mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-16 00:56:37 +00:00

Add support for the new SHF_AARCH64_PURECODE ELF section flag: https://github.com/ARM-software/abi-aa/pull/304 The general implementation follows the existing one for ARM targets. The output section only has the `SHF_AARCH64_PURECODE` flag set if all input sections have it set. Related PRs: * LLVM: https://github.com/llvm/llvm-project/pull/125687 * Clang: https://github.com/llvm/llvm-project/pull/125688
960 lines
36 KiB
C++
960 lines
36 KiB
C++
//===- OutputSections.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Config.h"
|
|
#include "InputFiles.h"
|
|
#include "LinkerScript.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/Arrays.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB, LLVM_ENABLE_ZSTD
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#undef in
|
|
#if LLVM_ENABLE_ZLIB
|
|
// Avoid introducing max as a macro from Windows headers.
|
|
#define NOMINMAX
|
|
#include <zlib.h>
|
|
#endif
|
|
#if LLVM_ENABLE_ZSTD
|
|
#include <zstd.h>
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::dwarf;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
uint32_t OutputSection::getPhdrFlags() const {
|
|
uint32_t ret = 0;
|
|
bool purecode =
|
|
(ctx.arg.emachine == EM_ARM && (flags & SHF_ARM_PURECODE)) ||
|
|
(ctx.arg.emachine == EM_AARCH64 && (flags & SHF_AARCH64_PURECODE));
|
|
if (!purecode)
|
|
ret |= PF_R;
|
|
if (flags & SHF_WRITE)
|
|
ret |= PF_W;
|
|
if (flags & SHF_EXECINSTR)
|
|
ret |= PF_X;
|
|
return ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) {
|
|
shdr->sh_entsize = entsize;
|
|
shdr->sh_addralign = addralign;
|
|
shdr->sh_type = type;
|
|
shdr->sh_offset = offset;
|
|
shdr->sh_flags = flags;
|
|
shdr->sh_info = info;
|
|
shdr->sh_link = link;
|
|
shdr->sh_addr = addr;
|
|
shdr->sh_size = size;
|
|
shdr->sh_name = shName;
|
|
}
|
|
|
|
OutputSection::OutputSection(Ctx &ctx, StringRef name, uint32_t type,
|
|
uint64_t flags)
|
|
: SectionBase(Output, ctx.internalFile, name, type, flags, /*link=*/0,
|
|
/*info=*/0, /*addralign=*/1, /*entsize=*/0),
|
|
ctx(ctx) {}
|
|
|
|
uint64_t OutputSection::getLMA() const {
|
|
return ptLoad ? addr + ptLoad->lmaOffset : addr;
|
|
}
|
|
|
|
// We allow sections of types listed below to merged into a
|
|
// single progbits section. This is typically done by linker
|
|
// scripts. Merging nobits and progbits will force disk space
|
|
// to be allocated for nobits sections. Other ones don't require
|
|
// any special treatment on top of progbits, so there doesn't
|
|
// seem to be a harm in merging them.
|
|
//
|
|
// NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
|
|
// them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
|
|
static bool canMergeToProgbits(Ctx &ctx, unsigned type) {
|
|
return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY ||
|
|
type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY ||
|
|
type == SHT_NOTE ||
|
|
(type == SHT_X86_64_UNWIND && ctx.arg.emachine == EM_X86_64);
|
|
}
|
|
|
|
// Record that isec will be placed in the OutputSection. isec does not become
|
|
// permanent until finalizeInputSections() is called. The function should not be
|
|
// used after finalizeInputSections() is called. If you need to add an
|
|
// InputSection post finalizeInputSections(), then you must do the following:
|
|
//
|
|
// 1. Find or create an InputSectionDescription to hold InputSection.
|
|
// 2. Add the InputSection to the InputSectionDescription::sections.
|
|
// 3. Call commitSection(isec).
|
|
void OutputSection::recordSection(InputSectionBase *isec) {
|
|
partition = isec->partition;
|
|
isec->parent = this;
|
|
if (commands.empty() || !isa<InputSectionDescription>(commands.back()))
|
|
commands.push_back(make<InputSectionDescription>(""));
|
|
auto *isd = cast<InputSectionDescription>(commands.back());
|
|
isd->sectionBases.push_back(isec);
|
|
}
|
|
|
|
// Update fields (type, flags, alignment, etc) according to the InputSection
|
|
// isec. Also check whether the InputSection flags and type are consistent with
|
|
// other InputSections.
|
|
void OutputSection::commitSection(InputSection *isec) {
|
|
if (LLVM_UNLIKELY(type != isec->type)) {
|
|
if (!hasInputSections && !typeIsSet) {
|
|
type = isec->type;
|
|
} else if (isStaticRelSecType(type) && isStaticRelSecType(isec->type) &&
|
|
(type == SHT_CREL) != (isec->type == SHT_CREL)) {
|
|
// Combine mixed SHT_REL[A] and SHT_CREL to SHT_CREL.
|
|
type = SHT_CREL;
|
|
if (type == SHT_REL) {
|
|
if (name.consume_front(".rel"))
|
|
name = ctx.saver.save(".crel" + name);
|
|
} else if (name.consume_front(".rela")) {
|
|
name = ctx.saver.save(".crel" + name);
|
|
}
|
|
} else {
|
|
if (typeIsSet || !canMergeToProgbits(ctx, type) ||
|
|
!canMergeToProgbits(ctx, isec->type)) {
|
|
// The (NOLOAD) changes the section type to SHT_NOBITS, the intention is
|
|
// that the contents at that address is provided by some other means.
|
|
// Some projects (e.g.
|
|
// https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the
|
|
// behavior. Other types get an error.
|
|
if (type != SHT_NOBITS) {
|
|
Err(ctx) << "section type mismatch for " << isec->name << "\n>>> "
|
|
<< isec << ": "
|
|
<< getELFSectionTypeName(ctx.arg.emachine, isec->type)
|
|
<< "\n>>> output section " << name << ": "
|
|
<< getELFSectionTypeName(ctx.arg.emachine, type);
|
|
}
|
|
}
|
|
if (!typeIsSet)
|
|
type = SHT_PROGBITS;
|
|
}
|
|
}
|
|
if (!hasInputSections) {
|
|
// If IS is the first section to be added to this section,
|
|
// initialize type, entsize and flags from isec.
|
|
hasInputSections = true;
|
|
entsize = isec->entsize;
|
|
flags = isec->flags;
|
|
} else {
|
|
// Otherwise, check if new type or flags are compatible with existing ones.
|
|
if ((flags ^ isec->flags) & SHF_TLS)
|
|
ErrAlways(ctx) << "incompatible section flags for " << name << "\n>>> "
|
|
<< isec << ": 0x" << utohexstr(isec->flags, true)
|
|
<< "\n>>> output section " << name << ": 0x"
|
|
<< utohexstr(flags, true);
|
|
}
|
|
|
|
isec->parent = this;
|
|
uint64_t andMask = 0;
|
|
if (ctx.arg.emachine == EM_ARM)
|
|
andMask |= (uint64_t)SHF_ARM_PURECODE;
|
|
if (ctx.arg.emachine == EM_AARCH64)
|
|
andMask |= (uint64_t)SHF_AARCH64_PURECODE;
|
|
uint64_t orMask = ~andMask;
|
|
uint64_t andFlags = (flags & isec->flags) & andMask;
|
|
uint64_t orFlags = (flags | isec->flags) & orMask;
|
|
flags = andFlags | orFlags;
|
|
if (nonAlloc)
|
|
flags &= ~(uint64_t)SHF_ALLOC;
|
|
|
|
addralign = std::max(addralign, isec->addralign);
|
|
|
|
// If this section contains a table of fixed-size entries, sh_entsize
|
|
// holds the element size. If it contains elements of different size we
|
|
// set sh_entsize to 0.
|
|
if (entsize != isec->entsize)
|
|
entsize = 0;
|
|
}
|
|
|
|
static MergeSyntheticSection *createMergeSynthetic(Ctx &ctx, StringRef name,
|
|
uint32_t type,
|
|
uint64_t flags,
|
|
uint32_t addralign) {
|
|
if ((flags & SHF_STRINGS) && ctx.arg.optimize >= 2)
|
|
return make<MergeTailSection>(ctx, name, type, flags, addralign);
|
|
return make<MergeNoTailSection>(ctx, name, type, flags, addralign);
|
|
}
|
|
|
|
// This function scans over the InputSectionBase list sectionBases to create
|
|
// InputSectionDescription::sections.
|
|
//
|
|
// It removes MergeInputSections from the input section array and adds
|
|
// new synthetic sections at the location of the first input section
|
|
// that it replaces. It then finalizes each synthetic section in order
|
|
// to compute an output offset for each piece of each input section.
|
|
void OutputSection::finalizeInputSections() {
|
|
auto *script = ctx.script;
|
|
std::vector<MergeSyntheticSection *> mergeSections;
|
|
for (SectionCommand *cmd : commands) {
|
|
auto *isd = dyn_cast<InputSectionDescription>(cmd);
|
|
if (!isd)
|
|
continue;
|
|
isd->sections.reserve(isd->sectionBases.size());
|
|
for (InputSectionBase *s : isd->sectionBases) {
|
|
MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
|
|
if (!ms) {
|
|
isd->sections.push_back(cast<InputSection>(s));
|
|
continue;
|
|
}
|
|
|
|
// We do not want to handle sections that are not alive, so just remove
|
|
// them instead of trying to merge.
|
|
if (!ms->isLive())
|
|
continue;
|
|
|
|
auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
|
|
// While we could create a single synthetic section for two different
|
|
// values of Entsize, it is better to take Entsize into consideration.
|
|
//
|
|
// With a single synthetic section no two pieces with different Entsize
|
|
// could be equal, so we may as well have two sections.
|
|
//
|
|
// Using Entsize in here also allows us to propagate it to the synthetic
|
|
// section.
|
|
//
|
|
// SHF_STRINGS section with different alignments should not be merged.
|
|
return sec->flags == ms->flags && sec->entsize == ms->entsize &&
|
|
(sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS));
|
|
});
|
|
if (i == mergeSections.end()) {
|
|
MergeSyntheticSection *syn = createMergeSynthetic(
|
|
ctx, s->name, ms->type, ms->flags, ms->addralign);
|
|
mergeSections.push_back(syn);
|
|
i = std::prev(mergeSections.end());
|
|
syn->entsize = ms->entsize;
|
|
isd->sections.push_back(syn);
|
|
// The merge synthetic section inherits the potential spill locations of
|
|
// its first contained section.
|
|
auto it = script->potentialSpillLists.find(ms);
|
|
if (it != script->potentialSpillLists.end())
|
|
script->potentialSpillLists.try_emplace(syn, it->second);
|
|
}
|
|
(*i)->addSection(ms);
|
|
}
|
|
|
|
// sectionBases should not be used from this point onwards. Clear it to
|
|
// catch misuses.
|
|
isd->sectionBases.clear();
|
|
|
|
// Some input sections may be removed from the list after ICF.
|
|
for (InputSection *s : isd->sections)
|
|
commitSection(s);
|
|
}
|
|
for (auto *ms : mergeSections) {
|
|
// Merging may have increased the alignment of a spillable section. Update
|
|
// the alignment of potential spill sections and their containing output
|
|
// sections.
|
|
if (auto it = script->potentialSpillLists.find(ms);
|
|
it != script->potentialSpillLists.end()) {
|
|
for (PotentialSpillSection *s = it->second.head; s; s = s->next) {
|
|
s->addralign = std::max(s->addralign, ms->addralign);
|
|
s->parent->addralign = std::max(s->parent->addralign, s->addralign);
|
|
}
|
|
}
|
|
|
|
ms->finalizeContents();
|
|
}
|
|
}
|
|
|
|
static void sortByOrder(MutableArrayRef<InputSection *> in,
|
|
llvm::function_ref<int(InputSectionBase *s)> order) {
|
|
std::vector<std::pair<int, InputSection *>> v;
|
|
for (InputSection *s : in)
|
|
v.emplace_back(order(s), s);
|
|
llvm::stable_sort(v, less_first());
|
|
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
in[i] = v[i].second;
|
|
}
|
|
|
|
uint64_t elf::getHeaderSize(Ctx &ctx) {
|
|
if (ctx.arg.oFormatBinary)
|
|
return 0;
|
|
return ctx.out.elfHeader->size + ctx.out.programHeaders->size;
|
|
}
|
|
|
|
void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) {
|
|
assert(isLive());
|
|
for (SectionCommand *b : commands)
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(b))
|
|
sortByOrder(isd->sections, order);
|
|
}
|
|
|
|
static void nopInstrFill(Ctx &ctx, uint8_t *buf, size_t size) {
|
|
if (size == 0)
|
|
return;
|
|
unsigned i = 0;
|
|
if (size == 0)
|
|
return;
|
|
std::vector<std::vector<uint8_t>> nopFiller = *ctx.target->nopInstrs;
|
|
unsigned num = size / nopFiller.back().size();
|
|
for (unsigned c = 0; c < num; ++c) {
|
|
memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size());
|
|
i += nopFiller.back().size();
|
|
}
|
|
unsigned remaining = size - i;
|
|
if (!remaining)
|
|
return;
|
|
assert(nopFiller[remaining - 1].size() == remaining);
|
|
memcpy(buf + i, nopFiller[remaining - 1].data(), remaining);
|
|
}
|
|
|
|
// Fill [Buf, Buf + Size) with Filler.
|
|
// This is used for linker script "=fillexp" command.
|
|
static void fill(uint8_t *buf, size_t size,
|
|
const std::array<uint8_t, 4> &filler) {
|
|
size_t i = 0;
|
|
for (; i + 4 < size; i += 4)
|
|
memcpy(buf + i, filler.data(), 4);
|
|
memcpy(buf + i, filler.data(), size - i);
|
|
}
|
|
|
|
#if LLVM_ENABLE_ZLIB
|
|
static SmallVector<uint8_t, 0> deflateShard(Ctx &ctx, ArrayRef<uint8_t> in,
|
|
int level, int flush) {
|
|
// 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
|
|
// data with no zlib header or trailer.
|
|
z_stream s = {};
|
|
auto res = deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
|
|
if (res != 0) {
|
|
Err(ctx) << "--compress-sections: deflateInit2 returned " << res;
|
|
return {};
|
|
}
|
|
s.next_in = const_cast<uint8_t *>(in.data());
|
|
s.avail_in = in.size();
|
|
|
|
// Allocate a buffer of half of the input size, and grow it by 1.5x if
|
|
// insufficient.
|
|
SmallVector<uint8_t, 0> out;
|
|
size_t pos = 0;
|
|
out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64));
|
|
do {
|
|
if (pos == out.size())
|
|
out.resize_for_overwrite(out.size() * 3 / 2);
|
|
s.next_out = out.data() + pos;
|
|
s.avail_out = out.size() - pos;
|
|
(void)deflate(&s, flush);
|
|
pos = s.next_out - out.data();
|
|
} while (s.avail_out == 0);
|
|
assert(s.avail_in == 0);
|
|
|
|
out.truncate(pos);
|
|
deflateEnd(&s);
|
|
return out;
|
|
}
|
|
#endif
|
|
|
|
// Compress certain non-SHF_ALLOC sections:
|
|
//
|
|
// * (if --compress-debug-sections is specified) non-empty .debug_* sections
|
|
// * (if --compress-sections is specified) matched sections
|
|
template <class ELFT> void OutputSection::maybeCompress(Ctx &ctx) {
|
|
using Elf_Chdr = typename ELFT::Chdr;
|
|
(void)sizeof(Elf_Chdr);
|
|
|
|
DebugCompressionType ctype = DebugCompressionType::None;
|
|
size_t compressedSize = sizeof(Elf_Chdr);
|
|
unsigned level = 0; // default compression level
|
|
if (!(flags & SHF_ALLOC) && ctx.arg.compressDebugSections &&
|
|
name.starts_with(".debug_"))
|
|
ctype = *ctx.arg.compressDebugSections;
|
|
for (auto &[glob, t, l] : ctx.arg.compressSections)
|
|
if (glob.match(name))
|
|
std::tie(ctype, level) = {t, l};
|
|
if (ctype == DebugCompressionType::None)
|
|
return;
|
|
if (flags & SHF_ALLOC) {
|
|
Err(ctx) << "--compress-sections: section '" << name
|
|
<< "' with the SHF_ALLOC flag cannot be compressed";
|
|
return;
|
|
}
|
|
|
|
llvm::TimeTraceScope timeScope("Compress sections");
|
|
auto buf = std::make_unique<uint8_t[]>(size);
|
|
// Write uncompressed data to a temporary zero-initialized buffer.
|
|
{
|
|
parallel::TaskGroup tg;
|
|
writeTo<ELFT>(ctx, buf.get(), tg);
|
|
}
|
|
// The generic ABI specifies "The sh_size and sh_addralign fields of the
|
|
// section header for a compressed section reflect the requirements of the
|
|
// compressed section." However, 1-byte alignment has been wildly accepted
|
|
// and utilized for a long time. Removing alignment padding is particularly
|
|
// useful when there are many compressed output sections.
|
|
addralign = 1;
|
|
|
|
// Split input into 1-MiB shards.
|
|
[[maybe_unused]] constexpr size_t shardSize = 1 << 20;
|
|
auto shardsIn = split(ArrayRef<uint8_t>(buf.get(), size), shardSize);
|
|
const size_t numShards = shardsIn.size();
|
|
auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards);
|
|
|
|
#if LLVM_ENABLE_ZSTD
|
|
// Use ZSTD's streaming compression API. See
|
|
// http://facebook.github.io/zstd/zstd_manual.html "Streaming compression -
|
|
// HowTo".
|
|
if (ctype == DebugCompressionType::Zstd) {
|
|
parallelFor(0, numShards, [&](size_t i) {
|
|
SmallVector<uint8_t, 0> out;
|
|
ZSTD_CCtx *cctx = ZSTD_createCCtx();
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, level);
|
|
ZSTD_inBuffer zib = {shardsIn[i].data(), shardsIn[i].size(), 0};
|
|
ZSTD_outBuffer zob = {nullptr, 0, 0};
|
|
size_t size;
|
|
do {
|
|
// Allocate a buffer of half of the input size, and grow it by 1.5x if
|
|
// insufficient.
|
|
if (zob.pos == zob.size) {
|
|
out.resize_for_overwrite(
|
|
zob.size ? zob.size * 3 / 2 : std::max<size_t>(zib.size / 4, 64));
|
|
zob = {out.data(), out.size(), zob.pos};
|
|
}
|
|
size = ZSTD_compressStream2(cctx, &zob, &zib, ZSTD_e_end);
|
|
assert(!ZSTD_isError(size));
|
|
} while (size != 0);
|
|
out.truncate(zob.pos);
|
|
ZSTD_freeCCtx(cctx);
|
|
shardsOut[i] = std::move(out);
|
|
});
|
|
compressed.type = ELFCOMPRESS_ZSTD;
|
|
for (size_t i = 0; i != numShards; ++i)
|
|
compressedSize += shardsOut[i].size();
|
|
}
|
|
#endif
|
|
|
|
#if LLVM_ENABLE_ZLIB
|
|
// We chose 1 (Z_BEST_SPEED) as the default compression level because it is
|
|
// fast and provides decent compression ratios.
|
|
if (ctype == DebugCompressionType::Zlib) {
|
|
if (!level)
|
|
level = Z_BEST_SPEED;
|
|
|
|
// Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
|
|
// shards but the last to flush the output to a byte boundary to be
|
|
// concatenated with the next shard.
|
|
auto shardsAdler = std::make_unique<uint32_t[]>(numShards);
|
|
parallelFor(0, numShards, [&](size_t i) {
|
|
shardsOut[i] = deflateShard(ctx, shardsIn[i], level,
|
|
i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH);
|
|
shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size());
|
|
});
|
|
|
|
// Update section size and combine Alder-32 checksums.
|
|
uint32_t checksum = 1; // Initial Adler-32 value
|
|
compressedSize += 2; // Elf_Chdir and zlib header
|
|
for (size_t i = 0; i != numShards; ++i) {
|
|
compressedSize += shardsOut[i].size();
|
|
checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size());
|
|
}
|
|
compressedSize += 4; // checksum
|
|
compressed.type = ELFCOMPRESS_ZLIB;
|
|
compressed.checksum = checksum;
|
|
}
|
|
#endif
|
|
|
|
if (compressedSize >= size)
|
|
return;
|
|
compressed.uncompressedSize = size;
|
|
compressed.shards = std::move(shardsOut);
|
|
compressed.numShards = numShards;
|
|
size = compressedSize;
|
|
flags |= SHF_COMPRESSED;
|
|
}
|
|
|
|
static void writeInt(Ctx &ctx, uint8_t *buf, uint64_t data, uint64_t size) {
|
|
if (size == 1)
|
|
*buf = data;
|
|
else if (size == 2)
|
|
write16(ctx, buf, data);
|
|
else if (size == 4)
|
|
write32(ctx, buf, data);
|
|
else if (size == 8)
|
|
write64(ctx, buf, data);
|
|
else
|
|
llvm_unreachable("unsupported Size argument");
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection::writeTo(Ctx &ctx, uint8_t *buf, parallel::TaskGroup &tg) {
|
|
llvm::TimeTraceScope timeScope("Write sections", name);
|
|
if (type == SHT_NOBITS)
|
|
return;
|
|
if (type == SHT_CREL && !(flags & SHF_ALLOC)) {
|
|
buf += encodeULEB128(crelHeader, buf);
|
|
memcpy(buf, crelBody.data(), crelBody.size());
|
|
return;
|
|
}
|
|
|
|
// If the section is compressed due to
|
|
// --compress-debug-section/--compress-sections, the content is already known.
|
|
if (compressed.shards) {
|
|
auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf);
|
|
chdr->ch_type = compressed.type;
|
|
chdr->ch_size = compressed.uncompressedSize;
|
|
chdr->ch_addralign = addralign;
|
|
buf += sizeof(*chdr);
|
|
|
|
auto offsets = std::make_unique<size_t[]>(compressed.numShards);
|
|
if (compressed.type == ELFCOMPRESS_ZLIB) {
|
|
buf[0] = 0x78; // CMF
|
|
buf[1] = 0x01; // FLG: best speed
|
|
offsets[0] = 2; // zlib header
|
|
write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum);
|
|
}
|
|
|
|
// Compute shard offsets.
|
|
for (size_t i = 1; i != compressed.numShards; ++i)
|
|
offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size();
|
|
parallelFor(0, compressed.numShards, [&](size_t i) {
|
|
memcpy(buf + offsets[i], compressed.shards[i].data(),
|
|
compressed.shards[i].size());
|
|
});
|
|
return;
|
|
}
|
|
|
|
// Write leading padding.
|
|
ArrayRef<InputSection *> sections = getInputSections(*this, storage);
|
|
std::array<uint8_t, 4> filler = getFiller(ctx);
|
|
bool nonZeroFiller = read32(ctx, filler.data()) != 0;
|
|
if (nonZeroFiller)
|
|
fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler);
|
|
|
|
if (type == SHT_CREL && !(flags & SHF_ALLOC)) {
|
|
buf += encodeULEB128(crelHeader, buf);
|
|
memcpy(buf, crelBody.data(), crelBody.size());
|
|
return;
|
|
}
|
|
|
|
auto fn = [=, &ctx](size_t begin, size_t end) {
|
|
size_t numSections = sections.size();
|
|
for (size_t i = begin; i != end; ++i) {
|
|
InputSection *isec = sections[i];
|
|
if (auto *s = dyn_cast<SyntheticSection>(isec))
|
|
s->writeTo(buf + isec->outSecOff);
|
|
else
|
|
isec->writeTo<ELFT>(ctx, buf + isec->outSecOff);
|
|
|
|
// When in Arm BE8 mode, the linker has to convert the big-endian
|
|
// instructions to little-endian, leaving the data big-endian.
|
|
if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 &&
|
|
(flags & SHF_EXECINSTR))
|
|
convertArmInstructionstoBE8(ctx, isec, buf + isec->outSecOff);
|
|
|
|
// Fill gaps between sections.
|
|
if (nonZeroFiller) {
|
|
uint8_t *start = buf + isec->outSecOff + isec->getSize();
|
|
uint8_t *end;
|
|
if (i + 1 == numSections)
|
|
end = buf + size;
|
|
else
|
|
end = buf + sections[i + 1]->outSecOff;
|
|
if (isec->nopFiller) {
|
|
assert(ctx.target->nopInstrs);
|
|
nopInstrFill(ctx, start, end - start);
|
|
} else
|
|
fill(start, end - start, filler);
|
|
}
|
|
}
|
|
};
|
|
|
|
// If there is any BYTE()-family command (rare), write the section content
|
|
// first then process BYTE to overwrite the filler content. The write is
|
|
// serial due to the limitation of llvm/Support/Parallel.h.
|
|
bool written = false;
|
|
size_t numSections = sections.size();
|
|
for (SectionCommand *cmd : commands)
|
|
if (auto *data = dyn_cast<ByteCommand>(cmd)) {
|
|
if (!std::exchange(written, true))
|
|
fn(0, numSections);
|
|
writeInt(ctx, buf + data->offset, data->expression().getValue(),
|
|
data->size);
|
|
}
|
|
if (written || !numSections)
|
|
return;
|
|
|
|
// There is no data command. Write content asynchronously to overlap the write
|
|
// time with other output sections. Note, if a linker script specifies
|
|
// overlapping output sections (needs --noinhibit-exec or --no-check-sections
|
|
// to supress the error), the output may be non-deterministic.
|
|
const size_t taskSizeLimit = 4 << 20;
|
|
for (size_t begin = 0, i = 0, taskSize = 0;;) {
|
|
taskSize += sections[i]->getSize();
|
|
bool done = ++i == numSections;
|
|
if (done || taskSize >= taskSizeLimit) {
|
|
tg.spawn([=] { fn(begin, i); });
|
|
if (done)
|
|
break;
|
|
begin = i;
|
|
taskSize = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void finalizeShtGroup(Ctx &ctx, OutputSection *os,
|
|
InputSection *section) {
|
|
// sh_link field for SHT_GROUP sections should contain the section index of
|
|
// the symbol table.
|
|
os->link = ctx.in.symTab->getParent()->sectionIndex;
|
|
|
|
if (!section)
|
|
return;
|
|
|
|
// sh_info then contain index of an entry in symbol table section which
|
|
// provides signature of the section group.
|
|
ArrayRef<Symbol *> symbols = section->file->getSymbols();
|
|
os->info = ctx.in.symTab->getSymbolIndex(*symbols[section->info]);
|
|
|
|
// Some group members may be combined or discarded, so we need to compute the
|
|
// new size. The content will be rewritten in InputSection::copyShtGroup.
|
|
DenseSet<uint32_t> seen;
|
|
ArrayRef<InputSectionBase *> sections = section->file->getSections();
|
|
for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1))
|
|
if (OutputSection *osec = sections[read32(ctx, &idx)]->getOutputSection())
|
|
seen.insert(osec->sectionIndex);
|
|
os->size = (1 + seen.size()) * sizeof(uint32_t);
|
|
}
|
|
|
|
template <class uint>
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static void
|
|
encodeOneCrel(Ctx &ctx, raw_svector_ostream &os,
|
|
Elf_Crel<sizeof(uint) == 8> &out, uint offset, const Symbol &sym,
|
|
uint32_t type, uint addend) {
|
|
const auto deltaOffset = static_cast<uint64_t>(offset - out.r_offset);
|
|
out.r_offset = offset;
|
|
int64_t symidx = ctx.in.symTab->getSymbolIndex(sym);
|
|
if (sym.type == STT_SECTION) {
|
|
auto *d = dyn_cast<Defined>(&sym);
|
|
if (d) {
|
|
SectionBase *section = d->section;
|
|
assert(section->isLive());
|
|
addend = sym.getVA(ctx, addend) - section->getOutputSection()->addr;
|
|
} else {
|
|
// Encode R_*_NONE(symidx=0).
|
|
symidx = type = addend = 0;
|
|
}
|
|
}
|
|
|
|
// Similar to llvm::ELF::encodeCrel.
|
|
uint8_t b = deltaOffset * 8 + (out.r_symidx != symidx) +
|
|
(out.r_type != type ? 2 : 0) +
|
|
(uint(out.r_addend) != addend ? 4 : 0);
|
|
if (deltaOffset < 0x10) {
|
|
os << char(b);
|
|
} else {
|
|
os << char(b | 0x80);
|
|
encodeULEB128(deltaOffset >> 4, os);
|
|
}
|
|
if (b & 1) {
|
|
encodeSLEB128(static_cast<int32_t>(symidx - out.r_symidx), os);
|
|
out.r_symidx = symidx;
|
|
}
|
|
if (b & 2) {
|
|
encodeSLEB128(static_cast<int32_t>(type - out.r_type), os);
|
|
out.r_type = type;
|
|
}
|
|
if (b & 4) {
|
|
encodeSLEB128(std::make_signed_t<uint>(addend - out.r_addend), os);
|
|
out.r_addend = addend;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
static size_t relToCrel(Ctx &ctx, raw_svector_ostream &os,
|
|
Elf_Crel<ELFT::Is64Bits> &out, InputSection *relSec,
|
|
InputSectionBase *sec) {
|
|
const auto &file = *cast<ELFFileBase>(relSec->file);
|
|
if (relSec->type == SHT_REL) {
|
|
// REL conversion is complex and unsupported yet.
|
|
Err(ctx) << relSec << ": REL cannot be converted to CREL";
|
|
return 0;
|
|
}
|
|
auto rels = relSec->getDataAs<typename ELFT::Rela>();
|
|
for (auto rel : rels) {
|
|
encodeOneCrel<typename ELFT::uint>(
|
|
ctx, os, out, sec->getVA(rel.r_offset), file.getRelocTargetSym(rel),
|
|
rel.getType(ctx.arg.isMips64EL), getAddend<ELFT>(rel));
|
|
}
|
|
return rels.size();
|
|
}
|
|
|
|
// Compute the content of a non-alloc CREL section due to -r or --emit-relocs.
|
|
// Input CREL sections are decoded while REL[A] need to be converted.
|
|
template <bool is64> void OutputSection::finalizeNonAllocCrel(Ctx &ctx) {
|
|
using uint = typename Elf_Crel_Impl<is64>::uint;
|
|
raw_svector_ostream os(crelBody);
|
|
uint64_t totalCount = 0;
|
|
Elf_Crel<is64> out{};
|
|
assert(commands.size() == 1);
|
|
auto *isd = cast<InputSectionDescription>(commands[0]);
|
|
for (InputSection *relSec : isd->sections) {
|
|
const auto &file = *cast<ELFFileBase>(relSec->file);
|
|
InputSectionBase *sec = relSec->getRelocatedSection();
|
|
if (relSec->type == SHT_CREL) {
|
|
RelocsCrel<is64> entries(relSec->content_);
|
|
totalCount += entries.size();
|
|
for (Elf_Crel_Impl<is64> r : entries) {
|
|
encodeOneCrel<uint>(ctx, os, out, uint(sec->getVA(r.r_offset)),
|
|
file.getSymbol(r.r_symidx), r.r_type, r.r_addend);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Convert REL[A] to CREL.
|
|
if constexpr (is64) {
|
|
totalCount += ctx.arg.isLE
|
|
? relToCrel<ELF64LE>(ctx, os, out, relSec, sec)
|
|
: relToCrel<ELF64BE>(ctx, os, out, relSec, sec);
|
|
} else {
|
|
totalCount += ctx.arg.isLE
|
|
? relToCrel<ELF32LE>(ctx, os, out, relSec, sec)
|
|
: relToCrel<ELF32BE>(ctx, os, out, relSec, sec);
|
|
}
|
|
}
|
|
|
|
crelHeader = totalCount * 8 + 4;
|
|
size = getULEB128Size(crelHeader) + crelBody.size();
|
|
}
|
|
|
|
void OutputSection::finalize(Ctx &ctx) {
|
|
InputSection *first = getFirstInputSection(this);
|
|
|
|
if (flags & SHF_LINK_ORDER) {
|
|
// We must preserve the link order dependency of sections with the
|
|
// SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
|
|
// need to translate the InputSection sh_link to the OutputSection sh_link,
|
|
// all InputSections in the OutputSection have the same dependency.
|
|
if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first))
|
|
link = ex->getLinkOrderDep()->getParent()->sectionIndex;
|
|
else if (first->flags & SHF_LINK_ORDER)
|
|
if (auto *d = first->getLinkOrderDep())
|
|
link = d->getParent()->sectionIndex;
|
|
}
|
|
|
|
if (type == SHT_GROUP) {
|
|
finalizeShtGroup(ctx, this, first);
|
|
return;
|
|
}
|
|
|
|
if (!ctx.arg.copyRelocs || !isStaticRelSecType(type))
|
|
return;
|
|
|
|
// Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
|
|
// Normally 'type' was changed by 'first' so 'first' should be non-null.
|
|
// However, if the output section is .rela.dyn, 'type' can be set by the empty
|
|
// synthetic .rela.plt and first can be null.
|
|
if (!first || isa<SyntheticSection>(first))
|
|
return;
|
|
|
|
link = ctx.in.symTab->getParent()->sectionIndex;
|
|
// sh_info for SHT_REL[A] sections should contain the section header index of
|
|
// the section to which the relocation applies.
|
|
InputSectionBase *s = first->getRelocatedSection();
|
|
info = s->getOutputSection()->sectionIndex;
|
|
flags |= SHF_INFO_LINK;
|
|
// Finalize the content of non-alloc CREL.
|
|
if (type == SHT_CREL) {
|
|
if (ctx.arg.is64)
|
|
finalizeNonAllocCrel<true>(ctx);
|
|
else
|
|
finalizeNonAllocCrel<false>(ctx);
|
|
}
|
|
}
|
|
|
|
// Returns true if S is in one of the many forms the compiler driver may pass
|
|
// crtbegin files.
|
|
//
|
|
// Gcc uses any of crtbegin[<empty>|S|T].o.
|
|
// Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
|
|
|
|
static bool isCrt(StringRef s, StringRef beginEnd) {
|
|
s = sys::path::filename(s);
|
|
if (!s.consume_back(".o"))
|
|
return false;
|
|
if (s.consume_front("clang_rt."))
|
|
return s.consume_front(beginEnd);
|
|
return s.consume_front(beginEnd) && s.size() <= 1;
|
|
}
|
|
|
|
// .ctors and .dtors are sorted by this order:
|
|
//
|
|
// 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
|
|
// 2. The section is named ".ctors" or ".dtors" (priority: 65536).
|
|
// 3. The section has an optional priority value in the form of ".ctors.N" or
|
|
// ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
|
|
// 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
|
|
//
|
|
// For 2 and 3, the sections are sorted by priority from high to low, e.g.
|
|
// .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's
|
|
// internal linker scripts, the sorting is by string comparison which can
|
|
// achieve the same goal given the optional priority values are of the same
|
|
// length.
|
|
//
|
|
// In an ideal world, we don't need this function because .init_array and
|
|
// .ctors are duplicate features (and .init_array is newer.) However, there
|
|
// are too many real-world use cases of .ctors, so we had no choice to
|
|
// support that with this rather ad-hoc semantics.
|
|
static bool compCtors(const InputSection *a, const InputSection *b) {
|
|
bool beginA = isCrt(a->file->getName(), "crtbegin");
|
|
bool beginB = isCrt(b->file->getName(), "crtbegin");
|
|
if (beginA != beginB)
|
|
return beginA;
|
|
bool endA = isCrt(a->file->getName(), "crtend");
|
|
bool endB = isCrt(b->file->getName(), "crtend");
|
|
if (endA != endB)
|
|
return endB;
|
|
return getPriority(a->name) > getPriority(b->name);
|
|
}
|
|
|
|
// Sorts input sections by the special rules for .ctors and .dtors.
|
|
// Unfortunately, the rules are different from the one for .{init,fini}_array.
|
|
// Read the comment above.
|
|
void OutputSection::sortCtorsDtors() {
|
|
assert(commands.size() == 1);
|
|
auto *isd = cast<InputSectionDescription>(commands[0]);
|
|
llvm::stable_sort(isd->sections, compCtors);
|
|
}
|
|
|
|
// If an input string is in the form of "foo.N" where N is a number, return N
|
|
// (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
|
|
// greater than the lowest priority.
|
|
int elf::getPriority(StringRef s) {
|
|
size_t pos = s.rfind('.');
|
|
if (pos == StringRef::npos)
|
|
return 65536;
|
|
int v = 65536;
|
|
if (to_integer(s.substr(pos + 1), v, 10) &&
|
|
(pos == 6 && (s.starts_with(".ctors") || s.starts_with(".dtors"))))
|
|
v = 65535 - v;
|
|
return v;
|
|
}
|
|
|
|
InputSection *elf::getFirstInputSection(const OutputSection *os) {
|
|
for (SectionCommand *cmd : os->commands)
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
|
|
if (!isd->sections.empty())
|
|
return isd->sections[0];
|
|
return nullptr;
|
|
}
|
|
|
|
ArrayRef<InputSection *>
|
|
elf::getInputSections(const OutputSection &os,
|
|
SmallVector<InputSection *, 0> &storage) {
|
|
ArrayRef<InputSection *> ret;
|
|
storage.clear();
|
|
for (SectionCommand *cmd : os.commands) {
|
|
auto *isd = dyn_cast<InputSectionDescription>(cmd);
|
|
if (!isd)
|
|
continue;
|
|
if (ret.empty()) {
|
|
ret = isd->sections;
|
|
} else {
|
|
if (storage.empty())
|
|
storage.assign(ret.begin(), ret.end());
|
|
storage.insert(storage.end(), isd->sections.begin(), isd->sections.end());
|
|
}
|
|
}
|
|
return storage.empty() ? ret : ArrayRef(storage);
|
|
}
|
|
|
|
// Sorts input sections by section name suffixes, so that .foo.N comes
|
|
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
|
|
// We want to keep the original order if the priorities are the same
|
|
// because the compiler keeps the original initialization order in a
|
|
// translation unit and we need to respect that.
|
|
// For more detail, read the section of the GCC's manual about init_priority.
|
|
void OutputSection::sortInitFini() {
|
|
// Sort sections by priority.
|
|
sort([](InputSectionBase *s) { return getPriority(s->name); });
|
|
}
|
|
|
|
std::array<uint8_t, 4> OutputSection::getFiller(Ctx &ctx) {
|
|
if (filler)
|
|
return *filler;
|
|
if (flags & SHF_EXECINSTR)
|
|
return ctx.target->trapInstr;
|
|
return {0, 0, 0, 0};
|
|
}
|
|
|
|
void OutputSection::checkDynRelAddends(Ctx &ctx) {
|
|
assert(ctx.arg.writeAddends && ctx.arg.checkDynamicRelocs);
|
|
assert(isStaticRelSecType(type));
|
|
SmallVector<InputSection *, 0> storage;
|
|
ArrayRef<InputSection *> sections = getInputSections(*this, storage);
|
|
parallelFor(0, sections.size(), [&](size_t i) {
|
|
// When linking with -r or --emit-relocs we might also call this function
|
|
// for input .rel[a].<sec> sections which we simply pass through to the
|
|
// output. We skip over those and only look at the synthetic relocation
|
|
// sections created during linking.
|
|
if (!SyntheticSection::classof(sections[i]) ||
|
|
!is_contained({ELF::SHT_REL, ELF::SHT_RELA, ELF::SHT_RELR},
|
|
sections[i]->type))
|
|
return;
|
|
const auto *sec = cast<RelocationBaseSection>(sections[i]);
|
|
if (!sec)
|
|
return;
|
|
for (const DynamicReloc &rel : sec->relocs) {
|
|
int64_t addend = rel.addend;
|
|
const OutputSection *relOsec = rel.inputSec->getOutputSection();
|
|
assert(relOsec != nullptr && "missing output section for relocation");
|
|
// Some targets have NOBITS synthetic sections with dynamic relocations
|
|
// with non-zero addends. Skip such sections.
|
|
if (is_contained({EM_PPC, EM_PPC64}, ctx.arg.emachine) &&
|
|
(rel.inputSec == ctx.in.ppc64LongBranchTarget.get() ||
|
|
rel.inputSec == ctx.in.igotPlt.get()))
|
|
continue;
|
|
const uint8_t *relocTarget = ctx.bufferStart + relOsec->offset +
|
|
rel.inputSec->getOffset(rel.offsetInSec);
|
|
// For SHT_NOBITS the written addend is always zero.
|
|
int64_t writtenAddend =
|
|
relOsec->type == SHT_NOBITS
|
|
? 0
|
|
: ctx.target->getImplicitAddend(relocTarget, rel.type);
|
|
if (addend != writtenAddend)
|
|
InternalErr(ctx, relocTarget)
|
|
<< "wrote incorrect addend value 0x" << utohexstr(writtenAddend)
|
|
<< " instead of 0x" << utohexstr(addend)
|
|
<< " for dynamic relocation " << rel.type << " at offset 0x"
|
|
<< utohexstr(rel.getOffset())
|
|
<< (rel.sym ? " against symbol " + rel.sym->getName() : "");
|
|
}
|
|
});
|
|
}
|
|
|
|
template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
|
|
template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
|
|
template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
|
|
template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
|
|
|
|
template void OutputSection::writeTo<ELF32LE>(Ctx &, uint8_t *,
|
|
llvm::parallel::TaskGroup &);
|
|
template void OutputSection::writeTo<ELF32BE>(Ctx &, uint8_t *,
|
|
llvm::parallel::TaskGroup &);
|
|
template void OutputSection::writeTo<ELF64LE>(Ctx &, uint8_t *,
|
|
llvm::parallel::TaskGroup &);
|
|
template void OutputSection::writeTo<ELF64BE>(Ctx &, uint8_t *,
|
|
llvm::parallel::TaskGroup &);
|
|
|
|
template void OutputSection::maybeCompress<ELF32LE>(Ctx &);
|
|
template void OutputSection::maybeCompress<ELF32BE>(Ctx &);
|
|
template void OutputSection::maybeCompress<ELF64LE>(Ctx &);
|
|
template void OutputSection::maybeCompress<ELF64BE>(Ctx &);
|