llvm-project/lld/ELF/Target.cpp
2024-11-29 17:18:22 -08:00

175 lines
5.6 KiB
C++

//===- Target.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Machine-specific things, such as applying relocations, creation of
// GOT or PLT entries, etc., are handled in this file.
//
// Refer the ELF spec for the single letter variables, S, A or P, used
// in this file.
//
// Some functions defined in this file has "relaxTls" as part of their names.
// They do peephole optimization for TLS variables by rewriting instructions.
// They are not part of the ABI but optional optimization, so you can skip
// them if you are not interested in how TLS variables are optimized.
// See the following paper for the details.
//
// Ulrich Drepper, ELF Handling For Thread-Local Storage
// http://www.akkadia.org/drepper/tls.pdf
//
//===----------------------------------------------------------------------===//
#include "Target.h"
#include "InputFiles.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
std::string elf::toStr(Ctx &ctx, RelType type) {
StringRef s = getELFRelocationTypeName(ctx.arg.emachine, type);
if (s == "Unknown")
return ("Unknown (" + Twine(type) + ")").str();
return std::string(s);
}
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, RelType type) {
s << toStr(s.ctx, type);
return s;
}
void elf::setTarget(Ctx &ctx) {
switch (ctx.arg.emachine) {
case EM_386:
case EM_IAMCU:
return setX86TargetInfo(ctx);
case EM_AARCH64:
return setAArch64TargetInfo(ctx);
case EM_AMDGPU:
return setAMDGPUTargetInfo(ctx);
case EM_ARM:
return setARMTargetInfo(ctx);
case EM_AVR:
return setAVRTargetInfo(ctx);
case EM_HEXAGON:
return setHexagonTargetInfo(ctx);
case EM_LOONGARCH:
return setLoongArchTargetInfo(ctx);
case EM_MIPS:
return setMipsTargetInfo(ctx);
case EM_MSP430:
return setMSP430TargetInfo(ctx);
case EM_PPC:
return setPPCTargetInfo(ctx);
case EM_PPC64:
return setPPC64TargetInfo(ctx);
case EM_RISCV:
return setRISCVTargetInfo(ctx);
case EM_SPARCV9:
return setSPARCV9TargetInfo(ctx);
case EM_S390:
return setSystemZTargetInfo(ctx);
case EM_X86_64:
return setX86_64TargetInfo(ctx);
default:
Fatal(ctx) << "unsupported e_machine value: " << ctx.arg.emachine;
}
}
ErrorPlace elf::getErrorPlace(Ctx &ctx, const uint8_t *loc) {
assert(loc != nullptr);
for (InputSectionBase *d : ctx.inputSections) {
auto *isec = dyn_cast<InputSection>(d);
if (!isec || !isec->getParent() || (isec->type & SHT_NOBITS))
continue;
const uint8_t *isecLoc =
ctx.bufferStart
? (ctx.bufferStart + isec->getParent()->offset + isec->outSecOff)
: isec->contentMaybeDecompress().data();
if (isecLoc == nullptr) {
assert(isa<SyntheticSection>(isec) && "No data but not synthetic?");
continue;
}
if (isecLoc <= loc && loc < isecLoc + isec->getSize()) {
std::string objLoc = isec->getLocation(loc - isecLoc);
// Return object file location and source file location.
Undefined dummy(ctx.internalFile, "", STB_LOCAL, 0, 0);
ELFSyncStream msg(ctx, DiagLevel::None);
if (isec->file)
msg << isec->getSrcMsg(dummy, loc - isecLoc);
return {isec, objLoc + ": ", std::string(msg.str())};
}
}
return {};
}
TargetInfo::~TargetInfo() {}
int64_t TargetInfo::getImplicitAddend(const uint8_t *buf, RelType type) const {
InternalErr(ctx, buf) << "cannot read addend for relocation " << type;
return 0;
}
bool TargetInfo::usesOnlyLowPageBits(RelType type) const { return false; }
bool TargetInfo::needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const {
return false;
}
bool TargetInfo::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const {
Err(ctx) << "target doesn't support split stacks";
return false;
}
bool TargetInfo::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
return true;
}
RelExpr TargetInfo::adjustTlsExpr(RelType type, RelExpr expr) const {
return expr;
}
RelExpr TargetInfo::adjustGotPcExpr(RelType type, int64_t addend,
const uint8_t *data) const {
return R_GOT_PC;
}
void TargetInfo::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
const unsigned bits = ctx.arg.is64 ? 64 : 32;
uint64_t secAddr = sec.getOutputSection()->addr;
if (auto *s = dyn_cast<InputSection>(&sec))
secAddr += s->outSecOff;
else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
secAddr += ehIn->getParent()->outSecOff;
for (const Relocation &rel : sec.relocs()) {
uint8_t *loc = buf + rel.offset;
const uint64_t val = SignExtend64(
sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset), bits);
if (rel.expr != R_RELAX_HINT)
relocate(loc, rel, val);
}
}
uint64_t TargetInfo::getImageBase() const {
// Use --image-base if set. Fall back to the target default if not.
if (ctx.arg.imageBase)
return *ctx.arg.imageBase;
return ctx.arg.isPic ? 0 : defaultImageBase;
}