llvm-project/compiler-rt/lib/ctx_profile/CtxInstrProfiling.cpp
Mircea Trofin e7aed23d32
[ctxprof] Handle instrumenting functions with musttail calls (#135121)
Functions with `musttail` calls can't be roots because we can't instrument their `ret` to release the context. This patch tags their `CtxRoot` field in their `FunctionData`. In compiler-rt we then know not to allow such functions become roots, and also not confuse `CtxRoot == 0x1` with there being a context root.

Currently we also lose the context tree under such cases. We can, in a subsequent patch, have the root detector search past these functions.
2025-04-14 10:01:25 -07:00

527 lines
21 KiB
C++

//===- CtxInstrProfiling.cpp - contextual instrumented PGO ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CtxInstrProfiling.h"
#include "RootAutoDetector.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_atomic_clang.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_dense_map.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_thread_safety.h"
#include "sanitizer_common/sanitizer_vector.h"
#include <assert.h>
using namespace __ctx_profile;
namespace {
// Keep track of all the context roots we actually saw, so we can then traverse
// them when the user asks for the profile in __llvm_ctx_profile_fetch
__sanitizer::SpinMutex AllContextsMutex;
SANITIZER_GUARDED_BY(AllContextsMutex)
__sanitizer::Vector<ContextRoot *> AllContextRoots;
__sanitizer::atomic_uintptr_t AllFunctionsData = {};
// Keep all the functions for which we collect a flat profile in a linked list.
__sanitizer::SpinMutex FlatCtxArenaMutex;
SANITIZER_GUARDED_BY(FlatCtxArenaMutex)
Arena *FlatCtxArenaHead = nullptr;
SANITIZER_GUARDED_BY(FlatCtxArenaMutex)
Arena *FlatCtxArena = nullptr;
// Set to true when we enter a root, and false when we exit - regardless if this
// thread collects a contextual profile for that root.
__thread bool IsUnderContext = false;
__sanitizer::atomic_uint8_t ProfilingStarted = {};
__sanitizer::atomic_uintptr_t RootDetector = {};
RootAutoDetector *getRootDetector() {
return reinterpret_cast<RootAutoDetector *>(
__sanitizer::atomic_load_relaxed(&RootDetector));
}
// utility to taint a pointer by setting the LSB. There is an assumption
// throughout that the addresses of contexts are even (really, they should be
// align(8), but "even"-ness is the minimum assumption)
// "scratch contexts" are buffers that we return in certain cases - they are
// large enough to allow for memory safe counter access, but they don't link
// subcontexts below them (the runtime recognizes them and enforces that)
ContextNode *markAsScratch(const ContextNode *Ctx) {
return reinterpret_cast<ContextNode *>(reinterpret_cast<uint64_t>(Ctx) | 1);
}
// Used when getting the data from TLS. We don't *really* need to reset, but
// it's a simpler system if we do.
template <typename T> inline T consume(T &V) {
auto R = V;
V = {0};
return R;
}
// We allocate at least kBuffSize Arena pages. The scratch buffer is also that
// large.
constexpr size_t kPower = 20;
constexpr size_t kBuffSize = 1 << kPower;
// Highly unlikely we need more than kBuffSize for a context.
size_t getArenaAllocSize(size_t Needed) {
if (Needed >= kBuffSize)
return 2 * Needed;
return kBuffSize;
}
// verify the structural integrity of the context
bool validate(const ContextRoot *Root) {
// all contexts should be laid out in some arena page. Go over each arena
// allocated for this Root, and jump over contained contexts based on
// self-reported sizes.
__sanitizer::DenseMap<uint64_t, bool> ContextStartAddrs;
for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) {
const auto *Pos = Mem->start();
while (Pos < Mem->pos()) {
const auto *Ctx = reinterpret_cast<const ContextNode *>(Pos);
if (!ContextStartAddrs.insert({reinterpret_cast<uint64_t>(Ctx), true})
.second)
return false;
Pos += Ctx->size();
}
}
// Now traverse the contexts again the same way, but validate all nonull
// subcontext addresses appear in the set computed above.
for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) {
const auto *Pos = Mem->start();
while (Pos < Mem->pos()) {
const auto *Ctx = reinterpret_cast<const ContextNode *>(Pos);
for (uint32_t I = 0; I < Ctx->callsites_size(); ++I)
for (auto *Sub = Ctx->subContexts()[I]; Sub; Sub = Sub->next())
if (!ContextStartAddrs.find(reinterpret_cast<uint64_t>(Sub)))
return false;
Pos += Ctx->size();
}
}
return true;
}
inline ContextNode *allocContextNode(char *Place, GUID Guid,
uint32_t NumCounters,
uint32_t NumCallsites,
ContextNode *Next = nullptr) {
assert(reinterpret_cast<uint64_t>(Place) % ExpectedAlignment == 0);
return new (Place) ContextNode(Guid, NumCounters, NumCallsites, Next);
}
void resetContextNode(ContextNode &Node) {
// FIXME(mtrofin): this is std::memset, which we can probably use if we
// drop/reduce the dependency on sanitizer_common.
for (uint32_t I = 0; I < Node.counters_size(); ++I)
Node.counters()[I] = 0;
for (uint32_t I = 0; I < Node.callsites_size(); ++I)
for (auto *Next = Node.subContexts()[I]; Next; Next = Next->next())
resetContextNode(*Next);
}
ContextNode *onContextEnter(ContextNode &Node) {
++Node.counters()[0];
return &Node;
}
} // namespace
// the scratch buffer - what we give when we can't produce a real context (the
// scratch isn't "real" in that it's expected to be clobbered carelessly - we
// don't read it). The other important thing is that the callees from a scratch
// context also get a scratch context.
// Eventually this can be replaced with per-function buffers, a'la the typical
// (flat) instrumented FDO buffers. The clobbering aspect won't apply there, but
// the part about determining the nature of the subcontexts does.
__thread char __Buffer[kBuffSize] = {0};
#define TheScratchContext \
markAsScratch(reinterpret_cast<ContextNode *>(__Buffer))
// init the TLSes
__thread void *volatile __llvm_ctx_profile_expected_callee[2] = {nullptr,
nullptr};
__thread ContextNode **volatile __llvm_ctx_profile_callsite[2] = {0, 0};
__thread ContextRoot *volatile __llvm_ctx_profile_current_context_root =
nullptr;
Arena::Arena(uint32_t Size) : Size(Size) {
__sanitizer::internal_memset(start(), 0, Size);
}
// FIXME(mtrofin): use malloc / mmap instead of sanitizer common APIs to reduce
// the dependency on the latter.
Arena *Arena::allocateNewArena(size_t Size, Arena *Prev) {
assert(!Prev || Prev->Next == nullptr);
Arena *NewArena = new (__sanitizer::InternalAlloc(
Size + sizeof(Arena), /*cache=*/nullptr, /*alignment=*/ExpectedAlignment))
Arena(Size);
if (Prev)
Prev->Next = NewArena;
return NewArena;
}
void Arena::freeArenaList(Arena *&A) {
assert(A);
for (auto *I = A; I != nullptr;) {
auto *Current = I;
I = I->Next;
__sanitizer::InternalFree(Current);
}
A = nullptr;
}
// If this is the first time we hit a callsite with this (Guid) particular
// callee, we need to allocate.
ContextNode *getCallsiteSlow(GUID Guid, ContextNode **InsertionPoint,
uint32_t NumCounters, uint32_t NumCallsites) {
auto AllocSize = ContextNode::getAllocSize(NumCounters, NumCallsites);
auto *Mem = __llvm_ctx_profile_current_context_root->CurrentMem;
char *AllocPlace = Mem->tryBumpAllocate(AllocSize);
if (!AllocPlace) {
// if we failed to allocate on the current arena, allocate a new arena,
// and place it on __llvm_ctx_profile_current_context_root->CurrentMem so we
// find it from now on for other cases when we need to getCallsiteSlow.
// Note that allocateNewArena will link the allocated memory in the list of
// Arenas.
__llvm_ctx_profile_current_context_root->CurrentMem = Mem =
Mem->allocateNewArena(getArenaAllocSize(AllocSize), Mem);
AllocPlace = Mem->tryBumpAllocate(AllocSize);
}
auto *Ret = allocContextNode(AllocPlace, Guid, NumCounters, NumCallsites,
*InsertionPoint);
*InsertionPoint = Ret;
return Ret;
}
ContextNode *getFlatProfile(FunctionData &Data, void *Callee, GUID Guid,
uint32_t NumCounters) {
if (ContextNode *Existing = Data.FlatCtx)
return Existing;
{
// We could instead try to take the lock and, if that fails, return
// TheScratchContext. But that could leave message pump loops more sparsely
// profiled than everything else. Maybe that doesn't matter, and we can
// optimize this later.
__sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> L(&Data.Mutex);
if (ContextNode *Existing = Data.FlatCtx)
return Existing;
auto NeededSize = ContextNode::getAllocSize(NumCounters, 0);
char *AllocBuff = nullptr;
{
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> FL(
&FlatCtxArenaMutex);
if (FlatCtxArena)
AllocBuff = FlatCtxArena->tryBumpAllocate(NeededSize);
if (!AllocBuff) {
FlatCtxArena = Arena::allocateNewArena(getArenaAllocSize(NeededSize),
FlatCtxArena);
AllocBuff = FlatCtxArena->tryBumpAllocate(NeededSize);
}
if (!FlatCtxArenaHead)
FlatCtxArenaHead = FlatCtxArena;
}
auto *Ret = allocContextNode(AllocBuff, Guid, NumCounters, 0);
Data.FlatCtx = Ret;
Data.EntryAddress = Callee;
Data.Next = reinterpret_cast<FunctionData *>(
__sanitizer::atomic_load_relaxed(&AllFunctionsData));
while (!__sanitizer::atomic_compare_exchange_strong(
&AllFunctionsData, reinterpret_cast<uintptr_t *>(&Data.Next),
reinterpret_cast<uintptr_t>(&Data),
__sanitizer::memory_order_release)) {
}
}
return Data.FlatCtx;
}
// This should be called once for a Root. Allocate the first arena, set up the
// first context.
void setupContext(ContextRoot *Root, GUID Guid, uint32_t NumCounters,
uint32_t NumCallsites) {
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
// Re-check - we got here without having had taken a lock.
if (Root->FirstMemBlock)
return;
const auto Needed = ContextNode::getAllocSize(NumCounters, NumCallsites);
auto *M = Arena::allocateNewArena(getArenaAllocSize(Needed));
Root->FirstMemBlock = M;
Root->CurrentMem = M;
Root->FirstNode = allocContextNode(M->tryBumpAllocate(Needed), Guid,
NumCounters, NumCallsites);
AllContextRoots.PushBack(Root);
}
ContextRoot *FunctionData::getOrAllocateContextRoot() {
auto *Root = CtxRoot;
if (!canBeRoot(Root))
return Root;
if (Root)
return Root;
__sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> L(&Mutex);
Root = CtxRoot;
if (!Root) {
Root = new (__sanitizer::InternalAlloc(sizeof(ContextRoot))) ContextRoot();
CtxRoot = Root;
}
assert(Root);
return Root;
}
ContextNode *tryStartContextGivenRoot(ContextRoot *Root, GUID Guid,
uint32_t Counters, uint32_t Callsites)
SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
IsUnderContext = true;
__sanitizer::atomic_fetch_add(&Root->TotalEntries, 1,
__sanitizer::memory_order_relaxed);
if (!Root->FirstMemBlock) {
setupContext(Root, Guid, Counters, Callsites);
}
if (Root->Taken.TryLock()) {
__llvm_ctx_profile_current_context_root = Root;
onContextEnter(*Root->FirstNode);
return Root->FirstNode;
}
// If this thread couldn't take the lock, return scratch context.
__llvm_ctx_profile_current_context_root = nullptr;
return TheScratchContext;
}
ContextNode *getUnhandledContext(FunctionData &Data, void *Callee, GUID Guid,
uint32_t NumCounters, uint32_t NumCallsites,
ContextRoot *CtxRoot) {
// 1) if we are currently collecting a contextual profile, fetch a ContextNode
// in the `Unhandled` set. We want to do this regardless of `ProfilingStarted`
// to (hopefully) offset the penalty of creating these contexts to before
// profiling.
//
// 2) if we are under a root (regardless if this thread is collecting or not a
// contextual profile for that root), do not collect a flat profile. We want
// to keep flat profiles only for activations that can't happen under a root,
// to avoid confusing profiles. We can, for example, combine flattened and
// flat profiles meaningfully, as we wouldn't double-count anything.
//
// 3) to avoid lengthy startup, don't bother with flat profiles until the
// profiling has started. We would reset them anyway when profiling starts.
// HOWEVER. This does lose profiling for message pumps: those functions are
// entered once and never exit. They should be assumed to be entered before
// profiling starts - because profiling should start after the server is up
// and running (which is equivalent to "message pumps are set up").
if (!CtxRoot) {
if (auto *RAD = getRootDetector())
RAD->sample();
else if (auto *CR = Data.CtxRoot) {
if (canBeRoot(CR))
return tryStartContextGivenRoot(CR, Guid, NumCounters, NumCallsites);
}
if (IsUnderContext || !__sanitizer::atomic_load_relaxed(&ProfilingStarted))
return TheScratchContext;
else
return markAsScratch(
onContextEnter(*getFlatProfile(Data, Callee, Guid, NumCounters)));
}
auto [Iter, Ins] = CtxRoot->Unhandled.insert({Guid, nullptr});
if (Ins)
Iter->second = getCallsiteSlow(Guid, &CtxRoot->FirstUnhandledCalleeNode,
NumCounters, 0);
return markAsScratch(onContextEnter(*Iter->second));
}
ContextNode *__llvm_ctx_profile_get_context(FunctionData *Data, void *Callee,
GUID Guid, uint32_t NumCounters,
uint32_t NumCallsites) {
auto *CtxRoot = __llvm_ctx_profile_current_context_root;
// fast "out" if we're not even doing contextual collection.
if (!CtxRoot)
return getUnhandledContext(*Data, Callee, Guid, NumCounters, NumCallsites,
nullptr);
// also fast "out" if the caller is scratch. We can see if it's scratch by
// looking at the interior pointer into the subcontexts vector that the caller
// provided, which, if the context is scratch, so is that interior pointer
// (because all the address calculations are using even values. Or more
// precisely, aligned - 8 values)
auto **CallsiteContext = consume(__llvm_ctx_profile_callsite[0]);
if (!CallsiteContext || isScratch(CallsiteContext))
return getUnhandledContext(*Data, Callee, Guid, NumCounters, NumCallsites,
CtxRoot);
// if the callee isn't the expected one, return scratch.
// Signal handler(s) could have been invoked at any point in the execution.
// Should that have happened, and had it (the handler) be built with
// instrumentation, its __llvm_ctx_profile_get_context would have failed here.
// Its sub call graph would have then populated
// __llvm_ctx_profile_{expected_callee | callsite} at index 1.
// The normal call graph may be impacted in that, if the signal handler
// happened somewhere before we read the TLS here, we'd see the TLS reset and
// we'd also fail here. That would just mean we would loose counter values for
// the normal subgraph, this time around. That should be very unlikely, but if
// it happens too frequently, we should be able to detect discrepancies in
// entry counts (caller-callee). At the moment, the design goes on the
// assumption that is so unfrequent, though, that it's not worth doing more
// for that case.
auto *ExpectedCallee = consume(__llvm_ctx_profile_expected_callee[0]);
if (ExpectedCallee != Callee)
return getUnhandledContext(*Data, Callee, Guid, NumCounters, NumCallsites,
CtxRoot);
auto *Callsite = *CallsiteContext;
// in the case of indirect calls, we will have all seen targets forming a
// linked list here. Find the one corresponding to this callee.
while (Callsite && Callsite->guid() != Guid) {
Callsite = Callsite->next();
}
auto *Ret = Callsite ? Callsite
: getCallsiteSlow(Guid, CallsiteContext, NumCounters,
NumCallsites);
if (Ret->callsites_size() != NumCallsites ||
Ret->counters_size() != NumCounters)
__sanitizer::Printf("[ctxprof] Returned ctx differs from what's asked: "
"Context: %p, Asked: %lu %u %u, Got: %lu %u %u \n",
reinterpret_cast<void *>(Ret), Guid, NumCallsites,
NumCounters, Ret->guid(), Ret->callsites_size(),
Ret->counters_size());
onContextEnter(*Ret);
return Ret;
}
ContextNode *__llvm_ctx_profile_start_context(FunctionData *FData, GUID Guid,
uint32_t Counters,
uint32_t Callsites) {
auto *Root = FData->getOrAllocateContextRoot();
assert(canBeRoot(Root));
return tryStartContextGivenRoot(Root, Guid, Counters, Callsites);
}
void __llvm_ctx_profile_release_context(FunctionData *FData)
SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
const auto *CurrentRoot = __llvm_ctx_profile_current_context_root;
auto *CR = FData->CtxRoot;
if (!CurrentRoot || CR != CurrentRoot)
return;
IsUnderContext = false;
assert(CR && canBeRoot(CR));
__llvm_ctx_profile_current_context_root = nullptr;
CR->Taken.Unlock();
}
void __llvm_ctx_profile_start_collection(unsigned AutodetectDuration) {
size_t NumMemUnits = 0;
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
for (uint32_t I = 0; I < AllContextRoots.Size(); ++I) {
auto *Root = AllContextRoots[I];
__sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> Lock(
&Root->Taken);
for (auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next())
++NumMemUnits;
resetContextNode(*Root->FirstNode);
if (Root->FirstUnhandledCalleeNode)
resetContextNode(*Root->FirstUnhandledCalleeNode);
__sanitizer::atomic_store_relaxed(&Root->TotalEntries, 0);
}
if (AutodetectDuration) {
// we leak RD intentionally. Knowing when to free it is tricky, there's a
// race condition with functions observing the `RootDectector` as non-null.
// This can be addressed but the alternatives have some added complexity and
// it's not (yet) worth it.
auto *RD = new (__sanitizer::InternalAlloc(sizeof(RootAutoDetector)))
RootAutoDetector(AllFunctionsData, RootDetector, AutodetectDuration);
RD->start();
} else {
__sanitizer::Printf("[ctxprof] Initial NumMemUnits: %zu \n", NumMemUnits);
}
__sanitizer::atomic_store_relaxed(&ProfilingStarted, true);
}
bool __llvm_ctx_profile_fetch(ProfileWriter &Writer) {
__sanitizer::atomic_store_relaxed(&ProfilingStarted, false);
if (auto *RD = getRootDetector()) {
__sanitizer::Printf("[ctxprof] Expected the root autodetector to have "
"finished well before attempting to fetch a context");
RD->join();
}
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
Writer.startContextSection();
for (int I = 0, E = AllContextRoots.Size(); I < E; ++I) {
auto *Root = AllContextRoots[I];
__sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> TakenLock(
&Root->Taken);
if (!validate(Root)) {
__sanitizer::Printf("[ctxprof] Contextual Profile is %s\n", "invalid");
return false;
}
Writer.writeContextual(
*Root->FirstNode, Root->FirstUnhandledCalleeNode,
__sanitizer::atomic_load_relaxed(&Root->TotalEntries));
}
Writer.endContextSection();
Writer.startFlatSection();
// The list progresses behind the head, so taking this snapshot allows the
// list to grow concurrently without causing a race condition with our
// traversing it.
const auto *Pos = reinterpret_cast<const FunctionData *>(
__sanitizer::atomic_load_relaxed(&AllFunctionsData));
for (; Pos; Pos = Pos->Next) {
const auto *CR = Pos->CtxRoot;
if (!CR && canBeRoot(CR)) {
const auto *FP = Pos->FlatCtx;
Writer.writeFlat(FP->guid(), FP->counters(), FP->counters_size());
}
}
Writer.endFlatSection();
return true;
}
void __llvm_ctx_profile_free() {
__sanitizer::atomic_store_relaxed(&ProfilingStarted, false);
{
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&AllContextsMutex);
for (int I = 0, E = AllContextRoots.Size(); I < E; ++I)
for (auto *A = AllContextRoots[I]->FirstMemBlock; A;) {
auto *C = A;
A = A->next();
__sanitizer::InternalFree(C);
}
AllContextRoots.Reset();
}
__sanitizer::atomic_store_relaxed(&AllFunctionsData, 0U);
{
__sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock(
&FlatCtxArenaMutex);
FlatCtxArena = nullptr;
for (auto *A = FlatCtxArenaHead; A;) {
auto *C = A;
A = C->next();
__sanitizer::InternalFree(C);
}
FlatCtxArenaHead = nullptr;
}
}