llvm-project/compiler-rt/lib/xray/xray_AArch64.cpp
Sebastian Kreutzer e738a5d8e3
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548)
This fixes remaining issues in my previous PR #90959.

Changes:
- Removed dependency on LLVM header in `xray_interface.cpp`
- Fixed XRay patching for some targets due to missing changes in
architecture-specific patching functions
- Addressed some remaining compiler warnings that I missed in the
previous patch
- Formatting

I have tested these changes on `x86_64` (natively), as well as
`ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using
qemu).

**Original description:**

This PR introduces shared library (DSO) support for XRay based on a
revised version of the implementation outlined in [this
RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000).
The feature enables the patching and handling of events from DSOs,
supporting both libraries linked at startup or explicitly loaded, e.g.
via `dlopen`.
This patch adds the following:
- The `-fxray-shared` flag to enable the feature (turned off by default)
- A small runtime library that is linked into every instrumented DSO,
providing position-independent trampolines and code to register with the
main XRay runtime
- Changes to the XRay runtime to support management and patching of
multiple objects

These changes are fully backward compatible, i.e. running without
instrumented DSOs will produce identical traces (in terms of recorded
function IDs) to the previous implementation.

Due to my limited ability to test on other architectures, this feature
is only implemented and tested with x86_64. Extending support to other
architectures is fairly straightforward, requiring only a
position-independent implementation of the architecture-specific
trampoline implementation (see
`compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference).

This patch does not include any functionality to resolve function IDs
from DSOs for the provided logging/tracing modes. These modes still work
and will record calls from DSOs, but symbol resolution for these
functions in not available. Getting this to work properly requires
recording information about the loaded DSOs and should IMO be discussed
in a separate RFC, as there are mulitple feasible approaches.

---------

Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 10:15:25 +02:00

149 lines
5.4 KiB
C++

//===-- xray_AArch64.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of AArch64-specific routines (64-bit).
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_interface_internal.h"
#include <atomic>
#include <cassert>
extern "C" void __clear_cache(void *start, void *end);
namespace __xray {
// The machine codes for some instructions used in runtime patching.
enum class PatchOpcodes : uint32_t {
PO_StpX0X30SP_m16e = 0xA9BF7BE0, // STP X0, X30, [SP, #-16]!
PO_LdrX16_12 = 0x58000070, // LDR X16, #12
PO_BlrX16 = 0xD63F0200, // BLR X16
PO_LdpX0X30SP_16 = 0xA8C17BE0, // LDP X0, X30, [SP], #16
PO_B32 = 0x14000008 // B #32
};
inline static bool patchSled(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
void (*TracingHook)()) XRAY_NEVER_INSTRUMENT {
// When |Enable| == true,
// We replace the following compile-time stub (sled):
//
// xray_sled_n:
// B #32
// 7 NOPs (24 bytes)
//
// With the following runtime patch:
//
// xray_sled_n:
// STP X0, X30, [SP, #-16]! ; PUSH {r0, lr}
// LDR W17, #12 ; W17 := function ID
// LDR X16,#12 ; X16 := address of the trampoline
// BLR X16
// ;DATA: 32 bits of function ID
// ;DATA: lower 32 bits of the address of the trampoline
// ;DATA: higher 32 bits of the address of the trampoline
// LDP X0, X30, [SP], #16 ; POP {r0, lr}
//
// Replacement of the first 4-byte instruction should be the last and atomic
// operation, so that the user code which reaches the sled concurrently
// either jumps over the whole sled, or executes the whole sled when the
// latter is ready.
//
// When |Enable|==false, we set back the first instruction in the sled to be
// B #32
uint32_t *FirstAddress = reinterpret_cast<uint32_t *>(Sled.address());
uint32_t *CurAddress = FirstAddress + 1;
if (Enable) {
*CurAddress++ = 0x18000071; // ldr w17, #12
*CurAddress = uint32_t(PatchOpcodes::PO_LdrX16_12);
CurAddress++;
*CurAddress = uint32_t(PatchOpcodes::PO_BlrX16);
CurAddress++;
*CurAddress = FuncId;
CurAddress++;
*reinterpret_cast<void (**)()>(CurAddress) = TracingHook;
CurAddress += 2;
*CurAddress = uint32_t(PatchOpcodes::PO_LdpX0X30SP_16);
CurAddress++;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(FirstAddress),
uint32_t(PatchOpcodes::PO_StpX0X30SP_m16e), std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(FirstAddress),
uint32_t(PatchOpcodes::PO_B32), std::memory_order_release);
}
__clear_cache(reinterpret_cast<char *>(FirstAddress),
reinterpret_cast<char *>(CurAddress));
return true;
}
bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines,
bool LogArgs) XRAY_NEVER_INSTRUMENT {
auto Trampoline =
LogArgs ? Trampolines.LogArgsTrampoline : Trampolines.EntryTrampoline;
return patchSled(Enable, FuncId, Sled, Trampoline);
}
bool patchFunctionExit(
const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
return patchSled(Enable, FuncId, Sled, Trampolines.ExitTrampoline);
}
bool patchFunctionTailExit(
const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
return patchSled(Enable, FuncId, Sled, Trampolines.TailExitTrampoline);
}
// AArch64AsmPrinter::LowerPATCHABLE_EVENT_CALL generates this code sequence:
//
// .Lxray_event_sled_N:
// b 1f
// save x0 and x1 (and also x2 for TYPED_EVENT_CALL)
// set up x0 and x1 (and also x2 for TYPED_EVENT_CALL)
// bl __xray_CustomEvent or __xray_TypedEvent
// restore x0 and x1 (and also x2 for TYPED_EVENT_CALL)
// 1f
//
// There are 6 instructions for EVENT_CALL and 9 for TYPED_EVENT_CALL.
//
// Enable: b .+24 => nop
// Disable: nop => b .+24
bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
uint32_t Inst = Enable ? 0xd503201f : 0x14000006;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(Sled.address()), Inst,
std::memory_order_release);
return false;
}
// Enable: b +36 => nop
// Disable: nop => b +36
bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
uint32_t Inst = Enable ? 0xd503201f : 0x14000009;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(Sled.address()), Inst,
std::memory_order_release);
return false;
}
// FIXME: Maybe implement this better?
bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT { return true; }
} // namespace __xray