llvm-project/lld/ELF/CallGraphSort.cpp
Fangrui Song bcc1e58448 [ELF] Allow --symbol-ordering-file and call graph profile to be used together
Port https://reviews.llvm.org/D117354 from the MachO port.

If both --symbol-ordering-file and call graph profile are present, the
--symbol-ordering-file takes precedence, but the call graph profile is
still used for symbols that don't appear in the order file.

In addition, call graph profile described sections are now ordered
before other sections.
2025-01-05 17:13:23 -08:00

348 lines
12 KiB
C++

//===- CallGraphSort.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// The file is responsible for sorting sections using LLVM call graph profile
/// data by placing frequently executed code sections together. The goal of the
/// placement is to improve the runtime performance of the final executable by
/// arranging code sections so that i-TLB misses and i-cache misses are reduced.
///
/// The algorithm first builds a call graph based on the profile data and then
/// iteratively merges "chains" (ordered lists) of input sections which will be
/// laid out as a unit. There are two implementations for deciding how to
/// merge a pair of chains:
/// - a simpler one, referred to as Call-Chain Clustering (C^3), that follows
/// "Optimizing Function Placement for Large-Scale Data-Center Applications"
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
/// - a more advanced one, referred to as Cache-Directed-Sort (CDSort), which
/// typically produces layouts with higher locality, and hence, yields fewer
/// instruction cache misses on large binaries.
//===----------------------------------------------------------------------===//
#include "CallGraphSort.h"
#include "InputFiles.h"
#include "InputSection.h"
#include "Symbols.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Transforms/Utils/CodeLayout.h"
#include <numeric>
using namespace llvm;
using namespace lld;
using namespace lld::elf;
namespace {
struct Edge {
int from;
uint64_t weight;
};
struct Cluster {
Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
double getDensity() const {
if (size == 0)
return 0;
return double(weight) / double(size);
}
int next;
int prev;
uint64_t size;
uint64_t weight = 0;
uint64_t initialWeight = 0;
Edge bestPred = {-1, 0};
};
/// Implementation of the Call-Chain Clustering (C^3). The goal of this
/// algorithm is to improve runtime performance of the executable by arranging
/// code sections such that page table and i-cache misses are minimized.
///
/// Definitions:
/// * Cluster
/// * An ordered list of input sections which are laid out as a unit. At the
/// beginning of the algorithm each input section has its own cluster and
/// the weight of the cluster is the sum of the weight of all incoming
/// edges.
/// * Call-Chain Clustering (C³) Heuristic
/// * Defines when and how clusters are combined. Pick the highest weighted
/// input section then add it to its most likely predecessor if it wouldn't
/// penalize it too much.
/// * Density
/// * The weight of the cluster divided by the size of the cluster. This is a
/// proxy for the amount of execution time spent per byte of the cluster.
///
/// It does so given a call graph profile by the following:
/// * Build a weighted call graph from the call graph profile
/// * Sort input sections by weight
/// * For each input section starting with the highest weight
/// * Find its most likely predecessor cluster
/// * Check if the combined cluster would be too large, or would have too low
/// a density.
/// * If not, then combine the clusters.
/// * Sort non-empty clusters by density
class CallGraphSort {
public:
CallGraphSort(Ctx &);
DenseMap<const InputSectionBase *, int> run();
private:
Ctx &ctx;
std::vector<Cluster> clusters;
std::vector<const InputSectionBase *> sections;
};
// Maximum amount the combined cluster density can be worse than the original
// cluster to consider merging.
constexpr int MAX_DENSITY_DEGRADATION = 8;
// Maximum cluster size in bytes.
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
} // end anonymous namespace
using SectionPair =
std::pair<const InputSectionBase *, const InputSectionBase *>;
// Take the edge list in ctx.arg.callGraphProfile, resolve symbol names to
// Symbols, and generate a graph between InputSections with the provided
// weights.
CallGraphSort::CallGraphSort(Ctx &ctx) : ctx(ctx) {
MapVector<SectionPair, uint64_t> &profile = ctx.arg.callGraphProfile;
DenseMap<const InputSectionBase *, int> secToCluster;
auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
auto res = secToCluster.try_emplace(isec, clusters.size());
if (res.second) {
sections.push_back(isec);
clusters.emplace_back(clusters.size(), isec->getSize());
}
return res.first->second;
};
// Create the graph.
for (std::pair<SectionPair, uint64_t> &c : profile) {
const auto *fromSB = cast<InputSectionBase>(c.first.first);
const auto *toSB = cast<InputSectionBase>(c.first.second);
uint64_t weight = c.second;
// Ignore edges between input sections belonging to different output
// sections. This is done because otherwise we would end up with clusters
// containing input sections that can't actually be placed adjacently in the
// output. This messes with the cluster size and density calculations. We
// would also end up moving input sections in other output sections without
// moving them closer to what calls them.
if (fromSB->getOutputSection() != toSB->getOutputSection())
continue;
int from = getOrCreateNode(fromSB);
int to = getOrCreateNode(toSB);
clusters[to].weight += weight;
if (from == to)
continue;
// Remember the best edge.
Cluster &toC = clusters[to];
if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
toC.bestPred.from = from;
toC.bestPred.weight = weight;
}
}
for (Cluster &c : clusters)
c.initialWeight = c.weight;
}
// It's bad to merge clusters which would degrade the density too much.
static bool isNewDensityBad(Cluster &a, Cluster &b) {
double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
}
// Find the leader of V's belonged cluster (represented as an equivalence
// class). We apply union-find path-halving technique (simple to implement) in
// the meantime as it decreases depths and the time complexity.
static int getLeader(int *leaders, int v) {
while (leaders[v] != v) {
leaders[v] = leaders[leaders[v]];
v = leaders[v];
}
return v;
}
static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
Cluster &from, int fromIdx) {
int tail1 = into.prev, tail2 = from.prev;
into.prev = tail2;
cs[tail2].next = intoIdx;
from.prev = tail1;
cs[tail1].next = fromIdx;
into.size += from.size;
into.weight += from.weight;
from.size = 0;
from.weight = 0;
}
// Group InputSections into clusters using the Call-Chain Clustering heuristic
// then sort the clusters by density.
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
std::vector<int> sorted(clusters.size());
std::unique_ptr<int[]> leaders(new int[clusters.size()]);
std::iota(leaders.get(), leaders.get() + clusters.size(), 0);
std::iota(sorted.begin(), sorted.end(), 0);
llvm::stable_sort(sorted, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
for (int l : sorted) {
// The cluster index is the same as the index of its leader here because
// clusters[L] has not been merged into another cluster yet.
Cluster &c = clusters[l];
// Don't consider merging if the edge is unlikely.
if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
continue;
int predL = getLeader(leaders.get(), c.bestPred.from);
if (l == predL)
continue;
Cluster *predC = &clusters[predL];
if (c.size + predC->size > MAX_CLUSTER_SIZE)
continue;
if (isNewDensityBad(*predC, c))
continue;
leaders[l] = predL;
mergeClusters(clusters, *predC, predL, c, l);
}
// Sort remaining non-empty clusters by density.
sorted.clear();
for (int i = 0, e = (int)clusters.size(); i != e; ++i)
if (clusters[i].size > 0)
sorted.push_back(i);
llvm::stable_sort(sorted, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
DenseMap<const InputSectionBase *, int> orderMap;
int curOrder = -clusters.size();
for (int leader : sorted) {
for (int i = leader;;) {
orderMap[sections[i]] = curOrder++;
i = clusters[i].next;
if (i == leader)
break;
}
}
if (!ctx.arg.printSymbolOrder.empty()) {
std::error_code ec;
raw_fd_ostream os(ctx.arg.printSymbolOrder, ec, sys::fs::OF_None);
if (ec) {
ErrAlways(ctx) << "cannot open " << ctx.arg.printSymbolOrder << ": "
<< ec.message();
return orderMap;
}
// Print the symbols ordered by C3, in the order of increasing curOrder
// Instead of sorting all the orderMap, just repeat the loops above.
for (int leader : sorted)
for (int i = leader;;) {
// Search all the symbols in the file of the section
// and find out a Defined symbol with name that is within the section.
for (Symbol *sym : sections[i]->file->getSymbols())
if (!sym->isSection()) // Filter out section-type symbols here.
if (auto *d = dyn_cast<Defined>(sym))
if (sections[i] == d->section)
os << sym->getName() << "\n";
i = clusters[i].next;
if (i == leader)
break;
}
}
return orderMap;
}
// Sort sections by the profile data using the Cache-Directed Sort algorithm.
// The placement is done by optimizing the locality by co-locating frequently
// executed code sections together.
static DenseMap<const InputSectionBase *, int>
computeCacheDirectedSortOrder(Ctx &ctx) {
SmallVector<uint64_t, 0> funcSizes;
SmallVector<uint64_t, 0> funcCounts;
SmallVector<codelayout::EdgeCount, 0> callCounts;
SmallVector<uint64_t, 0> callOffsets;
SmallVector<const InputSectionBase *, 0> sections;
DenseMap<const InputSectionBase *, size_t> secToTargetId;
auto getOrCreateNode = [&](const InputSectionBase *inSec) -> size_t {
auto res = secToTargetId.try_emplace(inSec, sections.size());
if (res.second) {
// inSec does not appear before in the graph.
sections.push_back(inSec);
funcSizes.push_back(inSec->getSize());
funcCounts.push_back(0);
}
return res.first->second;
};
// Create the graph.
for (std::pair<SectionPair, uint64_t> &c : ctx.arg.callGraphProfile) {
const InputSectionBase *fromSB = cast<InputSectionBase>(c.first.first);
const InputSectionBase *toSB = cast<InputSectionBase>(c.first.second);
// Ignore edges between input sections belonging to different sections.
if (fromSB->getOutputSection() != toSB->getOutputSection())
continue;
uint64_t weight = c.second;
// Ignore edges with zero weight.
if (weight == 0)
continue;
size_t from = getOrCreateNode(fromSB);
size_t to = getOrCreateNode(toSB);
// Ignore self-edges (recursive calls).
if (from == to)
continue;
callCounts.push_back({from, to, weight});
// Assume that the jump is at the middle of the input section. The profile
// data does not contain jump offsets.
callOffsets.push_back((funcSizes[from] + 1) / 2);
funcCounts[to] += weight;
}
// Run the layout algorithm.
std::vector<uint64_t> sortedSections = codelayout::computeCacheDirectedLayout(
funcSizes, funcCounts, callCounts, callOffsets);
// Create the final order.
DenseMap<const InputSectionBase *, int> orderMap;
int curOrder = -sortedSections.size();
for (uint64_t secIdx : sortedSections)
orderMap[sections[secIdx]] = curOrder++;
return orderMap;
}
// Sort sections by the profile data provided by --callgraph-profile-file.
//
// This first builds a call graph based on the profile data then merges sections
// according either to the C³ or Cache-Directed-Sort ordering algorithm.
DenseMap<const InputSectionBase *, int>
elf::computeCallGraphProfileOrder(Ctx &ctx) {
if (ctx.arg.callGraphProfileSort == CGProfileSortKind::Cdsort)
return computeCacheDirectedSortOrder(ctx);
return CallGraphSort(ctx).run();
}