mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-16 18:16:35 +00:00

Adds the runtime support routines for XRay on SystemZ. Only function entry/exit is implemented. The original PR 113252 was reverted due to errors caused by adding DSO support to XRay. This PR is the original implementation with the changed function signatures. I'll add an implementation with DSO support later.
691 lines
23 KiB
C++
691 lines
23 KiB
C++
//===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Implementation of the API functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "xray_interface_internal.h"
|
|
|
|
#include <cinttypes>
|
|
#include <cstdio>
|
|
#include <errno.h>
|
|
#include <limits>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
|
|
#if SANITIZER_FUCHSIA
|
|
#include <zircon/process.h>
|
|
#include <zircon/sanitizer.h>
|
|
#include <zircon/status.h>
|
|
#include <zircon/syscalls.h>
|
|
#endif
|
|
|
|
#include "sanitizer_common/sanitizer_addrhashmap.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
|
|
#include "xray_defs.h"
|
|
#include "xray_flags.h"
|
|
|
|
extern __sanitizer::SpinMutex XRayInstrMapMutex;
|
|
extern __sanitizer::atomic_uint8_t XRayInitialized;
|
|
extern __xray::XRaySledMap *XRayInstrMaps;
|
|
extern __sanitizer::atomic_uint32_t XRayNumObjects;
|
|
|
|
namespace __xray {
|
|
|
|
#if defined(__x86_64__)
|
|
static const int16_t cSledLength = 12;
|
|
#elif defined(__aarch64__)
|
|
static const int16_t cSledLength = 32;
|
|
#elif defined(__arm__)
|
|
static const int16_t cSledLength = 28;
|
|
#elif SANITIZER_LOONGARCH64
|
|
static const int16_t cSledLength = 48;
|
|
#elif SANITIZER_MIPS32
|
|
static const int16_t cSledLength = 48;
|
|
#elif SANITIZER_MIPS64
|
|
static const int16_t cSledLength = 64;
|
|
#elif defined(__powerpc64__)
|
|
static const int16_t cSledLength = 8;
|
|
#elif defined(__hexagon__)
|
|
static const int16_t cSledLength = 20;
|
|
#elif defined(__riscv) && (__riscv_xlen == 64)
|
|
static const int16_t cSledLength = 68;
|
|
#elif defined(__riscv) && (__riscv_xlen == 32)
|
|
static const int16_t cSledLength = 52;
|
|
#elif defined(__s390x__)
|
|
static const int16_t cSledLength = 18;
|
|
#else
|
|
#error "Unsupported CPU Architecture"
|
|
#endif /* CPU architecture */
|
|
|
|
// This is the function to call when we encounter the entry or exit sleds.
|
|
atomic_uintptr_t XRayPatchedFunction SANITIZER_INTERFACE_ATTRIBUTE{0};
|
|
|
|
// This is the function to call from the arg1-enabled sleds/trampolines.
|
|
atomic_uintptr_t XRayArgLogger SANITIZER_INTERFACE_ATTRIBUTE{0};
|
|
|
|
// This is the function to call when we encounter a custom event log call.
|
|
atomic_uintptr_t XRayPatchedCustomEvent SANITIZER_INTERFACE_ATTRIBUTE{0};
|
|
|
|
// This is the function to call when we encounter a typed event log call.
|
|
atomic_uintptr_t XRayPatchedTypedEvent SANITIZER_INTERFACE_ATTRIBUTE{0};
|
|
|
|
// This is the global status to determine whether we are currently
|
|
// patching/unpatching.
|
|
atomic_uint8_t XRayPatching{0};
|
|
|
|
struct TypeDescription {
|
|
uint32_t type_id;
|
|
std::size_t description_string_length;
|
|
};
|
|
|
|
using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
|
|
// An address map from immutable descriptors to type ids.
|
|
TypeDescriptorMapType TypeDescriptorAddressMap{};
|
|
|
|
atomic_uint32_t TypeEventDescriptorCounter{0};
|
|
|
|
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
|
|
// undo any successful mprotect(...) changes. This is used to make a page
|
|
// writeable and executable, and upon destruction if it was successful in
|
|
// doing so returns the page into a read-only and executable page.
|
|
//
|
|
// This is only used specifically for runtime-patching of the XRay
|
|
// instrumentation points. This assumes that the executable pages are
|
|
// originally read-and-execute only.
|
|
class MProtectHelper {
|
|
void *PageAlignedAddr;
|
|
std::size_t MProtectLen;
|
|
bool MustCleanup;
|
|
|
|
public:
|
|
explicit MProtectHelper(void *PageAlignedAddr,
|
|
std::size_t MProtectLen,
|
|
std::size_t PageSize) XRAY_NEVER_INSTRUMENT
|
|
: PageAlignedAddr(PageAlignedAddr),
|
|
MProtectLen(MProtectLen),
|
|
MustCleanup(false) {
|
|
#if SANITIZER_FUCHSIA
|
|
MProtectLen = RoundUpTo(MProtectLen, PageSize);
|
|
#endif
|
|
}
|
|
|
|
int MakeWriteable() XRAY_NEVER_INSTRUMENT {
|
|
#if SANITIZER_FUCHSIA
|
|
auto R = __sanitizer_change_code_protection(
|
|
reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
|
|
if (R != ZX_OK) {
|
|
Report("XRay: cannot change code protection: %s\n",
|
|
_zx_status_get_string(R));
|
|
return -1;
|
|
}
|
|
MustCleanup = true;
|
|
return 0;
|
|
#else
|
|
auto R = mprotect(PageAlignedAddr, MProtectLen,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC);
|
|
if (R != -1)
|
|
MustCleanup = true;
|
|
return R;
|
|
#endif
|
|
}
|
|
|
|
~MProtectHelper() XRAY_NEVER_INSTRUMENT {
|
|
if (MustCleanup) {
|
|
#if SANITIZER_FUCHSIA
|
|
auto R = __sanitizer_change_code_protection(
|
|
reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
|
|
if (R != ZX_OK) {
|
|
Report("XRay: cannot change code protection: %s\n",
|
|
_zx_status_get_string(R));
|
|
}
|
|
#else
|
|
mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
|
|
#endif
|
|
}
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
|
|
bool isObjectLoaded(int32_t ObjId) {
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (ObjId < 0 || static_cast<uint32_t>(ObjId) >=
|
|
atomic_load(&XRayNumObjects, memory_order_acquire)) {
|
|
return false;
|
|
}
|
|
return XRayInstrMaps[ObjId].Loaded;
|
|
}
|
|
|
|
bool patchSled(const XRaySledEntry &Sled, bool Enable, int32_t FuncId,
|
|
const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
|
|
bool Success = false;
|
|
switch (Sled.Kind) {
|
|
case XRayEntryType::ENTRY:
|
|
Success = patchFunctionEntry(Enable, FuncId, Sled, Trampolines,
|
|
/*LogArgs=*/false);
|
|
break;
|
|
case XRayEntryType::EXIT:
|
|
Success = patchFunctionExit(Enable, FuncId, Sled, Trampolines);
|
|
break;
|
|
case XRayEntryType::TAIL:
|
|
Success = patchFunctionTailExit(Enable, FuncId, Sled, Trampolines);
|
|
break;
|
|
case XRayEntryType::LOG_ARGS_ENTRY:
|
|
Success = patchFunctionEntry(Enable, FuncId, Sled, Trampolines,
|
|
/*LogArgs=*/true);
|
|
break;
|
|
case XRayEntryType::CUSTOM_EVENT:
|
|
Success = patchCustomEvent(Enable, FuncId, Sled);
|
|
break;
|
|
case XRayEntryType::TYPED_EVENT:
|
|
Success = patchTypedEvent(Enable, FuncId, Sled);
|
|
break;
|
|
default:
|
|
Report("Unsupported sled kind '%" PRIu64 "' @%04x\n", Sled.Address,
|
|
int(Sled.Kind));
|
|
return false;
|
|
}
|
|
return Success;
|
|
}
|
|
|
|
const XRayFunctionSledIndex
|
|
findFunctionSleds(int32_t FuncId,
|
|
const XRaySledMap &InstrMap) XRAY_NEVER_INSTRUMENT {
|
|
int32_t CurFn = 0;
|
|
uint64_t LastFnAddr = 0;
|
|
XRayFunctionSledIndex Index = {nullptr, 0};
|
|
|
|
for (std::size_t I = 0; I < InstrMap.Entries && CurFn <= FuncId; I++) {
|
|
const auto &Sled = InstrMap.Sleds[I];
|
|
const auto Function = Sled.function();
|
|
if (Function != LastFnAddr) {
|
|
CurFn++;
|
|
LastFnAddr = Function;
|
|
}
|
|
|
|
if (CurFn == FuncId) {
|
|
if (Index.Begin == nullptr)
|
|
Index.Begin = &Sled;
|
|
Index.Size = &Sled - Index.Begin + 1;
|
|
}
|
|
}
|
|
|
|
return Index;
|
|
}
|
|
|
|
XRayPatchingStatus patchFunction(int32_t FuncId, int32_t ObjId,
|
|
bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
if (!atomic_load(&XRayInitialized, memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!atomic_compare_exchange_strong(
|
|
&XRayPatching, &NotPatching, true, memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
// Next, we look for the function index.
|
|
XRaySledMap InstrMap;
|
|
{
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (ObjId < 0 || static_cast<uint32_t>(ObjId) >=
|
|
atomic_load(&XRayNumObjects, memory_order_acquire)) {
|
|
Report("Unable to patch function: invalid sled map index: %d", ObjId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
InstrMap = XRayInstrMaps[ObjId];
|
|
}
|
|
|
|
// If we don't have an index, we can't patch individual functions.
|
|
if (InstrMap.Functions == 0)
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
|
|
// Check if the corresponding DSO has been unloaded.
|
|
if (!InstrMap.Loaded) {
|
|
Report("Invalid function id provided: %d\n", FuncId);
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
}
|
|
|
|
// FuncId must be a positive number, less than the number of functions
|
|
// instrumented.
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
|
|
Report("Invalid function id provided: %d\n", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
auto PackedId = __xray::MakePackedId(FuncId, ObjId);
|
|
|
|
// Now we patch ths sleds for this specific function.
|
|
XRayFunctionSledIndex SledRange;
|
|
if (InstrMap.SledsIndex) {
|
|
SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
|
|
InstrMap.SledsIndex[FuncId - 1].Size};
|
|
} else {
|
|
SledRange = findFunctionSleds(FuncId, InstrMap);
|
|
}
|
|
|
|
auto *f = SledRange.Begin;
|
|
bool SucceedOnce = false;
|
|
for (size_t i = 0; i != SledRange.Size; ++i)
|
|
SucceedOnce |= patchSled(f[i], Enable, PackedId, InstrMap.Trampolines);
|
|
|
|
atomic_store(&XRayPatching, false, memory_order_release);
|
|
|
|
if (!SucceedOnce) {
|
|
Report("Failed patching any sled for function '%d'.", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
return XRayPatchingStatus::SUCCESS;
|
|
}
|
|
|
|
// controlPatching implements the common internals of the patching/unpatching
|
|
// implementation. |Enable| defines whether we're enabling or disabling the
|
|
// runtime XRay instrumentation.
|
|
// This function should only be called after ensuring that XRay is initialized
|
|
// and no other thread is currently patching.
|
|
XRayPatchingStatus controlPatchingObjectUnchecked(bool Enable, int32_t ObjId) {
|
|
XRaySledMap InstrMap;
|
|
{
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (ObjId < 0 || static_cast<uint32_t>(ObjId) >=
|
|
atomic_load(&XRayNumObjects, memory_order_acquire)) {
|
|
Report("Unable to patch functions: invalid sled map index: %d\n", ObjId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
InstrMap = XRayInstrMaps[ObjId];
|
|
}
|
|
if (InstrMap.Entries == 0)
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
|
|
if (Verbosity())
|
|
Report("Patching object %d with %d functions.\n", ObjId, InstrMap.Entries);
|
|
|
|
// Check if the corresponding DSO has been unloaded.
|
|
if (!InstrMap.Loaded) {
|
|
Report("Object is not loaded at index: %d\n", ObjId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
uint32_t FuncId = 1;
|
|
uint64_t CurFun = 0;
|
|
|
|
// First we want to find the bounds for which we have instrumentation points,
|
|
// and try to get as few calls to mprotect(...) as possible. We're assuming
|
|
// that all the sleds for the instrumentation map are contiguous as a single
|
|
// set of pages. When we do support dynamic shared object instrumentation,
|
|
// we'll need to do this for each set of page load offsets per DSO loaded. For
|
|
// now we're assuming we can mprotect the whole section of text between the
|
|
// minimum sled address and the maximum sled address (+ the largest sled
|
|
// size).
|
|
auto *MinSled = &InstrMap.Sleds[0];
|
|
auto *MaxSled = &InstrMap.Sleds[InstrMap.Entries - 1];
|
|
for (std::size_t I = 0; I < InstrMap.Entries; I++) {
|
|
const auto &Sled = InstrMap.Sleds[I];
|
|
if (Sled.address() < MinSled->address())
|
|
MinSled = &Sled;
|
|
if (Sled.address() > MaxSled->address())
|
|
MaxSled = &Sled;
|
|
}
|
|
|
|
const size_t PageSize = flags()->xray_page_size_override > 0
|
|
? flags()->xray_page_size_override
|
|
: GetPageSizeCached();
|
|
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
|
|
Report("System page size is not a power of two: %zu\n", PageSize);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
void *PageAlignedAddr =
|
|
reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
|
|
size_t MProtectLen =
|
|
(MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
|
|
cSledLength;
|
|
MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
|
|
if (Protector.MakeWriteable() == -1) {
|
|
Report("Failed mprotect: %d\n", errno);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
|
|
auto &Sled = InstrMap.Sleds[I];
|
|
auto F = Sled.function();
|
|
if (CurFun == 0)
|
|
CurFun = F;
|
|
if (F != CurFun) {
|
|
++FuncId;
|
|
CurFun = F;
|
|
}
|
|
auto PackedId = __xray::MakePackedId(FuncId, ObjId);
|
|
patchSled(Sled, Enable, PackedId, InstrMap.Trampolines);
|
|
}
|
|
atomic_store(&XRayPatching, false, memory_order_release);
|
|
return XRayPatchingStatus::SUCCESS;
|
|
}
|
|
|
|
// Controls patching for all registered objects.
|
|
// Returns: SUCCESS, if patching succeeds for all objects.
|
|
// NOT_INITIALIZED, if one or more objects returned NOT_INITIALIZED
|
|
// but none failed.
|
|
// FAILED, if patching of one or more objects failed.
|
|
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
if (!atomic_load(&XRayInitialized, memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!atomic_compare_exchange_strong(&XRayPatching, &NotPatching, true,
|
|
memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
auto XRayPatchingStatusResetter = at_scope_exit(
|
|
[] { atomic_store(&XRayPatching, false, memory_order_release); });
|
|
|
|
unsigned NumObjects = __xray_num_objects();
|
|
|
|
XRayPatchingStatus CombinedStatus{NOT_INITIALIZED};
|
|
for (unsigned I = 0; I < NumObjects; ++I) {
|
|
if (!isObjectLoaded(I))
|
|
continue;
|
|
auto LastStatus = controlPatchingObjectUnchecked(Enable, I);
|
|
switch (LastStatus) {
|
|
case SUCCESS:
|
|
if (CombinedStatus == NOT_INITIALIZED)
|
|
CombinedStatus = SUCCESS;
|
|
break;
|
|
case FAILED:
|
|
// Report failure, but try to patch the remaining objects
|
|
CombinedStatus = FAILED;
|
|
break;
|
|
case NOT_INITIALIZED:
|
|
// XRay has been initialized but there are no sleds available for this
|
|
// object. Try to patch remaining objects.
|
|
if (CombinedStatus != FAILED)
|
|
CombinedStatus = NOT_INITIALIZED;
|
|
break;
|
|
case ONGOING:
|
|
UNREACHABLE("Status ONGOING should not appear at this point");
|
|
}
|
|
}
|
|
return CombinedStatus;
|
|
}
|
|
|
|
// Controls patching for one object.
|
|
XRayPatchingStatus controlPatching(bool Enable,
|
|
int32_t ObjId) XRAY_NEVER_INSTRUMENT {
|
|
|
|
if (!atomic_load(&XRayInitialized, memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!atomic_compare_exchange_strong(&XRayPatching, &NotPatching, true,
|
|
memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
auto XRayPatchingStatusResetter = at_scope_exit(
|
|
[] { atomic_store(&XRayPatching, false, memory_order_release); });
|
|
|
|
return controlPatchingObjectUnchecked(Enable, ObjId);
|
|
}
|
|
|
|
XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId, int32_t ObjId,
|
|
bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
XRaySledMap InstrMap;
|
|
{
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (ObjId < 0 || static_cast<uint32_t>(ObjId) >=
|
|
atomic_load(&XRayNumObjects, memory_order_acquire)) {
|
|
Report("Unable to patch function: invalid sled map index: %d\n", ObjId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
InstrMap = XRayInstrMaps[ObjId];
|
|
}
|
|
|
|
// Check if the corresponding DSO has been unloaded.
|
|
if (!InstrMap.Loaded) {
|
|
Report("Object is not loaded at index: %d\n", ObjId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
// FuncId must be a positive number, less than the number of functions
|
|
// instrumented.
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
|
|
Report("Invalid function id provided: %d\n", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
const size_t PageSize = flags()->xray_page_size_override > 0
|
|
? flags()->xray_page_size_override
|
|
: GetPageSizeCached();
|
|
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
|
|
Report("Provided page size is not a power of two: %zu\n", PageSize);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
// Here we compute the minimum sled and maximum sled associated with a
|
|
// particular function ID.
|
|
XRayFunctionSledIndex SledRange;
|
|
if (InstrMap.SledsIndex) {
|
|
SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
|
|
InstrMap.SledsIndex[FuncId - 1].Size};
|
|
} else {
|
|
SledRange = findFunctionSleds(FuncId, InstrMap);
|
|
}
|
|
auto *f = SledRange.Begin;
|
|
auto *e = SledRange.Begin + SledRange.Size;
|
|
auto *MinSled = f;
|
|
auto *MaxSled = e - 1;
|
|
while (f != e) {
|
|
if (f->address() < MinSled->address())
|
|
MinSled = f;
|
|
if (f->address() > MaxSled->address())
|
|
MaxSled = f;
|
|
++f;
|
|
}
|
|
|
|
void *PageAlignedAddr =
|
|
reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
|
|
size_t MProtectLen =
|
|
(MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
|
|
cSledLength;
|
|
MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
|
|
if (Protector.MakeWriteable() == -1) {
|
|
Report("Failed mprotect: %d\n", errno);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
return patchFunction(FuncId, ObjId, Enable);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
} // namespace __xray
|
|
|
|
using namespace __xray;
|
|
|
|
// The following functions are declared `extern "C" {...}` in the header, hence
|
|
// they're defined in the global namespace.
|
|
|
|
int __xray_set_handler(void (*entry)(int32_t,
|
|
XRayEntryType)) XRAY_NEVER_INSTRUMENT {
|
|
if (atomic_load(&XRayInitialized, memory_order_acquire)) {
|
|
|
|
atomic_store(&__xray::XRayPatchedFunction,
|
|
reinterpret_cast<uintptr_t>(entry), memory_order_release);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __xray_set_customevent_handler(void (*entry)(void *, size_t))
|
|
XRAY_NEVER_INSTRUMENT {
|
|
if (atomic_load(&XRayInitialized, memory_order_acquire)) {
|
|
atomic_store(&__xray::XRayPatchedCustomEvent,
|
|
reinterpret_cast<uintptr_t>(entry), memory_order_release);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __xray_set_typedevent_handler(void (*entry)(size_t, const void *,
|
|
size_t)) XRAY_NEVER_INSTRUMENT {
|
|
if (atomic_load(&XRayInitialized, memory_order_acquire)) {
|
|
atomic_store(&__xray::XRayPatchedTypedEvent,
|
|
reinterpret_cast<uintptr_t>(entry), memory_order_release);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_set_handler(nullptr);
|
|
}
|
|
|
|
int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_set_customevent_handler(nullptr);
|
|
}
|
|
|
|
int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_set_typedevent_handler(nullptr);
|
|
}
|
|
|
|
uint16_t __xray_register_event_type(
|
|
const char *const event_type) XRAY_NEVER_INSTRUMENT {
|
|
TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
|
|
if (h.created()) {
|
|
h->type_id = atomic_fetch_add(
|
|
&TypeEventDescriptorCounter, 1, memory_order_acq_rel);
|
|
h->description_string_length = strnlen(event_type, 1024);
|
|
}
|
|
return h->type_id;
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(true);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch_object(int32_t ObjId) XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(true, ObjId);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(false);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_unpatch_object(int32_t ObjId) XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(false, ObjId);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
auto Ids = __xray::UnpackId(FuncId);
|
|
auto ObjId = Ids.first;
|
|
auto FnId = Ids.second;
|
|
return mprotectAndPatchFunction(FnId, ObjId, true);
|
|
}
|
|
|
|
XRayPatchingStatus
|
|
__xray_patch_function_in_object(int32_t FuncId,
|
|
int32_t ObjId) XRAY_NEVER_INSTRUMENT {
|
|
return mprotectAndPatchFunction(FuncId, ObjId, true);
|
|
}
|
|
|
|
XRayPatchingStatus
|
|
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
auto Ids = __xray::UnpackId(FuncId);
|
|
auto ObjId = Ids.first;
|
|
auto FnId = Ids.second;
|
|
return mprotectAndPatchFunction(FnId, ObjId, false);
|
|
}
|
|
|
|
XRayPatchingStatus
|
|
__xray_unpatch_function_in_object(int32_t FuncId,
|
|
int32_t ObjId) XRAY_NEVER_INSTRUMENT {
|
|
return mprotectAndPatchFunction(FuncId, ObjId, false);
|
|
}
|
|
|
|
int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
|
|
if (!atomic_load(&XRayInitialized, memory_order_acquire))
|
|
return 0;
|
|
|
|
// A relaxed write might not be visible even if the current thread gets
|
|
// scheduled on a different CPU/NUMA node. We need to wait for everyone to
|
|
// have this handler installed for consistency of collected data across CPUs.
|
|
atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
|
|
memory_order_release);
|
|
return 1;
|
|
}
|
|
|
|
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
|
|
|
|
uintptr_t
|
|
__xray_function_address(int32_t CombinedFuncId) XRAY_NEVER_INSTRUMENT {
|
|
auto Ids = __xray::UnpackId(CombinedFuncId);
|
|
return __xray_function_address_in_object(Ids.second, Ids.first);
|
|
}
|
|
|
|
uintptr_t __xray_function_address_in_object(int32_t FuncId, int32_t ObjId)
|
|
XRAY_NEVER_INSTRUMENT {
|
|
XRaySledMap InstrMap;
|
|
{
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
auto count = atomic_load(&XRayNumObjects, memory_order_acquire);
|
|
if (ObjId < 0 || static_cast<uint32_t>(ObjId) >= count) {
|
|
Report("Unable to determine function address: invalid sled map index %d "
|
|
"(size is %d)\n",
|
|
ObjId, (int)count);
|
|
return 0;
|
|
}
|
|
InstrMap = XRayInstrMaps[ObjId];
|
|
}
|
|
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions)
|
|
return 0;
|
|
const XRaySledEntry *Sled =
|
|
InstrMap.SledsIndex ? InstrMap.SledsIndex[FuncId - 1].fromPCRelative()
|
|
: findFunctionSleds(FuncId, InstrMap).Begin;
|
|
return Sled->function()
|
|
// On PPC, function entries are always aligned to 16 bytes. The beginning of a
|
|
// sled might be a local entry, which is always +8 based on the global entry.
|
|
// Always return the global entry.
|
|
#ifdef __PPC__
|
|
& ~0xf
|
|
#endif
|
|
;
|
|
}
|
|
|
|
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_max_function_id_in_object(0);
|
|
}
|
|
|
|
size_t __xray_max_function_id_in_object(int32_t ObjId) XRAY_NEVER_INSTRUMENT {
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (ObjId < 0 || static_cast<uint32_t>(ObjId) >=
|
|
atomic_load(&XRayNumObjects, memory_order_acquire))
|
|
return 0;
|
|
return XRayInstrMaps[ObjId].Functions;
|
|
}
|
|
|
|
size_t __xray_num_objects() XRAY_NEVER_INSTRUMENT {
|
|
SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
return atomic_load(&XRayNumObjects, memory_order_acquire);
|
|
}
|
|
|
|
int32_t __xray_unpack_function_id(int32_t PackedId) {
|
|
return __xray::UnpackId(PackedId).second;
|
|
}
|
|
|
|
int32_t __xray_unpack_object_id(int32_t PackedId) {
|
|
return __xray::UnpackId(PackedId).first;
|
|
}
|
|
|
|
int32_t __xray_pack_id(int32_t FuncId, int32_t ObjId) {
|
|
return __xray::MakePackedId(FuncId, ObjId);
|
|
}
|