mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-16 00:56:37 +00:00

When GCS was introduced to LLD, the gcs-report option allowed for a user
to gain information relating to if their relocatable objects supported
the feature. For an executable or shared-library to support GCS, all
relocatable objects must declare that they support GCS.
The gcs-report checks were only done on relocatable object files,
however for a program to enable GCS, the executable and all shared
libraries that it loads must enable GCS. gcs-report-dynamic enables
checks to be performed on all shared objects loaded by LLD, and in cases
where GCS is not supported, a warning or error will be emitted.
It should be noted that only shared files directly passed to LLD are
checked for GCS support. Files that are noted in the `DT_NEEDED` tags
are assumed to have had their GCS support checked when they were
created.
The behaviour of the -zgcs-dynamic-report option matches that of GNU ld.
The behaviour is as follows unless the user explicitly sets the value:
* -zgcs-report=warning or -zgcs-report=error implies
-zgcs-report-dynamic=warning.
This approach avoids inheriting an error level if the user wishes to
continue building a module without rebuilding all the shared libraries.
The same approach was taken for the GNU ld linker, so behaviour is
identical across the toolchains.
This implementation matches the error message and command line interface
used within the GNU ld Linker. See here:
724a8341f6
To support this option being introduced, two other changes are included
as part of this PR. The first converts the -zgcs-report option to
utilise an Enum, opposed to StringRef values. This enables easier
tracking of the value the user defines when inheriting the value for the
gas-report-dynamic option. The second is to parse the Dynamic Objects
program headers to locate the GNU Attribute flag that shows GCS is
supported. This is needed so, when using the gcs-report-dynamic option,
LLD can correctly determine if a dynamic object supports GCS.
---------
Co-authored-by: Fangrui Song <i@maskray.me>
1987 lines
74 KiB
C++
1987 lines
74 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Config.h"
|
|
#include "DWARF.h"
|
|
#include "Driver.h"
|
|
#include "InputSection.h"
|
|
#include "LinkerScript.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm/ADT/CachedHashString.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Object/IRObjectFile.h"
|
|
#include "llvm/Support/ARMAttributeParser.h"
|
|
#include "llvm/Support/ARMBuildAttributes.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/RISCVAttributeParser.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::sys;
|
|
using namespace llvm::sys::fs;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// This function is explicitly instantiated in ARM.cpp, don't do it here to
|
|
// avoid warnings with MSVC.
|
|
extern template void ObjFile<ELF32LE>::importCmseSymbols();
|
|
extern template void ObjFile<ELF32BE>::importCmseSymbols();
|
|
extern template void ObjFile<ELF64LE>::importCmseSymbols();
|
|
extern template void ObjFile<ELF64BE>::importCmseSymbols();
|
|
|
|
// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
|
|
std::string elf::toStr(Ctx &ctx, const InputFile *f) {
|
|
static std::mutex mu;
|
|
if (!f)
|
|
return "<internal>";
|
|
|
|
{
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
if (f->toStringCache.empty()) {
|
|
if (f->archiveName.empty())
|
|
f->toStringCache = f->getName();
|
|
else
|
|
(f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
|
|
}
|
|
}
|
|
return std::string(f->toStringCache);
|
|
}
|
|
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
const InputFile *f) {
|
|
return s << toStr(s.ctx, f);
|
|
}
|
|
|
|
static ELFKind getELFKind(Ctx &ctx, MemoryBufferRef mb, StringRef archiveName) {
|
|
unsigned char size;
|
|
unsigned char endian;
|
|
std::tie(size, endian) = getElfArchType(mb.getBuffer());
|
|
|
|
auto report = [&](StringRef msg) {
|
|
StringRef filename = mb.getBufferIdentifier();
|
|
if (archiveName.empty())
|
|
Fatal(ctx) << filename << ": " << msg;
|
|
else
|
|
Fatal(ctx) << archiveName << "(" << filename << "): " << msg;
|
|
};
|
|
|
|
if (!mb.getBuffer().starts_with(ElfMagic))
|
|
report("not an ELF file");
|
|
if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
|
|
report("corrupted ELF file: invalid data encoding");
|
|
if (size != ELFCLASS32 && size != ELFCLASS64)
|
|
report("corrupted ELF file: invalid file class");
|
|
|
|
size_t bufSize = mb.getBuffer().size();
|
|
if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
|
|
(size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
|
|
report("corrupted ELF file: file is too short");
|
|
|
|
if (size == ELFCLASS32)
|
|
return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
|
|
return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
|
|
}
|
|
|
|
// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
|
|
// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
|
|
// the input objects have been compiled.
|
|
static void updateARMVFPArgs(Ctx &ctx, const ARMAttributeParser &attributes,
|
|
const InputFile *f) {
|
|
std::optional<unsigned> attr =
|
|
attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
|
|
if (!attr)
|
|
// If an ABI tag isn't present then it is implicitly given the value of 0
|
|
// which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
|
|
// including some in glibc that don't use FP args (and should have value 3)
|
|
// don't have the attribute so we do not consider an implicit value of 0
|
|
// as a clash.
|
|
return;
|
|
|
|
unsigned vfpArgs = *attr;
|
|
ARMVFPArgKind arg;
|
|
switch (vfpArgs) {
|
|
case ARMBuildAttrs::BaseAAPCS:
|
|
arg = ARMVFPArgKind::Base;
|
|
break;
|
|
case ARMBuildAttrs::HardFPAAPCS:
|
|
arg = ARMVFPArgKind::VFP;
|
|
break;
|
|
case ARMBuildAttrs::ToolChainFPPCS:
|
|
// Tool chain specific convention that conforms to neither AAPCS variant.
|
|
arg = ARMVFPArgKind::ToolChain;
|
|
break;
|
|
case ARMBuildAttrs::CompatibleFPAAPCS:
|
|
// Object compatible with all conventions.
|
|
return;
|
|
default:
|
|
ErrAlways(ctx) << f << ": unknown Tag_ABI_VFP_args value: " << vfpArgs;
|
|
return;
|
|
}
|
|
// Follow ld.bfd and error if there is a mix of calling conventions.
|
|
if (ctx.arg.armVFPArgs != arg && ctx.arg.armVFPArgs != ARMVFPArgKind::Default)
|
|
ErrAlways(ctx) << f << ": incompatible Tag_ABI_VFP_args";
|
|
else
|
|
ctx.arg.armVFPArgs = arg;
|
|
}
|
|
|
|
// The ARM support in lld makes some use of instructions that are not available
|
|
// on all ARM architectures. Namely:
|
|
// - Use of BLX instruction for interworking between ARM and Thumb state.
|
|
// - Use of the extended Thumb branch encoding in relocation.
|
|
// - Use of the MOVT/MOVW instructions in Thumb Thunks.
|
|
// The ARM Attributes section contains information about the architecture chosen
|
|
// at compile time. We follow the convention that if at least one input object
|
|
// is compiled with an architecture that supports these features then lld is
|
|
// permitted to use them.
|
|
static void updateSupportedARMFeatures(Ctx &ctx,
|
|
const ARMAttributeParser &attributes) {
|
|
std::optional<unsigned> attr =
|
|
attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
|
|
if (!attr)
|
|
return;
|
|
auto arch = *attr;
|
|
switch (arch) {
|
|
case ARMBuildAttrs::Pre_v4:
|
|
case ARMBuildAttrs::v4:
|
|
case ARMBuildAttrs::v4T:
|
|
// Architectures prior to v5 do not support BLX instruction
|
|
break;
|
|
case ARMBuildAttrs::v5T:
|
|
case ARMBuildAttrs::v5TE:
|
|
case ARMBuildAttrs::v5TEJ:
|
|
case ARMBuildAttrs::v6:
|
|
case ARMBuildAttrs::v6KZ:
|
|
case ARMBuildAttrs::v6K:
|
|
ctx.arg.armHasBlx = true;
|
|
// Architectures used in pre-Cortex processors do not support
|
|
// The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
|
|
// of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
|
|
break;
|
|
default:
|
|
// All other Architectures have BLX and extended branch encoding
|
|
ctx.arg.armHasBlx = true;
|
|
ctx.arg.armJ1J2BranchEncoding = true;
|
|
if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
|
|
// All Architectures used in Cortex processors with the exception
|
|
// of v6-M and v6S-M have the MOVT and MOVW instructions.
|
|
ctx.arg.armHasMovtMovw = true;
|
|
break;
|
|
}
|
|
|
|
// Only ARMv8-M or later architectures have CMSE support.
|
|
std::optional<unsigned> profile =
|
|
attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
|
|
if (!profile)
|
|
return;
|
|
if (arch >= ARMBuildAttrs::CPUArch::v8_M_Base &&
|
|
profile == ARMBuildAttrs::MicroControllerProfile)
|
|
ctx.arg.armCMSESupport = true;
|
|
|
|
// The thumb PLT entries require Thumb2 which can be used on multiple archs.
|
|
// For now, let's limit it to ones where ARM isn't available and we know have
|
|
// Thumb2.
|
|
std::optional<unsigned> armISA =
|
|
attributes.getAttributeValue(ARMBuildAttrs::ARM_ISA_use);
|
|
std::optional<unsigned> thumb =
|
|
attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
|
|
ctx.arg.armHasArmISA |= armISA && *armISA >= ARMBuildAttrs::Allowed;
|
|
ctx.arg.armHasThumb2ISA |= thumb && *thumb >= ARMBuildAttrs::AllowThumb32;
|
|
}
|
|
|
|
InputFile::InputFile(Ctx &ctx, Kind k, MemoryBufferRef m)
|
|
: ctx(ctx), mb(m), groupId(ctx.driver.nextGroupId), fileKind(k) {
|
|
// All files within the same --{start,end}-group get the same group ID.
|
|
// Otherwise, a new file will get a new group ID.
|
|
if (!ctx.driver.isInGroup)
|
|
++ctx.driver.nextGroupId;
|
|
}
|
|
|
|
InputFile::~InputFile() {}
|
|
|
|
std::optional<MemoryBufferRef> elf::readFile(Ctx &ctx, StringRef path) {
|
|
llvm::TimeTraceScope timeScope("Load input files", path);
|
|
|
|
// The --chroot option changes our virtual root directory.
|
|
// This is useful when you are dealing with files created by --reproduce.
|
|
if (!ctx.arg.chroot.empty() && path.starts_with("/"))
|
|
path = ctx.saver.save(ctx.arg.chroot + path);
|
|
|
|
bool remapped = false;
|
|
auto it = ctx.arg.remapInputs.find(path);
|
|
if (it != ctx.arg.remapInputs.end()) {
|
|
path = it->second;
|
|
remapped = true;
|
|
} else {
|
|
for (const auto &[pat, toFile] : ctx.arg.remapInputsWildcards) {
|
|
if (pat.match(path)) {
|
|
path = toFile;
|
|
remapped = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (remapped) {
|
|
// Use /dev/null to indicate an input file that should be ignored. Change
|
|
// the path to NUL on Windows.
|
|
#ifdef _WIN32
|
|
if (path == "/dev/null")
|
|
path = "NUL";
|
|
#endif
|
|
}
|
|
|
|
Log(ctx) << path;
|
|
ctx.arg.dependencyFiles.insert(llvm::CachedHashString(path));
|
|
|
|
auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
|
|
/*RequiresNullTerminator=*/false);
|
|
if (auto ec = mbOrErr.getError()) {
|
|
ErrAlways(ctx) << "cannot open " << path << ": " << ec.message();
|
|
return std::nullopt;
|
|
}
|
|
|
|
MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
|
|
ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
|
|
|
|
if (ctx.tar)
|
|
ctx.tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return mbref;
|
|
}
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
static bool isCompatible(Ctx &ctx, InputFile *file) {
|
|
if (!file->isElf() && !isa<BitcodeFile>(file))
|
|
return true;
|
|
|
|
if (file->ekind == ctx.arg.ekind && file->emachine == ctx.arg.emachine) {
|
|
if (ctx.arg.emachine != EM_MIPS)
|
|
return true;
|
|
if (isMipsN32Abi(ctx, *file) == ctx.arg.mipsN32Abi)
|
|
return true;
|
|
}
|
|
|
|
StringRef target =
|
|
!ctx.arg.bfdname.empty() ? ctx.arg.bfdname : ctx.arg.emulation;
|
|
if (!target.empty()) {
|
|
Err(ctx) << file << " is incompatible with " << target;
|
|
return false;
|
|
}
|
|
|
|
InputFile *existing = nullptr;
|
|
if (!ctx.objectFiles.empty())
|
|
existing = ctx.objectFiles[0];
|
|
else if (!ctx.sharedFiles.empty())
|
|
existing = ctx.sharedFiles[0];
|
|
else if (!ctx.bitcodeFiles.empty())
|
|
existing = ctx.bitcodeFiles[0];
|
|
auto diag = Err(ctx);
|
|
diag << file << " is incompatible";
|
|
if (existing)
|
|
diag << " with " << existing;
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT> static void doParseFile(Ctx &ctx, InputFile *file) {
|
|
if (!isCompatible(ctx, file))
|
|
return;
|
|
|
|
// Lazy object file
|
|
if (file->lazy) {
|
|
if (auto *f = dyn_cast<BitcodeFile>(file)) {
|
|
ctx.lazyBitcodeFiles.push_back(f);
|
|
f->parseLazy();
|
|
} else {
|
|
cast<ObjFile<ELFT>>(file)->parseLazy();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ctx.arg.trace)
|
|
Msg(ctx) << file;
|
|
|
|
if (file->kind() == InputFile::ObjKind) {
|
|
ctx.objectFiles.push_back(cast<ELFFileBase>(file));
|
|
cast<ObjFile<ELFT>>(file)->parse();
|
|
} else if (auto *f = dyn_cast<SharedFile>(file)) {
|
|
f->parse<ELFT>();
|
|
} else if (auto *f = dyn_cast<BitcodeFile>(file)) {
|
|
ctx.bitcodeFiles.push_back(f);
|
|
f->parse();
|
|
} else {
|
|
ctx.binaryFiles.push_back(cast<BinaryFile>(file));
|
|
cast<BinaryFile>(file)->parse();
|
|
}
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
void elf::parseFile(Ctx &ctx, InputFile *file) {
|
|
invokeELFT(doParseFile, ctx, file);
|
|
}
|
|
|
|
// This function is explicitly instantiated in ARM.cpp. Mark it extern here,
|
|
// to avoid warnings when building with MSVC.
|
|
extern template void ObjFile<ELF32LE>::importCmseSymbols();
|
|
extern template void ObjFile<ELF32BE>::importCmseSymbols();
|
|
extern template void ObjFile<ELF64LE>::importCmseSymbols();
|
|
extern template void ObjFile<ELF64BE>::importCmseSymbols();
|
|
|
|
template <class ELFT>
|
|
static void
|
|
doParseFiles(Ctx &ctx,
|
|
const SmallVector<std::unique_ptr<InputFile>, 0> &files) {
|
|
// Add all files to the symbol table. This will add almost all symbols that we
|
|
// need to the symbol table. This process might add files to the link due to
|
|
// addDependentLibrary.
|
|
for (size_t i = 0; i < files.size(); ++i) {
|
|
llvm::TimeTraceScope timeScope("Parse input files", files[i]->getName());
|
|
doParseFile<ELFT>(ctx, files[i].get());
|
|
}
|
|
if (ctx.driver.armCmseImpLib)
|
|
cast<ObjFile<ELFT>>(*ctx.driver.armCmseImpLib).importCmseSymbols();
|
|
}
|
|
|
|
void elf::parseFiles(Ctx &ctx,
|
|
const SmallVector<std::unique_ptr<InputFile>, 0> &files) {
|
|
llvm::TimeTraceScope timeScope("Parse input files");
|
|
invokeELFT(doParseFiles, ctx, files);
|
|
}
|
|
|
|
// Concatenates arguments to construct a string representing an error location.
|
|
StringRef InputFile::getNameForScript() const {
|
|
if (archiveName.empty())
|
|
return getName();
|
|
|
|
if (nameForScriptCache.empty())
|
|
nameForScriptCache = (archiveName + Twine(':') + getName()).str();
|
|
|
|
return nameForScriptCache;
|
|
}
|
|
|
|
// An ELF object file may contain a `.deplibs` section. If it exists, the
|
|
// section contains a list of library specifiers such as `m` for libm. This
|
|
// function resolves a given name by finding the first matching library checking
|
|
// the various ways that a library can be specified to LLD. This ELF extension
|
|
// is a form of autolinking and is called `dependent libraries`. It is currently
|
|
// unique to LLVM and lld.
|
|
static void addDependentLibrary(Ctx &ctx, StringRef specifier,
|
|
const InputFile *f) {
|
|
if (!ctx.arg.dependentLibraries)
|
|
return;
|
|
if (std::optional<std::string> s = searchLibraryBaseName(ctx, specifier))
|
|
ctx.driver.addFile(ctx.saver.save(*s), /*withLOption=*/true);
|
|
else if (std::optional<std::string> s = findFromSearchPaths(ctx, specifier))
|
|
ctx.driver.addFile(ctx.saver.save(*s), /*withLOption=*/true);
|
|
else if (fs::exists(specifier))
|
|
ctx.driver.addFile(specifier, /*withLOption=*/false);
|
|
else
|
|
ErrAlways(ctx)
|
|
<< f << ": unable to find library from dependent library specifier: "
|
|
<< specifier;
|
|
}
|
|
|
|
// Record the membership of a section group so that in the garbage collection
|
|
// pass, section group members are kept or discarded as a unit.
|
|
template <class ELFT>
|
|
static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
|
|
ArrayRef<typename ELFT::Word> entries) {
|
|
bool hasAlloc = false;
|
|
for (uint32_t index : entries.slice(1)) {
|
|
if (index >= sections.size())
|
|
return;
|
|
if (InputSectionBase *s = sections[index])
|
|
if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
|
|
hasAlloc = true;
|
|
}
|
|
|
|
// If any member has the SHF_ALLOC flag, the whole group is subject to garbage
|
|
// collection. See the comment in markLive(). This rule retains .debug_types
|
|
// and .rela.debug_types.
|
|
if (!hasAlloc)
|
|
return;
|
|
|
|
// Connect the members in a circular doubly-linked list via
|
|
// nextInSectionGroup.
|
|
InputSectionBase *head;
|
|
InputSectionBase *prev = nullptr;
|
|
for (uint32_t index : entries.slice(1)) {
|
|
InputSectionBase *s = sections[index];
|
|
if (!s || s == &InputSection::discarded)
|
|
continue;
|
|
if (prev)
|
|
prev->nextInSectionGroup = s;
|
|
else
|
|
head = s;
|
|
prev = s;
|
|
}
|
|
if (prev)
|
|
prev->nextInSectionGroup = head;
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::initDwarf() {
|
|
dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
|
|
std::make_unique<LLDDwarfObj<ELFT>>(this), "",
|
|
[&](Error err) { Warn(ctx) << getName() + ": " << std::move(err); },
|
|
[&](Error warning) {
|
|
Warn(ctx) << getName() << ": " << std::move(warning);
|
|
}));
|
|
}
|
|
|
|
DWARFCache *ELFFileBase::getDwarf() {
|
|
assert(fileKind == ObjKind);
|
|
llvm::call_once(initDwarf, [this]() {
|
|
switch (ekind) {
|
|
default:
|
|
llvm_unreachable("");
|
|
case ELF32LEKind:
|
|
return cast<ObjFile<ELF32LE>>(this)->initDwarf();
|
|
case ELF32BEKind:
|
|
return cast<ObjFile<ELF32BE>>(this)->initDwarf();
|
|
case ELF64LEKind:
|
|
return cast<ObjFile<ELF64LE>>(this)->initDwarf();
|
|
case ELF64BEKind:
|
|
return cast<ObjFile<ELF64BE>>(this)->initDwarf();
|
|
}
|
|
});
|
|
return dwarf.get();
|
|
}
|
|
|
|
ELFFileBase::ELFFileBase(Ctx &ctx, Kind k, ELFKind ekind, MemoryBufferRef mb)
|
|
: InputFile(ctx, k, mb) {
|
|
this->ekind = ekind;
|
|
}
|
|
|
|
ELFFileBase::~ELFFileBase() {}
|
|
|
|
template <typename Elf_Shdr>
|
|
static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
|
|
for (const Elf_Shdr &sec : sections)
|
|
if (sec.sh_type == type)
|
|
return &sec;
|
|
return nullptr;
|
|
}
|
|
|
|
void ELFFileBase::init() {
|
|
switch (ekind) {
|
|
case ELF32LEKind:
|
|
init<ELF32LE>(fileKind);
|
|
break;
|
|
case ELF32BEKind:
|
|
init<ELF32BE>(fileKind);
|
|
break;
|
|
case ELF64LEKind:
|
|
init<ELF64LE>(fileKind);
|
|
break;
|
|
case ELF64BEKind:
|
|
init<ELF64BE>(fileKind);
|
|
break;
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
|
|
// Initialize trivial attributes.
|
|
const ELFFile<ELFT> &obj = getObj<ELFT>();
|
|
emachine = obj.getHeader().e_machine;
|
|
osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
|
|
abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
|
|
|
|
ArrayRef<Elf_Shdr> sections = CHECK2(obj.sections(), this);
|
|
elfShdrs = sections.data();
|
|
numELFShdrs = sections.size();
|
|
|
|
// Find a symbol table.
|
|
const Elf_Shdr *symtabSec =
|
|
findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
|
|
|
|
if (!symtabSec)
|
|
return;
|
|
|
|
// Initialize members corresponding to a symbol table.
|
|
firstGlobal = symtabSec->sh_info;
|
|
|
|
ArrayRef<Elf_Sym> eSyms = CHECK2(obj.symbols(symtabSec), this);
|
|
if (firstGlobal == 0 || firstGlobal > eSyms.size())
|
|
Fatal(ctx) << this << ": invalid sh_info in symbol table";
|
|
|
|
elfSyms = reinterpret_cast<const void *>(eSyms.data());
|
|
numSymbols = eSyms.size();
|
|
stringTable = CHECK2(obj.getStringTableForSymtab(*symtabSec, sections), this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
|
|
return CHECK2(
|
|
this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
|
|
this);
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
|
|
object::ELFFile<ELFT> obj = this->getObj();
|
|
// Read a section table. justSymbols is usually false.
|
|
if (this->justSymbols) {
|
|
initializeJustSymbols();
|
|
initializeSymbols(obj);
|
|
return;
|
|
}
|
|
|
|
// Handle dependent libraries and selection of section groups as these are not
|
|
// done in parallel.
|
|
ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
|
|
StringRef shstrtab = CHECK2(obj.getSectionStringTable(objSections), this);
|
|
uint64_t size = objSections.size();
|
|
sections.resize(size);
|
|
for (size_t i = 0; i != size; ++i) {
|
|
const Elf_Shdr &sec = objSections[i];
|
|
if (LLVM_LIKELY(sec.sh_type == SHT_PROGBITS))
|
|
continue;
|
|
if (LLVM_LIKELY(sec.sh_type == SHT_GROUP)) {
|
|
StringRef signature = getShtGroupSignature(objSections, sec);
|
|
ArrayRef<Elf_Word> entries =
|
|
CHECK2(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
|
|
if (entries.empty())
|
|
Fatal(ctx) << this << ": empty SHT_GROUP";
|
|
|
|
Elf_Word flag = entries[0];
|
|
if (flag && flag != GRP_COMDAT)
|
|
Fatal(ctx) << this << ": unsupported SHT_GROUP format";
|
|
|
|
bool keepGroup = !flag || ignoreComdats ||
|
|
ctx.symtab->comdatGroups
|
|
.try_emplace(CachedHashStringRef(signature), this)
|
|
.second;
|
|
if (keepGroup) {
|
|
if (!ctx.arg.resolveGroups)
|
|
sections[i] = createInputSection(
|
|
i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
} else {
|
|
// Otherwise, discard group members.
|
|
for (uint32_t secIndex : entries.slice(1)) {
|
|
if (secIndex >= size)
|
|
Fatal(ctx) << this
|
|
<< ": invalid section index in group: " << secIndex;
|
|
sections[secIndex] = &InputSection::discarded;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !ctx.arg.relocatable) {
|
|
StringRef name = check(obj.getSectionName(sec, shstrtab));
|
|
ArrayRef<char> data = CHECK2(
|
|
this->getObj().template getSectionContentsAsArray<char>(sec), this);
|
|
if (!data.empty() && data.back() != '\0') {
|
|
Err(ctx)
|
|
<< this
|
|
<< ": corrupted dependent libraries section (unterminated string): "
|
|
<< name;
|
|
} else {
|
|
for (const char *d = data.begin(), *e = data.end(); d < e;) {
|
|
StringRef s(d);
|
|
addDependentLibrary(ctx, s, this);
|
|
d += s.size() + 1;
|
|
}
|
|
}
|
|
sections[i] = &InputSection::discarded;
|
|
continue;
|
|
}
|
|
|
|
switch (ctx.arg.emachine) {
|
|
case EM_ARM:
|
|
if (sec.sh_type == SHT_ARM_ATTRIBUTES) {
|
|
ARMAttributeParser attributes;
|
|
ArrayRef<uint8_t> contents =
|
|
check(this->getObj().getSectionContents(sec));
|
|
StringRef name = check(obj.getSectionName(sec, shstrtab));
|
|
sections[i] = &InputSection::discarded;
|
|
if (Error e = attributes.parse(contents, ekind == ELF32LEKind
|
|
? llvm::endianness::little
|
|
: llvm::endianness::big)) {
|
|
InputSection isec(*this, sec, name);
|
|
Warn(ctx) << &isec << ": " << std::move(e);
|
|
} else {
|
|
updateSupportedARMFeatures(ctx, attributes);
|
|
updateARMVFPArgs(ctx, attributes, this);
|
|
|
|
// FIXME: Retain the first attribute section we see. The eglibc ARM
|
|
// dynamic loaders require the presence of an attribute section for
|
|
// dlopen to work. In a full implementation we would merge all
|
|
// attribute sections.
|
|
if (ctx.in.attributes == nullptr) {
|
|
ctx.in.attributes =
|
|
std::make_unique<InputSection>(*this, sec, name);
|
|
sections[i] = ctx.in.attributes.get();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case EM_AARCH64:
|
|
// FIXME: BuildAttributes have been implemented in llvm, but not yet in
|
|
// lld. Remove the section so that it does not accumulate in the output
|
|
// file. When support is implemented we expect not to output a build
|
|
// attributes section in files of type ET_EXEC or ET_SHARED, but ld -r
|
|
// ouptut will need a single merged attributes section.
|
|
if (sec.sh_type == SHT_AARCH64_ATTRIBUTES)
|
|
sections[i] = &InputSection::discarded;
|
|
// Producing a static binary with MTE globals is not currently supported,
|
|
// remove all SHT_AARCH64_MEMTAG_GLOBALS_STATIC sections as they're unused
|
|
// medatada, and we don't want them to end up in the output file for
|
|
// static executables.
|
|
if (sec.sh_type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC &&
|
|
!canHaveMemtagGlobals(ctx))
|
|
sections[i] = &InputSection::discarded;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Read a symbol table.
|
|
initializeSymbols(obj);
|
|
}
|
|
|
|
// Sections with SHT_GROUP and comdat bits define comdat section groups.
|
|
// They are identified and deduplicated by group name. This function
|
|
// returns a group name.
|
|
template <class ELFT>
|
|
StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
|
|
const Elf_Shdr &sec) {
|
|
typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
|
|
if (sec.sh_info >= symbols.size())
|
|
Fatal(ctx) << this << ": invalid symbol index";
|
|
const typename ELFT::Sym &sym = symbols[sec.sh_info];
|
|
return CHECK2(sym.getName(this->stringTable), this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
|
|
// On a regular link we don't merge sections if -O0 (default is -O1). This
|
|
// sometimes makes the linker significantly faster, although the output will
|
|
// be bigger.
|
|
//
|
|
// Doing the same for -r would create a problem as it would combine sections
|
|
// with different sh_entsize. One option would be to just copy every SHF_MERGE
|
|
// section as is to the output. While this would produce a valid ELF file with
|
|
// usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
|
|
// they see two .debug_str. We could have separate logic for combining
|
|
// SHF_MERGE sections based both on their name and sh_entsize, but that seems
|
|
// to be more trouble than it is worth. Instead, we just use the regular (-O1)
|
|
// logic for -r.
|
|
if (ctx.arg.optimize == 0 && !ctx.arg.relocatable)
|
|
return false;
|
|
|
|
// A mergeable section with size 0 is useless because they don't have
|
|
// any data to merge. A mergeable string section with size 0 can be
|
|
// argued as invalid because it doesn't end with a null character.
|
|
// We'll avoid a mess by handling them as if they were non-mergeable.
|
|
if (sec.sh_size == 0)
|
|
return false;
|
|
|
|
// Check for sh_entsize. The ELF spec is not clear about the zero
|
|
// sh_entsize. It says that "the member [sh_entsize] contains 0 if
|
|
// the section does not hold a table of fixed-size entries". We know
|
|
// that Rust 1.13 produces a string mergeable section with a zero
|
|
// sh_entsize. Here we just accept it rather than being picky about it.
|
|
uint64_t entSize = sec.sh_entsize;
|
|
if (entSize == 0)
|
|
return false;
|
|
if (sec.sh_size % entSize)
|
|
ErrAlways(ctx) << this << ":(" << name << "): SHF_MERGE section size ("
|
|
<< uint64_t(sec.sh_size)
|
|
<< ") must be a multiple of sh_entsize (" << entSize << ")";
|
|
if (sec.sh_flags & SHF_WRITE)
|
|
Err(ctx) << this << ":(" << name
|
|
<< "): writable SHF_MERGE section is not supported";
|
|
|
|
return true;
|
|
}
|
|
|
|
// This is for --just-symbols.
|
|
//
|
|
// --just-symbols is a very minor feature that allows you to link your
|
|
// output against other existing program, so that if you load both your
|
|
// program and the other program into memory, your output can refer the
|
|
// other program's symbols.
|
|
//
|
|
// When the option is given, we link "just symbols". The section table is
|
|
// initialized with null pointers.
|
|
template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
|
|
sections.resize(numELFShdrs);
|
|
}
|
|
|
|
static bool isKnownSpecificSectionType(uint32_t t, uint32_t flags) {
|
|
if (SHT_LOUSER <= t && t <= SHT_HIUSER && !(flags & SHF_ALLOC))
|
|
return true;
|
|
if (SHT_LOOS <= t && t <= SHT_HIOS && !(flags & SHF_OS_NONCONFORMING))
|
|
return true;
|
|
// Allow all processor-specific types. This is different from GNU ld.
|
|
return SHT_LOPROC <= t && t <= SHT_HIPROC;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
|
|
const llvm::object::ELFFile<ELFT> &obj) {
|
|
ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
|
|
StringRef shstrtab = CHECK2(obj.getSectionStringTable(objSections), this);
|
|
uint64_t size = objSections.size();
|
|
SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
|
|
for (size_t i = 0; i != size; ++i) {
|
|
if (this->sections[i] == &InputSection::discarded)
|
|
continue;
|
|
const Elf_Shdr &sec = objSections[i];
|
|
const uint32_t type = sec.sh_type;
|
|
|
|
// SHF_EXCLUDE'ed sections are discarded by the linker. However,
|
|
// if -r is given, we'll let the final link discard such sections.
|
|
// This is compatible with GNU.
|
|
if ((sec.sh_flags & SHF_EXCLUDE) && !ctx.arg.relocatable) {
|
|
if (type == SHT_LLVM_CALL_GRAPH_PROFILE)
|
|
cgProfileSectionIndex = i;
|
|
if (type == SHT_LLVM_ADDRSIG) {
|
|
// We ignore the address-significance table if we know that the object
|
|
// file was created by objcopy or ld -r. This is because these tools
|
|
// will reorder the symbols in the symbol table, invalidating the data
|
|
// in the address-significance table, which refers to symbols by index.
|
|
if (sec.sh_link != 0)
|
|
this->addrsigSec = &sec;
|
|
else if (ctx.arg.icf == ICFLevel::Safe)
|
|
Warn(ctx) << this
|
|
<< ": --icf=safe conservatively ignores "
|
|
"SHT_LLVM_ADDRSIG [index "
|
|
<< i
|
|
<< "] with sh_link=0 "
|
|
"(likely created using objcopy or ld -r)";
|
|
}
|
|
this->sections[i] = &InputSection::discarded;
|
|
continue;
|
|
}
|
|
|
|
switch (type) {
|
|
case SHT_GROUP: {
|
|
if (!ctx.arg.relocatable)
|
|
sections[i] = &InputSection::discarded;
|
|
StringRef signature =
|
|
cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
|
|
ArrayRef<Elf_Word> entries =
|
|
cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
|
|
if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
|
|
ctx.symtab->comdatGroups.find(CachedHashStringRef(signature))
|
|
->second == this)
|
|
selectedGroups.push_back(entries);
|
|
break;
|
|
}
|
|
case SHT_SYMTAB_SHNDX:
|
|
shndxTable = CHECK2(obj.getSHNDXTable(sec, objSections), this);
|
|
break;
|
|
case SHT_SYMTAB:
|
|
case SHT_STRTAB:
|
|
case SHT_REL:
|
|
case SHT_RELA:
|
|
case SHT_CREL:
|
|
case SHT_NULL:
|
|
break;
|
|
case SHT_PROGBITS:
|
|
case SHT_NOTE:
|
|
case SHT_NOBITS:
|
|
case SHT_INIT_ARRAY:
|
|
case SHT_FINI_ARRAY:
|
|
case SHT_PREINIT_ARRAY:
|
|
this->sections[i] =
|
|
createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
break;
|
|
case SHT_LLVM_LTO:
|
|
// Discard .llvm.lto in a relocatable link that does not use the bitcode.
|
|
// The concatenated output does not properly reflect the linking
|
|
// semantics. In addition, since we do not use the bitcode wrapper format,
|
|
// the concatenated raw bitcode would be invalid.
|
|
if (ctx.arg.relocatable && !ctx.arg.fatLTOObjects) {
|
|
sections[i] = &InputSection::discarded;
|
|
break;
|
|
}
|
|
[[fallthrough]];
|
|
default:
|
|
this->sections[i] =
|
|
createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
if (type == SHT_LLVM_SYMPART)
|
|
ctx.hasSympart.store(true, std::memory_order_relaxed);
|
|
else if (ctx.arg.rejectMismatch &&
|
|
!isKnownSpecificSectionType(type, sec.sh_flags))
|
|
Err(ctx) << this->sections[i] << ": unknown section type 0x"
|
|
<< Twine::utohexstr(type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We have a second loop. It is used to:
|
|
// 1) handle SHF_LINK_ORDER sections.
|
|
// 2) create relocation sections. In some cases the section header index of a
|
|
// relocation section may be smaller than that of the relocated section. In
|
|
// such cases, the relocation section would attempt to reference a target
|
|
// section that has not yet been created. For simplicity, delay creation of
|
|
// relocation sections until now.
|
|
for (size_t i = 0; i != size; ++i) {
|
|
if (this->sections[i] == &InputSection::discarded)
|
|
continue;
|
|
const Elf_Shdr &sec = objSections[i];
|
|
|
|
if (isStaticRelSecType(sec.sh_type)) {
|
|
// Find a relocation target section and associate this section with that.
|
|
// Target may have been discarded if it is in a different section group
|
|
// and the group is discarded, even though it's a violation of the spec.
|
|
// We handle that situation gracefully by discarding dangling relocation
|
|
// sections.
|
|
const uint32_t info = sec.sh_info;
|
|
InputSectionBase *s = getRelocTarget(i, info);
|
|
if (!s)
|
|
continue;
|
|
|
|
// ELF spec allows mergeable sections with relocations, but they are rare,
|
|
// and it is in practice hard to merge such sections by contents, because
|
|
// applying relocations at end of linking changes section contents. So, we
|
|
// simply handle such sections as non-mergeable ones. Degrading like this
|
|
// is acceptable because section merging is optional.
|
|
if (auto *ms = dyn_cast<MergeInputSection>(s)) {
|
|
s = makeThreadLocal<InputSection>(ms->file, ms->name, ms->type,
|
|
ms->flags, ms->addralign, ms->entsize,
|
|
ms->contentMaybeDecompress());
|
|
sections[info] = s;
|
|
}
|
|
|
|
if (s->relSecIdx != 0)
|
|
ErrAlways(ctx) << s
|
|
<< ": multiple relocation sections to one section are "
|
|
"not supported";
|
|
s->relSecIdx = i;
|
|
|
|
// Relocation sections are usually removed from the output, so return
|
|
// `nullptr` for the normal case. However, if -r or --emit-relocs is
|
|
// specified, we need to copy them to the output. (Some post link analysis
|
|
// tools specify --emit-relocs to obtain the information.)
|
|
if (ctx.arg.copyRelocs) {
|
|
auto *isec = makeThreadLocal<InputSection>(
|
|
*this, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
// If the relocated section is discarded (due to /DISCARD/ or
|
|
// --gc-sections), the relocation section should be discarded as well.
|
|
s->dependentSections.push_back(isec);
|
|
sections[i] = isec;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
|
|
// the flag.
|
|
if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
|
|
continue;
|
|
|
|
InputSectionBase *linkSec = nullptr;
|
|
if (sec.sh_link < size)
|
|
linkSec = this->sections[sec.sh_link];
|
|
if (!linkSec) {
|
|
ErrAlways(ctx) << this
|
|
<< ": invalid sh_link index: " << uint32_t(sec.sh_link);
|
|
continue;
|
|
}
|
|
|
|
// A SHF_LINK_ORDER section is discarded if its linked-to section is
|
|
// discarded.
|
|
InputSection *isec = cast<InputSection>(this->sections[i]);
|
|
linkSec->dependentSections.push_back(isec);
|
|
if (!isa<InputSection>(linkSec))
|
|
ErrAlways(ctx)
|
|
<< "a section " << isec->name
|
|
<< " with SHF_LINK_ORDER should not refer a non-regular section: "
|
|
<< linkSec;
|
|
}
|
|
|
|
for (ArrayRef<Elf_Word> entries : selectedGroups)
|
|
handleSectionGroup<ELFT>(this->sections, entries);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static void parseGnuPropertyNote(Ctx &ctx, ELFFileBase &f,
|
|
uint32_t featureAndType,
|
|
ArrayRef<uint8_t> &desc, const uint8_t *base,
|
|
ArrayRef<uint8_t> *data = nullptr) {
|
|
auto err = [&](const uint8_t *place) -> ELFSyncStream {
|
|
auto diag = Err(ctx);
|
|
diag << &f << ":(" << ".note.gnu.property+0x"
|
|
<< Twine::utohexstr(place - base) << "): ";
|
|
return diag;
|
|
};
|
|
|
|
while (!desc.empty()) {
|
|
const uint8_t *place = desc.data();
|
|
if (desc.size() < 8)
|
|
return void(err(place) << "program property is too short");
|
|
uint32_t type = read32<ELFT::Endianness>(desc.data());
|
|
uint32_t size = read32<ELFT::Endianness>(desc.data() + 4);
|
|
desc = desc.slice(8);
|
|
if (desc.size() < size)
|
|
return void(err(place) << "program property is too short");
|
|
|
|
if (type == featureAndType) {
|
|
// We found a FEATURE_1_AND field. There may be more than one of these
|
|
// in a .note.gnu.property section, for a relocatable object we
|
|
// accumulate the bits set.
|
|
if (size < 4)
|
|
return void(err(place) << "FEATURE_1_AND entry is too short");
|
|
f.andFeatures |= read32<ELFT::Endianness>(desc.data());
|
|
} else if (ctx.arg.emachine == EM_AARCH64 &&
|
|
type == GNU_PROPERTY_AARCH64_FEATURE_PAUTH) {
|
|
ArrayRef<uint8_t> contents = data ? *data : desc;
|
|
if (!f.aarch64PauthAbiCoreInfo.empty()) {
|
|
return void(
|
|
err(contents.data())
|
|
<< "multiple GNU_PROPERTY_AARCH64_FEATURE_PAUTH entries are "
|
|
"not supported");
|
|
} else if (size != 16) {
|
|
return void(err(contents.data())
|
|
<< "GNU_PROPERTY_AARCH64_FEATURE_PAUTH entry "
|
|
"is invalid: expected 16 bytes, but got "
|
|
<< size);
|
|
}
|
|
f.aarch64PauthAbiCoreInfo = desc;
|
|
}
|
|
|
|
// Padding is present in the note descriptor, if necessary.
|
|
desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
|
|
}
|
|
}
|
|
// Read the following info from the .note.gnu.property section and write it to
|
|
// the corresponding fields in `ObjFile`:
|
|
// - Feature flags (32 bits) representing x86 or AArch64 features for
|
|
// hardware-assisted call flow control;
|
|
// - AArch64 PAuth ABI core info (16 bytes).
|
|
template <class ELFT>
|
|
static void readGnuProperty(Ctx &ctx, const InputSection &sec,
|
|
ObjFile<ELFT> &f) {
|
|
using Elf_Nhdr = typename ELFT::Nhdr;
|
|
using Elf_Note = typename ELFT::Note;
|
|
|
|
ArrayRef<uint8_t> data = sec.content();
|
|
auto err = [&](const uint8_t *place) -> ELFSyncStream {
|
|
auto diag = Err(ctx);
|
|
diag << sec.file << ":(" << sec.name << "+0x"
|
|
<< Twine::utohexstr(place - sec.content().data()) << "): ";
|
|
return diag;
|
|
};
|
|
while (!data.empty()) {
|
|
// Read one NOTE record.
|
|
auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
|
|
if (data.size() < sizeof(Elf_Nhdr) ||
|
|
data.size() < nhdr->getSize(sec.addralign))
|
|
return void(err(data.data()) << "data is too short");
|
|
|
|
Elf_Note note(*nhdr);
|
|
if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
|
|
data = data.slice(nhdr->getSize(sec.addralign));
|
|
continue;
|
|
}
|
|
|
|
uint32_t featureAndType = ctx.arg.emachine == EM_AARCH64
|
|
? GNU_PROPERTY_AARCH64_FEATURE_1_AND
|
|
: GNU_PROPERTY_X86_FEATURE_1_AND;
|
|
|
|
// Read a body of a NOTE record, which consists of type-length-value fields.
|
|
ArrayRef<uint8_t> desc = note.getDesc(sec.addralign);
|
|
const uint8_t *base = sec.content().data();
|
|
parseGnuPropertyNote<ELFT>(ctx, f, featureAndType, desc, base, &data);
|
|
|
|
// Go to next NOTE record to look for more FEATURE_1_AND descriptions.
|
|
data = data.slice(nhdr->getSize(sec.addralign));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, uint32_t info) {
|
|
if (info < this->sections.size()) {
|
|
InputSectionBase *target = this->sections[info];
|
|
|
|
// Strictly speaking, a relocation section must be included in the
|
|
// group of the section it relocates. However, LLVM 3.3 and earlier
|
|
// would fail to do so, so we gracefully handle that case.
|
|
if (target == &InputSection::discarded)
|
|
return nullptr;
|
|
|
|
if (target != nullptr)
|
|
return target;
|
|
}
|
|
|
|
Err(ctx) << this << ": relocation section (index " << idx
|
|
<< ") has invalid sh_info (" << info << ')';
|
|
return nullptr;
|
|
}
|
|
|
|
// The function may be called concurrently for different input files. For
|
|
// allocation, prefer makeThreadLocal which does not require holding a lock.
|
|
template <class ELFT>
|
|
InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
|
|
const Elf_Shdr &sec,
|
|
StringRef name) {
|
|
if (name.starts_with(".n")) {
|
|
// The GNU linker uses .note.GNU-stack section as a marker indicating
|
|
// that the code in the object file does not expect that the stack is
|
|
// executable (in terms of NX bit). If all input files have the marker,
|
|
// the GNU linker adds a PT_GNU_STACK segment to tells the loader to
|
|
// make the stack non-executable. Most object files have this section as
|
|
// of 2017.
|
|
//
|
|
// But making the stack non-executable is a norm today for security
|
|
// reasons. Failure to do so may result in a serious security issue.
|
|
// Therefore, we make LLD always add PT_GNU_STACK unless it is
|
|
// explicitly told to do otherwise (by -z execstack). Because the stack
|
|
// executable-ness is controlled solely by command line options,
|
|
// .note.GNU-stack sections are, with one exception, ignored. Report
|
|
// an error if we encounter an executable .note.GNU-stack to force the
|
|
// user to explicitly request an executable stack.
|
|
if (name == ".note.GNU-stack") {
|
|
if ((sec.sh_flags & SHF_EXECINSTR) && !ctx.arg.relocatable &&
|
|
ctx.arg.zGnustack != GnuStackKind::Exec) {
|
|
Err(ctx) << this
|
|
<< ": requires an executable stack, but -z execstack is not "
|
|
"specified";
|
|
}
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Object files that use processor features such as Intel Control-Flow
|
|
// Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
|
|
// .note.gnu.property section containing a bitfield of feature bits like the
|
|
// GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
|
|
//
|
|
// Since we merge bitmaps from multiple object files to create a new
|
|
// .note.gnu.property containing a single AND'ed bitmap, we discard an input
|
|
// file's .note.gnu.property section.
|
|
if (name == ".note.gnu.property") {
|
|
readGnuProperty<ELFT>(ctx, InputSection(*this, sec, name), *this);
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Split stacks is a feature to support a discontiguous stack,
|
|
// commonly used in the programming language Go. For the details,
|
|
// see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
|
|
// for split stack will include a .note.GNU-split-stack section.
|
|
if (name == ".note.GNU-split-stack") {
|
|
if (ctx.arg.relocatable) {
|
|
ErrAlways(ctx) << "cannot mix split-stack and non-split-stack in a "
|
|
"relocatable link";
|
|
return &InputSection::discarded;
|
|
}
|
|
this->splitStack = true;
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// An object file compiled for split stack, but where some of the
|
|
// functions were compiled with the no_split_stack_attribute will
|
|
// include a .note.GNU-no-split-stack section.
|
|
if (name == ".note.GNU-no-split-stack") {
|
|
this->someNoSplitStack = true;
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Strip existing .note.gnu.build-id sections so that the output won't have
|
|
// more than one build-id. This is not usually a problem because input
|
|
// object files normally don't have .build-id sections, but you can create
|
|
// such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
|
|
// against it.
|
|
if (name == ".note.gnu.build-id")
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// The linker merges EH (exception handling) frames and creates a
|
|
// .eh_frame_hdr section for runtime. So we handle them with a special
|
|
// class. For relocatable outputs, they are just passed through.
|
|
if (name == ".eh_frame" && !ctx.arg.relocatable)
|
|
return makeThreadLocal<EhInputSection>(*this, sec, name);
|
|
|
|
if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
|
|
return makeThreadLocal<MergeInputSection>(*this, sec, name);
|
|
return makeThreadLocal<InputSection>(*this, sec, name);
|
|
}
|
|
|
|
// Initialize symbols. symbols is a parallel array to the corresponding ELF
|
|
// symbol table.
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
if (!symbols)
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
|
|
// Some entries have been filled by LazyObjFile.
|
|
auto *symtab = ctx.symtab.get();
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
|
|
if (!symbols[i])
|
|
symbols[i] = symtab->insert(CHECK2(eSyms[i].getName(stringTable), this));
|
|
|
|
// Perform symbol resolution on non-local symbols.
|
|
SmallVector<unsigned, 32> undefineds;
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (secIdx == SHN_UNDEF) {
|
|
undefineds.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
uint8_t binding = eSym.getBinding();
|
|
uint8_t stOther = eSym.st_other;
|
|
uint8_t type = eSym.getType();
|
|
uint64_t value = eSym.st_value;
|
|
uint64_t size = eSym.st_size;
|
|
|
|
Symbol *sym = symbols[i];
|
|
sym->isUsedInRegularObj = true;
|
|
if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
|
|
if (value == 0 || value >= UINT32_MAX)
|
|
Err(ctx) << this << ": common symbol '" << sym->getName()
|
|
<< "' has invalid alignment: " << value;
|
|
hasCommonSyms = true;
|
|
sym->resolve(ctx, CommonSymbol{ctx, this, StringRef(), binding, stOther,
|
|
type, value, size});
|
|
continue;
|
|
}
|
|
|
|
// Handle global defined symbols. Defined::section will be set in postParse.
|
|
sym->resolve(ctx, Defined{ctx, this, StringRef(), binding, stOther, type,
|
|
value, size, nullptr});
|
|
}
|
|
|
|
// Undefined symbols (excluding those defined relative to non-prevailing
|
|
// sections) can trigger recursive extract. Process defined symbols first so
|
|
// that the relative order between a defined symbol and an undefined symbol
|
|
// does not change the symbol resolution behavior. In addition, a set of
|
|
// interconnected symbols will all be resolved to the same file, instead of
|
|
// being resolved to different files.
|
|
for (unsigned i : undefineds) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
Symbol *sym = symbols[i];
|
|
sym->resolve(ctx, Undefined{this, StringRef(), eSym.getBinding(),
|
|
eSym.st_other, eSym.getType()});
|
|
sym->isUsedInRegularObj = true;
|
|
sym->referenced = true;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
|
|
if (!justSymbols)
|
|
initializeSections(ignoreComdats, getObj());
|
|
|
|
if (!firstGlobal)
|
|
return;
|
|
SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
|
|
memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
|
|
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
for (size_t i = 0, end = firstGlobal; i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
|
|
secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else if (secIdx >= SHN_LORESERVE)
|
|
secIdx = 0;
|
|
if (LLVM_UNLIKELY(secIdx >= sections.size())) {
|
|
Err(ctx) << this << ": invalid section index: " << secIdx;
|
|
secIdx = 0;
|
|
}
|
|
if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
|
|
ErrAlways(ctx) << this << ": non-local symbol (" << i
|
|
<< ") found at index < .symtab's sh_info (" << end << ")";
|
|
|
|
InputSectionBase *sec = sections[secIdx];
|
|
uint8_t type = eSym.getType();
|
|
if (type == STT_FILE)
|
|
sourceFile = CHECK2(eSym.getName(stringTable), this);
|
|
unsigned stName = eSym.st_name;
|
|
if (LLVM_UNLIKELY(stringTable.size() <= stName)) {
|
|
Err(ctx) << this << ": invalid symbol name offset";
|
|
stName = 0;
|
|
}
|
|
StringRef name(stringTable.data() + stName);
|
|
|
|
symbols[i] = reinterpret_cast<Symbol *>(locals + i);
|
|
if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
|
|
new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
|
|
/*discardedSecIdx=*/secIdx);
|
|
else
|
|
new (symbols[i]) Defined(ctx, this, name, STB_LOCAL, eSym.st_other, type,
|
|
eSym.st_value, eSym.st_size, sec);
|
|
symbols[i]->partition = 1;
|
|
symbols[i]->isUsedInRegularObj = true;
|
|
}
|
|
}
|
|
|
|
// Called after all ObjFile::parse is called for all ObjFiles. This checks
|
|
// duplicate symbols and may do symbol property merge in the future.
|
|
template <class ELFT> void ObjFile<ELFT>::postParse() {
|
|
static std::mutex mu;
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
Symbol &sym = *symbols[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
uint8_t binding = eSym.getBinding();
|
|
if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
|
|
binding != STB_GNU_UNIQUE))
|
|
Err(ctx) << this << ": symbol (" << i
|
|
<< ") has invalid binding: " << (int)binding;
|
|
|
|
// st_value of STT_TLS represents the assigned offset, not the actual
|
|
// address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
|
|
// only be referenced by special TLS relocations. It is usually an error if
|
|
// a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
|
|
if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
|
|
eSym.getType() != STT_NOTYPE)
|
|
Err(ctx) << "TLS attribute mismatch: " << &sym << "\n>>> in " << sym.file
|
|
<< "\n>>> in " << this;
|
|
|
|
// Handle non-COMMON defined symbol below. !sym.file allows a symbol
|
|
// assignment to redefine a symbol without an error.
|
|
if (!sym.isDefined() || secIdx == SHN_UNDEF)
|
|
continue;
|
|
if (LLVM_UNLIKELY(secIdx >= SHN_LORESERVE)) {
|
|
if (secIdx == SHN_COMMON)
|
|
continue;
|
|
if (secIdx == SHN_XINDEX)
|
|
secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else
|
|
secIdx = 0;
|
|
}
|
|
|
|
if (LLVM_UNLIKELY(secIdx >= sections.size())) {
|
|
Err(ctx) << this << ": invalid section index: " << secIdx;
|
|
continue;
|
|
}
|
|
InputSectionBase *sec = sections[secIdx];
|
|
if (sec == &InputSection::discarded) {
|
|
if (sym.traced) {
|
|
printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
|
|
sym.stOther, sym.type, secIdx},
|
|
sym.getName());
|
|
}
|
|
if (sym.file == this) {
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (sym.file == this) {
|
|
cast<Defined>(sym).section = sec;
|
|
continue;
|
|
}
|
|
|
|
if (sym.binding == STB_WEAK || binding == STB_WEAK)
|
|
continue;
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
|
|
}
|
|
}
|
|
|
|
// The handling of tentative definitions (COMMON symbols) in archives is murky.
|
|
// A tentative definition will be promoted to a global definition if there are
|
|
// no non-tentative definitions to dominate it. When we hold a tentative
|
|
// definition to a symbol and are inspecting archive members for inclusion
|
|
// there are 2 ways we can proceed:
|
|
//
|
|
// 1) Consider the tentative definition a 'real' definition (ie promotion from
|
|
// tentative to real definition has already happened) and not inspect
|
|
// archive members for Global/Weak definitions to replace the tentative
|
|
// definition. An archive member would only be included if it satisfies some
|
|
// other undefined symbol. This is the behavior Gold uses.
|
|
//
|
|
// 2) Consider the tentative definition as still undefined (ie the promotion to
|
|
// a real definition happens only after all symbol resolution is done).
|
|
// The linker searches archive members for STB_GLOBAL definitions to
|
|
// replace the tentative definition with. This is the behavior used by
|
|
// GNU ld.
|
|
//
|
|
// The second behavior is inherited from SysVR4, which based it on the FORTRAN
|
|
// COMMON BLOCK model. This behavior is needed for proper initialization in old
|
|
// (pre F90) FORTRAN code that is packaged into an archive.
|
|
//
|
|
// The following functions search archive members for definitions to replace
|
|
// tentative definitions (implementing behavior 2).
|
|
static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
IRSymtabFile symtabFile = check(readIRSymtab(mb));
|
|
for (const irsymtab::Reader::SymbolRef &sym :
|
|
symtabFile.TheReader.symbols()) {
|
|
if (sym.isGlobal() && sym.getName() == symName)
|
|
return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool isNonCommonDef(Ctx &ctx, ELFKind ekind, MemoryBufferRef mb,
|
|
StringRef symName, StringRef archiveName) {
|
|
ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ctx, ekind, mb, archiveName);
|
|
obj->init();
|
|
StringRef stringtable = obj->getStringTable();
|
|
|
|
for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
|
|
Expected<StringRef> name = sym.getName(stringtable);
|
|
if (name && name.get() == symName)
|
|
return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
|
|
!sym.isCommon();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isNonCommonDef(Ctx &ctx, MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
switch (getELFKind(ctx, mb, archiveName)) {
|
|
case ELF32LEKind:
|
|
return isNonCommonDef<ELF32LE>(ctx, ELF32LEKind, mb, symName, archiveName);
|
|
case ELF32BEKind:
|
|
return isNonCommonDef<ELF32BE>(ctx, ELF32BEKind, mb, symName, archiveName);
|
|
case ELF64LEKind:
|
|
return isNonCommonDef<ELF64LE>(ctx, ELF64LEKind, mb, symName, archiveName);
|
|
case ELF64BEKind:
|
|
return isNonCommonDef<ELF64BE>(ctx, ELF64BEKind, mb, symName, archiveName);
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
SharedFile::SharedFile(Ctx &ctx, MemoryBufferRef m, StringRef defaultSoName)
|
|
: ELFFileBase(ctx, SharedKind, getELFKind(ctx, m, ""), m),
|
|
soName(defaultSoName), isNeeded(!ctx.arg.asNeeded) {}
|
|
|
|
// Parse the version definitions in the object file if present, and return a
|
|
// vector whose nth element contains a pointer to the Elf_Verdef for version
|
|
// identifier n. Version identifiers that are not definitions map to nullptr.
|
|
template <typename ELFT>
|
|
static SmallVector<const void *, 0>
|
|
parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
|
|
if (!sec)
|
|
return {};
|
|
|
|
// Build the Verdefs array by following the chain of Elf_Verdef objects
|
|
// from the start of the .gnu.version_d section.
|
|
SmallVector<const void *, 0> verdefs;
|
|
const uint8_t *verdef = base + sec->sh_offset;
|
|
for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
|
|
auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
|
|
verdef += curVerdef->vd_next;
|
|
unsigned verdefIndex = curVerdef->vd_ndx;
|
|
if (verdefIndex >= verdefs.size())
|
|
verdefs.resize(verdefIndex + 1);
|
|
verdefs[verdefIndex] = curVerdef;
|
|
}
|
|
return verdefs;
|
|
}
|
|
|
|
// Parse SHT_GNU_verneed to properly set the name of a versioned undefined
|
|
// symbol. We detect fatal issues which would cause vulnerabilities, but do not
|
|
// implement sophisticated error checking like in llvm-readobj because the value
|
|
// of such diagnostics is low.
|
|
template <typename ELFT>
|
|
std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
|
|
const typename ELFT::Shdr *sec) {
|
|
if (!sec)
|
|
return {};
|
|
std::vector<uint32_t> verneeds;
|
|
ArrayRef<uint8_t> data = CHECK2(obj.getSectionContents(*sec), this);
|
|
const uint8_t *verneedBuf = data.begin();
|
|
for (unsigned i = 0; i != sec->sh_info; ++i) {
|
|
if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) {
|
|
Err(ctx) << this << " has an invalid Verneed";
|
|
break;
|
|
}
|
|
auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
|
|
const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
|
|
for (unsigned j = 0; j != vn->vn_cnt; ++j) {
|
|
if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) {
|
|
Err(ctx) << this << " has an invalid Vernaux";
|
|
break;
|
|
}
|
|
auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
|
|
if (aux->vna_name >= this->stringTable.size()) {
|
|
Err(ctx) << this << " has a Vernaux with an invalid vna_name";
|
|
break;
|
|
}
|
|
uint16_t version = aux->vna_other & VERSYM_VERSION;
|
|
if (version >= verneeds.size())
|
|
verneeds.resize(version + 1);
|
|
verneeds[version] = aux->vna_name;
|
|
vernauxBuf += aux->vna_next;
|
|
}
|
|
verneedBuf += vn->vn_next;
|
|
}
|
|
return verneeds;
|
|
}
|
|
|
|
// Parse PT_GNU_PROPERTY segments in DSO. The process is similar to
|
|
// readGnuProperty, but we don't have the InputSection information.
|
|
template <typename ELFT>
|
|
void SharedFile::parseGnuAndFeatures(const ELFFile<ELFT> &obj) {
|
|
if (ctx.arg.emachine != EM_AARCH64)
|
|
return;
|
|
const uint8_t *base = obj.base();
|
|
auto phdrs = CHECK2(obj.program_headers(), this);
|
|
for (auto phdr : phdrs) {
|
|
if (phdr.p_type != PT_GNU_PROPERTY)
|
|
continue;
|
|
typename ELFT::Note note(
|
|
*reinterpret_cast<const typename ELFT::Nhdr *>(base + phdr.p_offset));
|
|
if (note.getType() != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU")
|
|
continue;
|
|
|
|
ArrayRef<uint8_t> desc = note.getDesc(phdr.p_align);
|
|
parseGnuPropertyNote<ELFT>(ctx, *this, GNU_PROPERTY_AARCH64_FEATURE_1_AND,
|
|
desc, base);
|
|
}
|
|
}
|
|
|
|
// We do not usually care about alignments of data in shared object
|
|
// files because the loader takes care of it. However, if we promote a
|
|
// DSO symbol to point to .bss due to copy relocation, we need to keep
|
|
// the original alignment requirements. We infer it in this function.
|
|
template <typename ELFT>
|
|
static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
|
|
const typename ELFT::Sym &sym) {
|
|
uint64_t ret = UINT64_MAX;
|
|
if (sym.st_value)
|
|
ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value);
|
|
if (0 < sym.st_shndx && sym.st_shndx < sections.size())
|
|
ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
|
|
return (ret > UINT32_MAX) ? 0 : ret;
|
|
}
|
|
|
|
// Fully parse the shared object file.
|
|
//
|
|
// This function parses symbol versions. If a DSO has version information,
|
|
// the file has a ".gnu.version_d" section which contains symbol version
|
|
// definitions. Each symbol is associated to one version through a table in
|
|
// ".gnu.version" section. That table is a parallel array for the symbol
|
|
// table, and each table entry contains an index in ".gnu.version_d".
|
|
//
|
|
// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
|
|
// VER_NDX_GLOBAL. There's no table entry for these special versions in
|
|
// ".gnu.version_d".
|
|
//
|
|
// The file format for symbol versioning is perhaps a bit more complicated
|
|
// than necessary, but you can easily understand the code if you wrap your
|
|
// head around the data structure described above.
|
|
template <class ELFT> void SharedFile::parse() {
|
|
using Elf_Dyn = typename ELFT::Dyn;
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
using Elf_Verdef = typename ELFT::Verdef;
|
|
using Elf_Versym = typename ELFT::Versym;
|
|
|
|
ArrayRef<Elf_Dyn> dynamicTags;
|
|
const ELFFile<ELFT> obj = this->getObj<ELFT>();
|
|
ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
|
|
|
|
const Elf_Shdr *versymSec = nullptr;
|
|
const Elf_Shdr *verdefSec = nullptr;
|
|
const Elf_Shdr *verneedSec = nullptr;
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
|
|
// Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
|
|
for (const Elf_Shdr &sec : sections) {
|
|
switch (sec.sh_type) {
|
|
default:
|
|
continue;
|
|
case SHT_DYNAMIC:
|
|
dynamicTags =
|
|
CHECK2(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
|
|
break;
|
|
case SHT_GNU_versym:
|
|
versymSec = &sec;
|
|
break;
|
|
case SHT_GNU_verdef:
|
|
verdefSec = &sec;
|
|
break;
|
|
case SHT_GNU_verneed:
|
|
verneedSec = &sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (versymSec && numSymbols == 0) {
|
|
ErrAlways(ctx) << "SHT_GNU_versym should be associated with symbol table";
|
|
return;
|
|
}
|
|
|
|
// Search for a DT_SONAME tag to initialize this->soName.
|
|
for (const Elf_Dyn &dyn : dynamicTags) {
|
|
if (dyn.d_tag == DT_NEEDED) {
|
|
uint64_t val = dyn.getVal();
|
|
if (val >= this->stringTable.size()) {
|
|
Err(ctx) << this << ": invalid DT_NEEDED entry";
|
|
return;
|
|
}
|
|
dtNeeded.push_back(this->stringTable.data() + val);
|
|
} else if (dyn.d_tag == DT_SONAME) {
|
|
uint64_t val = dyn.getVal();
|
|
if (val >= this->stringTable.size()) {
|
|
Err(ctx) << this << ": invalid DT_SONAME entry";
|
|
return;
|
|
}
|
|
soName = this->stringTable.data() + val;
|
|
}
|
|
}
|
|
|
|
// DSOs are uniquified not by filename but by soname.
|
|
StringSaver &ss = ctx.saver;
|
|
DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
|
|
bool wasInserted;
|
|
std::tie(it, wasInserted) =
|
|
ctx.symtab->soNames.try_emplace(CachedHashStringRef(soName), this);
|
|
|
|
// If a DSO appears more than once on the command line with and without
|
|
// --as-needed, --no-as-needed takes precedence over --as-needed because a
|
|
// user can add an extra DSO with --no-as-needed to force it to be added to
|
|
// the dependency list.
|
|
it->second->isNeeded |= isNeeded;
|
|
if (!wasInserted)
|
|
return;
|
|
|
|
ctx.sharedFiles.push_back(this);
|
|
|
|
verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
|
|
std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
|
|
parseGnuAndFeatures<ELFT>(obj);
|
|
|
|
// Parse ".gnu.version" section which is a parallel array for the symbol
|
|
// table. If a given file doesn't have a ".gnu.version" section, we use
|
|
// VER_NDX_GLOBAL.
|
|
size_t size = numSymbols - firstGlobal;
|
|
std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
|
|
if (versymSec) {
|
|
ArrayRef<Elf_Versym> versym =
|
|
CHECK2(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
|
|
this)
|
|
.slice(firstGlobal);
|
|
for (size_t i = 0; i < size; ++i)
|
|
versyms[i] = versym[i].vs_index;
|
|
}
|
|
|
|
// System libraries can have a lot of symbols with versions. Using a
|
|
// fixed buffer for computing the versions name (foo@ver) can save a
|
|
// lot of allocations.
|
|
SmallString<0> versionedNameBuffer;
|
|
|
|
// Add symbols to the symbol table.
|
|
ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
|
|
for (size_t i = 0, e = syms.size(); i != e; ++i) {
|
|
const Elf_Sym &sym = syms[i];
|
|
|
|
// ELF spec requires that all local symbols precede weak or global
|
|
// symbols in each symbol table, and the index of first non-local symbol
|
|
// is stored to sh_info. If a local symbol appears after some non-local
|
|
// symbol, that's a violation of the spec.
|
|
StringRef name = CHECK2(sym.getName(stringTable), this);
|
|
if (sym.getBinding() == STB_LOCAL) {
|
|
Err(ctx) << this << ": invalid local symbol '" << name
|
|
<< "' in global part of symbol table";
|
|
continue;
|
|
}
|
|
|
|
const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
|
|
if (sym.isUndefined()) {
|
|
// For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
|
|
// as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
|
|
if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
|
|
if (idx >= verneeds.size()) {
|
|
ErrAlways(ctx) << "corrupt input file: version need index " << idx
|
|
<< " for symbol " << name
|
|
<< " is out of bounds\n>>> defined in " << this;
|
|
continue;
|
|
}
|
|
StringRef verName = stringTable.data() + verneeds[idx];
|
|
versionedNameBuffer.clear();
|
|
name = ss.save((name + "@" + verName).toStringRef(versionedNameBuffer));
|
|
}
|
|
Symbol *s = ctx.symtab->addSymbol(
|
|
Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
|
|
s->isExported = true;
|
|
if (sym.getBinding() != STB_WEAK &&
|
|
ctx.arg.unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
|
|
requiredSymbols.push_back(s);
|
|
continue;
|
|
}
|
|
|
|
if (ver == VER_NDX_LOCAL ||
|
|
(ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
|
|
// In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
|
|
// MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
|
|
// VER_NDX_LOCAL. Workaround this bug.
|
|
if (ctx.arg.emachine == EM_MIPS && name == "_gp_disp")
|
|
continue;
|
|
ErrAlways(ctx) << "corrupt input file: version definition index " << idx
|
|
<< " for symbol " << name
|
|
<< " is out of bounds\n>>> defined in " << this;
|
|
continue;
|
|
}
|
|
|
|
uint32_t alignment = getAlignment<ELFT>(sections, sym);
|
|
if (ver == idx) {
|
|
auto *s = ctx.symtab->addSymbol(
|
|
SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
|
|
sym.getType(), sym.st_value, sym.st_size, alignment});
|
|
s->dsoDefined = true;
|
|
if (s->file == this)
|
|
s->versionId = ver;
|
|
}
|
|
|
|
// Also add the symbol with the versioned name to handle undefined symbols
|
|
// with explicit versions.
|
|
if (ver == VER_NDX_GLOBAL)
|
|
continue;
|
|
|
|
StringRef verName =
|
|
stringTable.data() +
|
|
reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
|
|
versionedNameBuffer.clear();
|
|
name = (name + "@" + verName).toStringRef(versionedNameBuffer);
|
|
auto *s = ctx.symtab->addSymbol(
|
|
SharedSymbol{*this, ss.save(name), sym.getBinding(), sym.st_other,
|
|
sym.getType(), sym.st_value, sym.st_size, alignment});
|
|
s->dsoDefined = true;
|
|
if (s->file == this)
|
|
s->versionId = idx;
|
|
}
|
|
}
|
|
|
|
static ELFKind getBitcodeELFKind(const Triple &t) {
|
|
if (t.isLittleEndian())
|
|
return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
|
|
return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
|
|
}
|
|
|
|
static uint16_t getBitcodeMachineKind(Ctx &ctx, StringRef path,
|
|
const Triple &t) {
|
|
switch (t.getArch()) {
|
|
case Triple::aarch64:
|
|
case Triple::aarch64_be:
|
|
return EM_AARCH64;
|
|
case Triple::amdgcn:
|
|
case Triple::r600:
|
|
return EM_AMDGPU;
|
|
case Triple::arm:
|
|
case Triple::armeb:
|
|
case Triple::thumb:
|
|
case Triple::thumbeb:
|
|
return EM_ARM;
|
|
case Triple::avr:
|
|
return EM_AVR;
|
|
case Triple::hexagon:
|
|
return EM_HEXAGON;
|
|
case Triple::loongarch32:
|
|
case Triple::loongarch64:
|
|
return EM_LOONGARCH;
|
|
case Triple::mips:
|
|
case Triple::mipsel:
|
|
case Triple::mips64:
|
|
case Triple::mips64el:
|
|
return EM_MIPS;
|
|
case Triple::msp430:
|
|
return EM_MSP430;
|
|
case Triple::ppc:
|
|
case Triple::ppcle:
|
|
return EM_PPC;
|
|
case Triple::ppc64:
|
|
case Triple::ppc64le:
|
|
return EM_PPC64;
|
|
case Triple::riscv32:
|
|
case Triple::riscv64:
|
|
return EM_RISCV;
|
|
case Triple::sparcv9:
|
|
return EM_SPARCV9;
|
|
case Triple::systemz:
|
|
return EM_S390;
|
|
case Triple::x86:
|
|
return t.isOSIAMCU() ? EM_IAMCU : EM_386;
|
|
case Triple::x86_64:
|
|
return EM_X86_64;
|
|
default:
|
|
ErrAlways(ctx) << path
|
|
<< ": could not infer e_machine from bitcode target triple "
|
|
<< t.str();
|
|
return EM_NONE;
|
|
}
|
|
}
|
|
|
|
static uint8_t getOsAbi(const Triple &t) {
|
|
switch (t.getOS()) {
|
|
case Triple::AMDHSA:
|
|
return ELF::ELFOSABI_AMDGPU_HSA;
|
|
case Triple::AMDPAL:
|
|
return ELF::ELFOSABI_AMDGPU_PAL;
|
|
case Triple::Mesa3D:
|
|
return ELF::ELFOSABI_AMDGPU_MESA3D;
|
|
default:
|
|
return ELF::ELFOSABI_NONE;
|
|
}
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(Ctx &ctx, MemoryBufferRef mb, StringRef archiveName,
|
|
uint64_t offsetInArchive, bool lazy)
|
|
: InputFile(ctx, BitcodeKind, mb) {
|
|
this->archiveName = archiveName;
|
|
this->lazy = lazy;
|
|
|
|
std::string path = mb.getBufferIdentifier().str();
|
|
if (ctx.arg.thinLTOIndexOnly)
|
|
path = replaceThinLTOSuffix(ctx, mb.getBufferIdentifier());
|
|
|
|
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
|
|
// name. If two archives define two members with the same name, this
|
|
// causes a collision which result in only one of the objects being taken
|
|
// into consideration at LTO time (which very likely causes undefined
|
|
// symbols later in the link stage). So we append file offset to make
|
|
// filename unique.
|
|
StringSaver &ss = ctx.saver;
|
|
StringRef name = archiveName.empty()
|
|
? ss.save(path)
|
|
: ss.save(archiveName + "(" + path::filename(path) +
|
|
" at " + utostr(offsetInArchive) + ")");
|
|
MemoryBufferRef mbref(mb.getBuffer(), name);
|
|
|
|
obj = CHECK2(lto::InputFile::create(mbref), this);
|
|
|
|
Triple t(obj->getTargetTriple());
|
|
ekind = getBitcodeELFKind(t);
|
|
emachine = getBitcodeMachineKind(ctx, mb.getBufferIdentifier(), t);
|
|
osabi = getOsAbi(t);
|
|
}
|
|
|
|
static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
|
|
switch (gvVisibility) {
|
|
case GlobalValue::DefaultVisibility:
|
|
return STV_DEFAULT;
|
|
case GlobalValue::HiddenVisibility:
|
|
return STV_HIDDEN;
|
|
case GlobalValue::ProtectedVisibility:
|
|
return STV_PROTECTED;
|
|
}
|
|
llvm_unreachable("unknown visibility");
|
|
}
|
|
|
|
static void createBitcodeSymbol(Ctx &ctx, Symbol *&sym,
|
|
const lto::InputFile::Symbol &objSym,
|
|
BitcodeFile &f) {
|
|
uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
|
|
uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
|
|
uint8_t visibility = mapVisibility(objSym.getVisibility());
|
|
|
|
if (!sym) {
|
|
// Symbols can be duplicated in bitcode files because of '#include' and
|
|
// linkonce_odr. Use uniqueSaver to save symbol names for de-duplication.
|
|
// Update objSym.Name to reference (via StringRef) the string saver's copy;
|
|
// this way LTO can reference the same string saver's copy rather than
|
|
// keeping copies of its own.
|
|
objSym.Name = ctx.uniqueSaver.save(objSym.getName());
|
|
sym = ctx.symtab->insert(objSym.getName());
|
|
}
|
|
|
|
if (objSym.isUndefined()) {
|
|
Undefined newSym(&f, StringRef(), binding, visibility, type);
|
|
sym->resolve(ctx, newSym);
|
|
sym->referenced = true;
|
|
return;
|
|
}
|
|
|
|
if (objSym.isCommon()) {
|
|
sym->resolve(ctx, CommonSymbol{ctx, &f, StringRef(), binding, visibility,
|
|
STT_OBJECT, objSym.getCommonAlignment(),
|
|
objSym.getCommonSize()});
|
|
} else {
|
|
Defined newSym(ctx, &f, StringRef(), binding, visibility, type, 0, 0,
|
|
nullptr);
|
|
// The definition can be omitted if all bitcode definitions satisfy
|
|
// `canBeOmittedFromSymbolTable()` and isUsedInRegularObj is false.
|
|
// The latter condition is tested in parseVersionAndComputeIsPreemptible.
|
|
sym->ltoCanOmit = objSym.canBeOmittedFromSymbolTable() &&
|
|
(!sym->isDefined() || sym->ltoCanOmit);
|
|
sym->resolve(ctx, newSym);
|
|
}
|
|
}
|
|
|
|
void BitcodeFile::parse() {
|
|
for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
|
|
keptComdats.push_back(
|
|
s.second == Comdat::NoDeduplicate ||
|
|
ctx.symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
|
|
.second);
|
|
}
|
|
|
|
if (numSymbols == 0) {
|
|
numSymbols = obj->symbols().size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
}
|
|
// Process defined symbols first. See the comment in
|
|
// ObjFile<ELFT>::initializeSymbols.
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
|
|
if (!irSym.isUndefined())
|
|
createBitcodeSymbol(ctx, symbols[i], irSym, *this);
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
|
|
if (irSym.isUndefined())
|
|
createBitcodeSymbol(ctx, symbols[i], irSym, *this);
|
|
|
|
for (auto l : obj->getDependentLibraries())
|
|
addDependentLibrary(ctx, l, this);
|
|
}
|
|
|
|
void BitcodeFile::parseLazy() {
|
|
numSymbols = obj->symbols().size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
|
|
// Symbols can be duplicated in bitcode files because of '#include' and
|
|
// linkonce_odr. Use uniqueSaver to save symbol names for de-duplication.
|
|
// Update objSym.Name to reference (via StringRef) the string saver's copy;
|
|
// this way LTO can reference the same string saver's copy rather than
|
|
// keeping copies of its own.
|
|
irSym.Name = ctx.uniqueSaver.save(irSym.getName());
|
|
if (!irSym.isUndefined()) {
|
|
auto *sym = ctx.symtab->insert(irSym.getName());
|
|
sym->resolve(ctx, LazySymbol{*this});
|
|
symbols[i] = sym;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BitcodeFile::postParse() {
|
|
for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
|
|
const Symbol &sym = *symbols[i];
|
|
if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
|
|
irSym.isCommon() || irSym.isWeak())
|
|
continue;
|
|
int c = irSym.getComdatIndex();
|
|
if (c != -1 && !keptComdats[c])
|
|
continue;
|
|
reportDuplicate(ctx, sym, this, nullptr, 0);
|
|
}
|
|
}
|
|
|
|
void BinaryFile::parse() {
|
|
ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
|
|
auto *section =
|
|
make<InputSection>(this, ".data", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
|
|
/*addralign=*/8, /*entsize=*/0, data);
|
|
sections.push_back(section);
|
|
|
|
// For each input file foo that is embedded to a result as a binary
|
|
// blob, we define _binary_foo_{start,end,size} symbols, so that
|
|
// user programs can access blobs by name. Non-alphanumeric
|
|
// characters in a filename are replaced with underscore.
|
|
std::string s = "_binary_" + mb.getBufferIdentifier().str();
|
|
for (char &c : s)
|
|
if (!isAlnum(c))
|
|
c = '_';
|
|
|
|
llvm::StringSaver &ss = ctx.saver;
|
|
ctx.symtab->addAndCheckDuplicate(
|
|
ctx, Defined{ctx, this, ss.save(s + "_start"), STB_GLOBAL, STV_DEFAULT,
|
|
STT_OBJECT, 0, 0, section});
|
|
ctx.symtab->addAndCheckDuplicate(
|
|
ctx, Defined{ctx, this, ss.save(s + "_end"), STB_GLOBAL, STV_DEFAULT,
|
|
STT_OBJECT, data.size(), 0, section});
|
|
ctx.symtab->addAndCheckDuplicate(
|
|
ctx, Defined{ctx, this, ss.save(s + "_size"), STB_GLOBAL, STV_DEFAULT,
|
|
STT_OBJECT, data.size(), 0, nullptr});
|
|
}
|
|
|
|
InputFile *elf::createInternalFile(Ctx &ctx, StringRef name) {
|
|
auto *file =
|
|
make<InputFile>(ctx, InputFile::InternalKind, MemoryBufferRef("", name));
|
|
// References from an internal file do not lead to --warn-backrefs
|
|
// diagnostics.
|
|
file->groupId = 0;
|
|
return file;
|
|
}
|
|
|
|
std::unique_ptr<ELFFileBase> elf::createObjFile(Ctx &ctx, MemoryBufferRef mb,
|
|
StringRef archiveName,
|
|
bool lazy) {
|
|
std::unique_ptr<ELFFileBase> f;
|
|
switch (getELFKind(ctx, mb, archiveName)) {
|
|
case ELF32LEKind:
|
|
f = std::make_unique<ObjFile<ELF32LE>>(ctx, ELF32LEKind, mb, archiveName);
|
|
break;
|
|
case ELF32BEKind:
|
|
f = std::make_unique<ObjFile<ELF32BE>>(ctx, ELF32BEKind, mb, archiveName);
|
|
break;
|
|
case ELF64LEKind:
|
|
f = std::make_unique<ObjFile<ELF64LE>>(ctx, ELF64LEKind, mb, archiveName);
|
|
break;
|
|
case ELF64BEKind:
|
|
f = std::make_unique<ObjFile<ELF64BE>>(ctx, ELF64BEKind, mb, archiveName);
|
|
break;
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
f->init();
|
|
f->lazy = lazy;
|
|
return f;
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::parseLazy() {
|
|
const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
|
|
numSymbols = eSyms.size();
|
|
symbols = std::make_unique<Symbol *[]>(numSymbols);
|
|
|
|
// resolve() may trigger this->extract() if an existing symbol is an undefined
|
|
// symbol. If that happens, this function has served its purpose, and we can
|
|
// exit from the loop early.
|
|
auto *symtab = ctx.symtab.get();
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
if (eSyms[i].st_shndx == SHN_UNDEF)
|
|
continue;
|
|
symbols[i] = symtab->insert(CHECK2(eSyms[i].getName(stringTable), this));
|
|
symbols[i]->resolve(ctx, LazySymbol{*this});
|
|
if (!lazy)
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool InputFile::shouldExtractForCommon(StringRef name) const {
|
|
if (isa<BitcodeFile>(this))
|
|
return isBitcodeNonCommonDef(mb, name, archiveName);
|
|
|
|
return isNonCommonDef(ctx, mb, name, archiveName);
|
|
}
|
|
|
|
std::string elf::replaceThinLTOSuffix(Ctx &ctx, StringRef path) {
|
|
auto [suffix, repl] = ctx.arg.thinLTOObjectSuffixReplace;
|
|
if (path.consume_back(suffix))
|
|
return (path + repl).str();
|
|
return std::string(path);
|
|
}
|
|
|
|
template class elf::ObjFile<ELF32LE>;
|
|
template class elf::ObjFile<ELF32BE>;
|
|
template class elf::ObjFile<ELF64LE>;
|
|
template class elf::ObjFile<ELF64BE>;
|
|
|
|
template void SharedFile::parse<ELF32LE>();
|
|
template void SharedFile::parse<ELF32BE>();
|
|
template void SharedFile::parse<ELF64LE>();
|
|
template void SharedFile::parse<ELF64BE>();
|