREFIX)) { // Treat remainder as text to go to stderr. fprintf(stderr, "%s\n", (argv[i] + strlen(STDERR_PREFIX))); } else if (std::strstr(argv[i], RETVAL_PREFIX)) { // Treat as the return value for the program. return_value = std::atoi(argv[i] + strlen(RETVAL_PREFIX)); } else if (std::strstr(argv[i], SLEEP_PREFIX)) { // Treat as the amount of time to have this process sleep (in seconds). int sleep_seconds_remaining = std::atoi(argv[i] + strlen(SLEEP_PREFIX)); // Loop around, sleeping until all sleep time is used up. Note that // signals will cause sleep to end early with the number of seconds // remaining. std::this_thread::sleep_for( std::chrono::seconds(sleep_seconds_remaining)); } else if (std::strstr(argv[i], SET_MESSAGE_PREFIX)) { // Copy the contents after "set-message:" to the g_message buffer. // Used for reading inferior memory and verifying contents match // expectations. strncpy(g_message, argv[i] + strlen(SET_MESSAGE_PREFIX), sizeof(g_message)); // Ensure we're null terminated. g_message[sizeof(g_message) - 1] = '\0'; } else if (std::strstr(argv[i], PRINT_MESSAGE_COMMAND)) { std::lock_guard lock(g_print_mutex); printf("message: %s\n", g_message); } else if (std::strstr(argv[i], GET_DATA_ADDRESS_PREFIX)) { volatile void *data_p = nullptr; if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_message")) data_p = &g_message[0]; else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c1")) data_p = &g_c1; else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c2")) data_p = &g_c2; std::lock_guard lock(g_print_mutex); printf("data address: %p\n", data_p); } else if (std::strstr(argv[i], GET_HEAP_ADDRESS_COMMAND)) { // Create a byte array if not already present. if (!heap_array_up) heap_array_up.reset(new uint8_t[32]); std::lock_guard lock(g_print_mutex); printf("heap address: %p\n", heap_array_up.get()); } else if (std::strstr(argv[i], GET_STACK_ADDRESS_COMMAND)) { std::lock_guard lock(g_print_mutex); printf("stack address: %p\n", &return_value); } else if (std::strstr(argv[i], GET_CODE_ADDRESS_PREFIX)) { void (*func_p)() = nullptr; if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "hello")) func_p = hello; else if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "swap_chars")) func_p = swap_chars; std::lock_guard lock(g_print_mutex); printf("code address: %p\n", func_p); } else if (std::strstr(argv[i], CALL_FUNCTION_PREFIX)) { void (*func_p)() = nullptr; // Defaut to providing the address of main. if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "hello") == 0) func_p = hello; else if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "swap_chars") == 0) func_p = swap_chars; else { std::lock_guard lock(g_print_mutex); printf("unknown function: %s\n", argv[i] + strlen(CALL_FUNCTION_PREFIX)); } if (func_p) func_p(); } else if (std::strstr(argv[i], THREAD_PREFIX)) { // Check if we're creating a new thread. if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_NEW)) { threads.push_back(std::thread(thread_func, nullptr)); } else if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_PRINT_IDS)) { // Turn on thread id announcing. g_print_thread_ids = true; // And announce us. { std::lock_guard lock(g_print_mutex); printf("thread 0 id: "); print_thread_id(); printf("\n"); } } else if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_SEGFAULT)) { g_threads_do_segfault = true; } else { // At this point we don't do anything else with threads. // Later use thread index and send command to thread. } } else if (std::strstr(argv[i], PRINT_PID_COMMAND)) { print_pid(); } else { // Treat the argument as text for stdout. printf("%s\n", argv[i]); } } // If we launched any threads, join them for (std::vector::iterator it = threads.begin(); it != threads.end(); ++it) it->join(); return return_value; }