mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-24 12:36:07 +00:00
1591 lines
62 KiB
C++
1591 lines
62 KiB
C++
//===- FlatLinearValueConstraints.cpp - Linear Constraint -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis//FlatLinearValueConstraints.h"
|
|
|
|
#include "mlir/Analysis/Presburger/LinearTransform.h"
|
|
#include "mlir/Analysis/Presburger/PresburgerSpace.h"
|
|
#include "mlir/Analysis/Presburger/Simplex.h"
|
|
#include "mlir/Analysis/Presburger/Utils.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/InterleavedRange.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "flat-value-constraints"
|
|
|
|
using namespace mlir;
|
|
using namespace presburger;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineExprFlattener
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// See comments for SimpleAffineExprFlattener.
|
|
// An AffineExprFlattenerWithLocalVars extends a SimpleAffineExprFlattener by
|
|
// recording constraint information associated with mod's, floordiv's, and
|
|
// ceildiv's in FlatLinearConstraints 'localVarCst'.
|
|
struct AffineExprFlattener : public SimpleAffineExprFlattener {
|
|
using SimpleAffineExprFlattener::SimpleAffineExprFlattener;
|
|
|
|
// Constraints connecting newly introduced local variables (for mod's and
|
|
// div's) to existing (dimensional and symbolic) ones. These are always
|
|
// inequalities.
|
|
IntegerPolyhedron localVarCst;
|
|
|
|
AffineExprFlattener(unsigned nDims, unsigned nSymbols)
|
|
: SimpleAffineExprFlattener(nDims, nSymbols),
|
|
localVarCst(PresburgerSpace::getSetSpace(nDims, nSymbols)) {};
|
|
|
|
private:
|
|
// Add a local variable (needed to flatten a mod, floordiv, ceildiv expr).
|
|
// The local variable added is always a floordiv of a pure add/mul affine
|
|
// function of other variables, coefficients of which are specified in
|
|
// `dividend' and with respect to the positive constant `divisor'. localExpr
|
|
// is the simplified tree expression (AffineExpr) corresponding to the
|
|
// quantifier.
|
|
void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor,
|
|
AffineExpr localExpr) override {
|
|
SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr);
|
|
// Update localVarCst.
|
|
localVarCst.addLocalFloorDiv(dividend, divisor);
|
|
}
|
|
|
|
LogicalResult addLocalIdSemiAffine(ArrayRef<int64_t> lhs,
|
|
ArrayRef<int64_t> rhs,
|
|
AffineExpr localExpr) override {
|
|
// AffineExprFlattener does not support semi-affine expressions.
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
// A SemiAffineExprFlattener is an AffineExprFlattenerWithLocalVars that adds
|
|
// conservative bounds for semi-affine expressions (given assumptions hold). If
|
|
// the assumptions required to add the semi-affine bounds are found not to hold
|
|
// the final constraints set will be empty/inconsistent. If the assumptions are
|
|
// never contradicted the final bounds still only will be correct if the
|
|
// assumptions hold.
|
|
struct SemiAffineExprFlattener : public AffineExprFlattener {
|
|
using AffineExprFlattener::AffineExprFlattener;
|
|
|
|
LogicalResult addLocalIdSemiAffine(ArrayRef<int64_t> lhs,
|
|
ArrayRef<int64_t> rhs,
|
|
AffineExpr localExpr) override {
|
|
auto result =
|
|
SimpleAffineExprFlattener::addLocalIdSemiAffine(lhs, rhs, localExpr);
|
|
assert(succeeded(result) &&
|
|
"unexpected failure in SimpleAffineExprFlattener");
|
|
(void)result;
|
|
|
|
if (localExpr.getKind() == AffineExprKind::Mod) {
|
|
// Given two numbers a and b, division is defined as:
|
|
//
|
|
// a = bq + r
|
|
// 0 <= r < |b| (where |x| is the absolute value of x)
|
|
//
|
|
// q = a floordiv b
|
|
// r = a mod b
|
|
|
|
// Add a new local variable (r) to represent the mod.
|
|
unsigned rPos = localVarCst.appendVar(VarKind::Local);
|
|
|
|
// r >= 0 (Can ALWAYS be added)
|
|
localVarCst.addBound(BoundType::LB, rPos, 0);
|
|
|
|
// r < b (Can be added if b > 0, which we assume here)
|
|
ArrayRef<int64_t> b = rhs;
|
|
SmallVector<int64_t> bSubR(b);
|
|
bSubR.insert(bSubR.begin() + rPos, -1);
|
|
// Note: bSubR = b - r
|
|
// So this adds the bound b - r >= 1 (equivalent to r < b)
|
|
localVarCst.addBound(BoundType::LB, bSubR, 1);
|
|
|
|
// Note: The assumption of b > 0 is based on the affine expression docs,
|
|
// which state "RHS of mod is always a constant or a symbolic expression
|
|
// with a positive value." (see AffineExprKind in AffineExpr.h). If this
|
|
// assumption does not hold constraints (added above) are a contradiction.
|
|
|
|
return success();
|
|
}
|
|
|
|
// TODO: Support other semi-affine expressions.
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// Flattens the expressions in map. Returns failure if 'expr' was unable to be
|
|
// flattened. For example two specific cases:
|
|
// 1. an unhandled semi-affine expressions is found.
|
|
// 2. has poison expression (i.e., division by zero).
|
|
static LogicalResult
|
|
getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims,
|
|
unsigned numSymbols,
|
|
std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
|
|
FlatLinearConstraints *localVarCst,
|
|
bool addConservativeSemiAffineBounds = false) {
|
|
if (exprs.empty()) {
|
|
if (localVarCst)
|
|
*localVarCst = FlatLinearConstraints(numDims, numSymbols);
|
|
return success();
|
|
}
|
|
|
|
auto flattenExprs = [&](AffineExprFlattener &flattener) -> LogicalResult {
|
|
// Use the same flattener to simplify each expression successively. This way
|
|
// local variables / expressions are shared.
|
|
for (auto expr : exprs) {
|
|
auto flattenResult = flattener.walkPostOrder(expr);
|
|
if (failed(flattenResult))
|
|
return failure();
|
|
}
|
|
|
|
assert(flattener.operandExprStack.size() == exprs.size());
|
|
flattenedExprs->clear();
|
|
flattenedExprs->assign(flattener.operandExprStack.begin(),
|
|
flattener.operandExprStack.end());
|
|
|
|
if (localVarCst)
|
|
localVarCst->clearAndCopyFrom(flattener.localVarCst);
|
|
|
|
return success();
|
|
};
|
|
|
|
if (addConservativeSemiAffineBounds) {
|
|
SemiAffineExprFlattener flattener(numDims, numSymbols);
|
|
return flattenExprs(flattener);
|
|
}
|
|
|
|
AffineExprFlattener flattener(numDims, numSymbols);
|
|
return flattenExprs(flattener);
|
|
}
|
|
|
|
// Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to
|
|
// be flattened (an unhandled semi-affine was found).
|
|
LogicalResult mlir::getFlattenedAffineExpr(
|
|
AffineExpr expr, unsigned numDims, unsigned numSymbols,
|
|
SmallVectorImpl<int64_t> *flattenedExpr, FlatLinearConstraints *localVarCst,
|
|
bool addConservativeSemiAffineBounds) {
|
|
std::vector<SmallVector<int64_t, 8>> flattenedExprs;
|
|
LogicalResult ret =
|
|
::getFlattenedAffineExprs({expr}, numDims, numSymbols, &flattenedExprs,
|
|
localVarCst, addConservativeSemiAffineBounds);
|
|
*flattenedExpr = flattenedExprs[0];
|
|
return ret;
|
|
}
|
|
|
|
/// Flattens the expressions in map. Returns failure if 'expr' was unable to be
|
|
/// flattened (i.e., an unhandled semi-affine was found).
|
|
LogicalResult mlir::getFlattenedAffineExprs(
|
|
AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
|
|
FlatLinearConstraints *localVarCst, bool addConservativeSemiAffineBounds) {
|
|
if (map.getNumResults() == 0) {
|
|
if (localVarCst)
|
|
*localVarCst =
|
|
FlatLinearConstraints(map.getNumDims(), map.getNumSymbols());
|
|
return success();
|
|
}
|
|
return ::getFlattenedAffineExprs(
|
|
map.getResults(), map.getNumDims(), map.getNumSymbols(), flattenedExprs,
|
|
localVarCst, addConservativeSemiAffineBounds);
|
|
}
|
|
|
|
LogicalResult mlir::getFlattenedAffineExprs(
|
|
IntegerSet set, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
|
|
FlatLinearConstraints *localVarCst) {
|
|
if (set.getNumConstraints() == 0) {
|
|
if (localVarCst)
|
|
*localVarCst =
|
|
FlatLinearConstraints(set.getNumDims(), set.getNumSymbols());
|
|
return success();
|
|
}
|
|
return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(),
|
|
set.getNumSymbols(), flattenedExprs,
|
|
localVarCst);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FlatLinearConstraints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Similar to `composeMap` except that no Values need be associated with the
|
|
// constraint system nor are they looked at -- the dimensions and symbols of
|
|
// `other` are expected to correspond 1:1 to `this` system.
|
|
LogicalResult FlatLinearConstraints::composeMatchingMap(AffineMap other) {
|
|
assert(other.getNumDims() == getNumDimVars() && "dim mismatch");
|
|
assert(other.getNumSymbols() == getNumSymbolVars() && "symbol mismatch");
|
|
|
|
std::vector<SmallVector<int64_t, 8>> flatExprs;
|
|
if (failed(flattenAlignedMapAndMergeLocals(other, &flatExprs)))
|
|
return failure();
|
|
assert(flatExprs.size() == other.getNumResults());
|
|
|
|
// Add dimensions corresponding to the map's results.
|
|
insertDimVar(/*pos=*/0, /*num=*/other.getNumResults());
|
|
|
|
// We add one equality for each result connecting the result dim of the map to
|
|
// the other variables.
|
|
// E.g.: if the expression is 16*i0 + i1, and this is the r^th
|
|
// iteration/result of the value map, we are adding the equality:
|
|
// d_r - 16*i0 - i1 = 0. Similarly, when flattening (i0 + 1, i0 + 8*i2), we
|
|
// add two equalities: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
|
|
for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
|
|
const auto &flatExpr = flatExprs[r];
|
|
assert(flatExpr.size() >= other.getNumInputs() + 1);
|
|
|
|
SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
|
|
// Set the coefficient for this result to one.
|
|
eqToAdd[r] = 1;
|
|
|
|
// Dims and symbols.
|
|
for (unsigned i = 0, f = other.getNumInputs(); i < f; i++) {
|
|
// Negate `eq[r]` since the newly added dimension will be set to this one.
|
|
eqToAdd[e + i] = -flatExpr[i];
|
|
}
|
|
// Local columns of `eq` are at the beginning.
|
|
unsigned j = getNumDimVars() + getNumSymbolVars();
|
|
unsigned end = flatExpr.size() - 1;
|
|
for (unsigned i = other.getNumInputs(); i < end; i++, j++) {
|
|
eqToAdd[j] = -flatExpr[i];
|
|
}
|
|
|
|
// Constant term.
|
|
eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
|
|
|
|
// Add the equality connecting the result of the map to this constraint set.
|
|
addEquality(eqToAdd);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
// Determine whether the variable at 'pos' (say var_r) can be expressed as
|
|
// modulo of another known variable (say var_n) w.r.t a constant. For example,
|
|
// if the following constraints hold true:
|
|
// ```
|
|
// 0 <= var_r <= divisor - 1
|
|
// var_n - (divisor * q_expr) = var_r
|
|
// ```
|
|
// where `var_n` is a known variable (called dividend), and `q_expr` is an
|
|
// `AffineExpr` (called the quotient expression), `var_r` can be written as:
|
|
//
|
|
// `var_r = var_n mod divisor`.
|
|
//
|
|
// Additionally, in a special case of the above constaints where `q_expr` is an
|
|
// variable itself that is not yet known (say `var_q`), it can be written as a
|
|
// floordiv in the following way:
|
|
//
|
|
// `var_q = var_n floordiv divisor`.
|
|
//
|
|
// First 'num' dimensional variables starting at 'offset' are
|
|
// derived/to-be-derived in terms of the remaining variables. The remaining
|
|
// variables are assigned trivial affine expressions in `memo`. For example,
|
|
// memo is initilized as follows for a `cst` with 5 dims, when offset=2, num=2:
|
|
// memo ==> d0 d1 . . d2 ...
|
|
// cst ==> c0 c1 c2 c3 c4 ...
|
|
//
|
|
// Returns true if the above mod or floordiv are detected, updating 'memo' with
|
|
// these new expressions. Returns false otherwise.
|
|
static bool detectAsMod(const FlatLinearConstraints &cst, unsigned pos,
|
|
unsigned offset, unsigned num, int64_t lbConst,
|
|
int64_t ubConst, MLIRContext *context,
|
|
SmallVectorImpl<AffineExpr> &memo) {
|
|
assert(pos < cst.getNumVars() && "invalid position");
|
|
|
|
// Check if a divisor satisfying the condition `0 <= var_r <= divisor - 1` can
|
|
// be determined.
|
|
if (lbConst != 0 || ubConst < 1)
|
|
return false;
|
|
int64_t divisor = ubConst + 1;
|
|
|
|
// Check for the aforementioned conditions in each equality.
|
|
for (unsigned curEquality = 0, numEqualities = cst.getNumEqualities();
|
|
curEquality < numEqualities; curEquality++) {
|
|
int64_t coefficientAtPos = cst.atEq64(curEquality, pos);
|
|
// If current equality does not involve `var_r`, continue to the next
|
|
// equality.
|
|
if (coefficientAtPos == 0)
|
|
continue;
|
|
|
|
// Constant term should be 0 in this equality.
|
|
if (cst.atEq64(curEquality, cst.getNumCols() - 1) != 0)
|
|
continue;
|
|
|
|
// Traverse through the equality and construct the dividend expression
|
|
// `dividendExpr`, to contain all the variables which are known and are
|
|
// not divisible by `(coefficientAtPos * divisor)`. Hope here is that the
|
|
// `dividendExpr` gets simplified into a single variable `var_n` discussed
|
|
// above.
|
|
auto dividendExpr = getAffineConstantExpr(0, context);
|
|
|
|
// Track the terms that go into quotient expression, later used to detect
|
|
// additional floordiv.
|
|
unsigned quotientCount = 0;
|
|
int quotientPosition = -1;
|
|
int quotientSign = 1;
|
|
|
|
// Consider each term in the current equality.
|
|
unsigned curVar, e;
|
|
for (curVar = 0, e = cst.getNumDimAndSymbolVars(); curVar < e; ++curVar) {
|
|
// Ignore var_r.
|
|
if (curVar == pos)
|
|
continue;
|
|
int64_t coefficientOfCurVar = cst.atEq64(curEquality, curVar);
|
|
// Ignore vars that do not contribute to the current equality.
|
|
if (coefficientOfCurVar == 0)
|
|
continue;
|
|
// Check if the current var goes into the quotient expression.
|
|
if (coefficientOfCurVar % (divisor * coefficientAtPos) == 0) {
|
|
quotientCount++;
|
|
quotientPosition = curVar;
|
|
quotientSign = (coefficientOfCurVar * coefficientAtPos) > 0 ? 1 : -1;
|
|
continue;
|
|
}
|
|
// Variables that are part of dividendExpr should be known.
|
|
if (!memo[curVar])
|
|
break;
|
|
// Append the current variable to the dividend expression.
|
|
dividendExpr = dividendExpr + memo[curVar] * coefficientOfCurVar;
|
|
}
|
|
|
|
// Can't construct expression as it depends on a yet uncomputed var.
|
|
if (curVar < e)
|
|
continue;
|
|
|
|
// Express `var_r` in terms of the other vars collected so far.
|
|
if (coefficientAtPos > 0)
|
|
dividendExpr = (-dividendExpr).floorDiv(coefficientAtPos);
|
|
else
|
|
dividendExpr = dividendExpr.floorDiv(-coefficientAtPos);
|
|
|
|
// Simplify the expression.
|
|
dividendExpr = simplifyAffineExpr(dividendExpr, cst.getNumDimVars(),
|
|
cst.getNumSymbolVars());
|
|
// Only if the final dividend expression is just a single var (which we call
|
|
// `var_n`), we can proceed.
|
|
// TODO: Handle AffineSymbolExpr as well. There is no reason to restrict it
|
|
// to dims themselves.
|
|
auto dimExpr = dyn_cast<AffineDimExpr>(dividendExpr);
|
|
if (!dimExpr)
|
|
continue;
|
|
|
|
// Express `var_r` as `var_n % divisor` and store the expression in `memo`.
|
|
if (quotientCount >= 1) {
|
|
// Find the column corresponding to `dimExpr`. `num` columns starting at
|
|
// `offset` correspond to previously unknown variables. The column
|
|
// corresponding to the trivially known `dimExpr` can be on either side
|
|
// of these.
|
|
unsigned dimExprPos = dimExpr.getPosition();
|
|
unsigned dimExprCol = dimExprPos < offset ? dimExprPos : dimExprPos + num;
|
|
auto ub = cst.getConstantBound64(BoundType::UB, dimExprCol);
|
|
// If `var_n` has an upperbound that is less than the divisor, mod can be
|
|
// eliminated altogether.
|
|
if (ub && *ub < divisor)
|
|
memo[pos] = dimExpr;
|
|
else
|
|
memo[pos] = dimExpr % divisor;
|
|
// If a unique quotient `var_q` was seen, it can be expressed as
|
|
// `var_n floordiv divisor`.
|
|
if (quotientCount == 1 && !memo[quotientPosition])
|
|
memo[quotientPosition] = dimExpr.floorDiv(divisor) * quotientSign;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check if the pos^th variable can be expressed as a floordiv of an affine
|
|
/// function of other variables (where the divisor is a positive constant)
|
|
/// given the initial set of expressions in `exprs`. If it can be, the
|
|
/// corresponding position in `exprs` is set as the detected affine expr. For
|
|
/// eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4. An equality can
|
|
/// also yield a floordiv: eg. 4q = i + j <=> q = (i + j) floordiv 4. 32q + 28
|
|
/// <= i <= 32q + 31 => q = i floordiv 32.
|
|
static bool detectAsFloorDiv(const FlatLinearConstraints &cst, unsigned pos,
|
|
MLIRContext *context,
|
|
SmallVectorImpl<AffineExpr> &exprs) {
|
|
assert(pos < cst.getNumVars() && "invalid position");
|
|
|
|
// Get upper-lower bound pair for this variable.
|
|
SmallVector<bool, 8> foundRepr(cst.getNumVars(), false);
|
|
for (unsigned i = 0, e = cst.getNumVars(); i < e; ++i)
|
|
if (exprs[i])
|
|
foundRepr[i] = true;
|
|
|
|
SmallVector<int64_t, 8> dividend(cst.getNumCols());
|
|
unsigned divisor;
|
|
auto ulPair = computeSingleVarRepr(cst, foundRepr, pos, dividend, divisor);
|
|
|
|
// No upper-lower bound pair found for this var.
|
|
if (ulPair.kind == ReprKind::None || ulPair.kind == ReprKind::Equality)
|
|
return false;
|
|
|
|
// Construct the dividend expression.
|
|
auto dividendExpr = getAffineConstantExpr(dividend.back(), context);
|
|
for (unsigned c = 0, f = cst.getNumVars(); c < f; c++)
|
|
if (dividend[c] != 0)
|
|
dividendExpr = dividendExpr + dividend[c] * exprs[c];
|
|
|
|
// Successfully detected the floordiv.
|
|
exprs[pos] = dividendExpr.floorDiv(divisor);
|
|
return true;
|
|
}
|
|
|
|
void FlatLinearConstraints::dumpRow(ArrayRef<int64_t> row,
|
|
bool fixedColWidth) const {
|
|
unsigned ncols = getNumCols();
|
|
bool firstNonZero = true;
|
|
for (unsigned j = 0; j < ncols; j++) {
|
|
if (j == ncols - 1) {
|
|
// Constant.
|
|
if (row[j] == 0 && !firstNonZero) {
|
|
if (fixedColWidth)
|
|
llvm::errs().indent(7);
|
|
} else {
|
|
llvm::errs() << ((row[j] >= 0) ? "+ " : "") << row[j] << ' ';
|
|
}
|
|
} else {
|
|
std::string var = std::string("c_") + std::to_string(j);
|
|
if (row[j] == 1)
|
|
llvm::errs() << "+ " << var << ' ';
|
|
else if (row[j] == -1)
|
|
llvm::errs() << "- " << var << ' ';
|
|
else if (row[j] >= 2)
|
|
llvm::errs() << "+ " << row[j] << '*' << var << ' ';
|
|
else if (row[j] <= -2)
|
|
llvm::errs() << "- " << -row[j] << '*' << var << ' ';
|
|
else if (fixedColWidth)
|
|
// Zero coeff.
|
|
llvm::errs().indent(7);
|
|
if (row[j] != 0)
|
|
firstNonZero = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void FlatLinearConstraints::dumpPretty() const {
|
|
assert(hasConsistentState());
|
|
llvm::errs() << "Constraints (" << getNumDimVars() << " dims, "
|
|
<< getNumSymbolVars() << " symbols, " << getNumLocalVars()
|
|
<< " locals), (" << getNumConstraints() << " constraints)\n";
|
|
auto dumpConstraint = [&](unsigned rowPos, bool isEq) {
|
|
// Is it the first non-zero entry?
|
|
SmallVector<int64_t> row =
|
|
isEq ? getEquality64(rowPos) : getInequality64(rowPos);
|
|
dumpRow(row);
|
|
llvm::errs() << (isEq ? "=" : ">=") << " 0\n";
|
|
};
|
|
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; i++)
|
|
dumpConstraint(i, /*isEq=*/false);
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; i++)
|
|
dumpConstraint(i, /*isEq=*/true);
|
|
llvm::errs() << '\n';
|
|
}
|
|
|
|
std::pair<AffineMap, AffineMap> FlatLinearConstraints::getLowerAndUpperBound(
|
|
unsigned pos, unsigned offset, unsigned num, unsigned symStartPos,
|
|
ArrayRef<AffineExpr> localExprs, MLIRContext *context,
|
|
bool closedUB) const {
|
|
assert(pos + offset < getNumDimVars() && "invalid dim start pos");
|
|
assert(symStartPos >= (pos + offset) && "invalid sym start pos");
|
|
assert(getNumLocalVars() == localExprs.size() &&
|
|
"incorrect local exprs count");
|
|
|
|
SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices;
|
|
getLowerAndUpperBoundIndices(pos + offset, &lbIndices, &ubIndices, &eqIndices,
|
|
offset, num);
|
|
|
|
/// Add to 'b' from 'a' in set [0, offset) U [offset + num, symbStartPos).
|
|
auto addCoeffs = [&](ArrayRef<int64_t> a, SmallVectorImpl<int64_t> &b) {
|
|
b.clear();
|
|
for (unsigned i = 0, e = a.size(); i < e; ++i) {
|
|
if (i < offset || i >= offset + num)
|
|
b.push_back(a[i]);
|
|
}
|
|
};
|
|
|
|
SmallVector<int64_t, 8> lb, ub;
|
|
SmallVector<AffineExpr, 4> lbExprs;
|
|
unsigned dimCount = symStartPos - num;
|
|
unsigned symCount = getNumDimAndSymbolVars() - symStartPos;
|
|
lbExprs.reserve(lbIndices.size() + eqIndices.size());
|
|
// Lower bound expressions.
|
|
for (auto idx : lbIndices) {
|
|
auto ineq = getInequality64(idx);
|
|
// Extract the lower bound (in terms of other coeff's + const), i.e., if
|
|
// i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j
|
|
// - 1.
|
|
addCoeffs(ineq, lb);
|
|
std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>());
|
|
auto expr =
|
|
getAffineExprFromFlatForm(lb, dimCount, symCount, localExprs, context);
|
|
// expr ceildiv divisor is (expr + divisor - 1) floordiv divisor
|
|
int64_t divisor = std::abs(ineq[pos + offset]);
|
|
expr = (expr + divisor - 1).floorDiv(divisor);
|
|
lbExprs.push_back(expr);
|
|
}
|
|
|
|
SmallVector<AffineExpr, 4> ubExprs;
|
|
ubExprs.reserve(ubIndices.size() + eqIndices.size());
|
|
// Upper bound expressions.
|
|
for (auto idx : ubIndices) {
|
|
auto ineq = getInequality64(idx);
|
|
// Extract the upper bound (in terms of other coeff's + const).
|
|
addCoeffs(ineq, ub);
|
|
auto expr =
|
|
getAffineExprFromFlatForm(ub, dimCount, symCount, localExprs, context);
|
|
expr = expr.floorDiv(std::abs(ineq[pos + offset]));
|
|
int64_t ubAdjustment = closedUB ? 0 : 1;
|
|
ubExprs.push_back(expr + ubAdjustment);
|
|
}
|
|
|
|
// Equalities. It's both a lower and a upper bound.
|
|
SmallVector<int64_t, 4> b;
|
|
for (auto idx : eqIndices) {
|
|
auto eq = getEquality64(idx);
|
|
addCoeffs(eq, b);
|
|
if (eq[pos + offset] > 0)
|
|
std::transform(b.begin(), b.end(), b.begin(), std::negate<int64_t>());
|
|
|
|
// Extract the upper bound (in terms of other coeff's + const).
|
|
auto expr =
|
|
getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context);
|
|
expr = expr.floorDiv(std::abs(eq[pos + offset]));
|
|
// Upper bound is exclusive.
|
|
ubExprs.push_back(expr + 1);
|
|
// Lower bound.
|
|
expr =
|
|
getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context);
|
|
expr = expr.ceilDiv(std::abs(eq[pos + offset]));
|
|
lbExprs.push_back(expr);
|
|
}
|
|
|
|
auto lbMap = AffineMap::get(dimCount, symCount, lbExprs, context);
|
|
auto ubMap = AffineMap::get(dimCount, symCount, ubExprs, context);
|
|
|
|
return {lbMap, ubMap};
|
|
}
|
|
|
|
/// Express the pos^th identifier of `cst` as an affine expression in
|
|
/// terms of other identifiers, if they are available in `exprs`, using the
|
|
/// equality at position `idx` in `cs`t. Populates `exprs` with such an
|
|
/// expression if possible, and return true. Returns false otherwise.
|
|
static bool detectAsExpr(const FlatLinearConstraints &cst, unsigned pos,
|
|
unsigned idx, MLIRContext *context,
|
|
SmallVectorImpl<AffineExpr> &exprs) {
|
|
// Initialize with a `0` expression.
|
|
auto expr = getAffineConstantExpr(0, context);
|
|
|
|
// Traverse `idx`th equality and construct the possible affine expression in
|
|
// terms of known identifiers.
|
|
unsigned j, e;
|
|
for (j = 0, e = cst.getNumVars(); j < e; ++j) {
|
|
if (j == pos)
|
|
continue;
|
|
int64_t c = cst.atEq64(idx, j);
|
|
if (c == 0)
|
|
continue;
|
|
// If any of the involved IDs hasn't been found yet, we can't proceed.
|
|
if (!exprs[j])
|
|
break;
|
|
expr = expr + exprs[j] * c;
|
|
}
|
|
if (j < e)
|
|
// Can't construct expression as it depends on a yet uncomputed
|
|
// identifier.
|
|
return false;
|
|
|
|
// Add constant term to AffineExpr.
|
|
expr = expr + cst.atEq64(idx, cst.getNumVars());
|
|
int64_t vPos = cst.atEq64(idx, pos);
|
|
assert(vPos != 0 && "expected non-zero here");
|
|
if (vPos > 0)
|
|
expr = (-expr).floorDiv(vPos);
|
|
else
|
|
// vPos < 0.
|
|
expr = expr.floorDiv(-vPos);
|
|
// Successfully constructed expression.
|
|
exprs[pos] = expr;
|
|
return true;
|
|
}
|
|
|
|
/// Compute a representation of `num` identifiers starting at `offset` in `cst`
|
|
/// as affine expressions involving other known identifiers. Each identifier's
|
|
/// expression (in terms of known identifiers) is populated into `memo`.
|
|
static void computeUnknownVars(const FlatLinearConstraints &cst,
|
|
MLIRContext *context, unsigned offset,
|
|
unsigned num,
|
|
SmallVectorImpl<AffineExpr> &memo) {
|
|
// Initialize dimensional and symbolic variables.
|
|
for (unsigned i = 0, e = cst.getNumDimVars(); i < e; i++) {
|
|
if (i < offset)
|
|
memo[i] = getAffineDimExpr(i, context);
|
|
else if (i >= offset + num)
|
|
memo[i] = getAffineDimExpr(i - num, context);
|
|
}
|
|
for (unsigned i = cst.getNumDimVars(), e = cst.getNumDimAndSymbolVars();
|
|
i < e; i++)
|
|
memo[i] = getAffineSymbolExpr(i - cst.getNumDimVars(), context);
|
|
|
|
bool changed;
|
|
do {
|
|
changed = false;
|
|
// Identify yet unknown variables as constants or mod's / floordiv's of
|
|
// other variables if possible.
|
|
for (unsigned pos = 0, f = cst.getNumVars(); pos < f; pos++) {
|
|
if (memo[pos])
|
|
continue;
|
|
|
|
auto lbConst = cst.getConstantBound64(BoundType::LB, pos);
|
|
auto ubConst = cst.getConstantBound64(BoundType::UB, pos);
|
|
if (lbConst.has_value() && ubConst.has_value()) {
|
|
// Detect equality to a constant.
|
|
if (*lbConst == *ubConst) {
|
|
memo[pos] = getAffineConstantExpr(*lbConst, context);
|
|
changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Detect a variable as modulo of another variable w.r.t a
|
|
// constant.
|
|
if (detectAsMod(cst, pos, offset, num, *lbConst, *ubConst, context,
|
|
memo)) {
|
|
changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Detect a variable as a floordiv of an affine function of other
|
|
// variables (divisor is a positive constant).
|
|
if (detectAsFloorDiv(cst, pos, context, memo)) {
|
|
changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Detect a variable as an expression of other variables.
|
|
std::optional<unsigned> idx;
|
|
if (!(idx = cst.findConstraintWithNonZeroAt(pos, /*isEq=*/true)))
|
|
continue;
|
|
|
|
if (detectAsExpr(cst, pos, *idx, context, memo)) {
|
|
changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
// This loop is guaranteed to reach a fixed point - since once an
|
|
// variable's explicit form is computed (in memo[pos]), it's not updated
|
|
// again.
|
|
} while (changed);
|
|
}
|
|
|
|
/// Computes the lower and upper bounds of the first 'num' dimensional
|
|
/// variables (starting at 'offset') as affine maps of the remaining
|
|
/// variables (dimensional and symbolic variables). Local variables are
|
|
/// themselves explicitly computed as affine functions of other variables in
|
|
/// this process if needed.
|
|
void FlatLinearConstraints::getSliceBounds(unsigned offset, unsigned num,
|
|
MLIRContext *context,
|
|
SmallVectorImpl<AffineMap> *lbMaps,
|
|
SmallVectorImpl<AffineMap> *ubMaps,
|
|
bool closedUB) {
|
|
assert(offset + num <= getNumDimVars() && "invalid range");
|
|
|
|
// Basic simplification.
|
|
normalizeConstraintsByGCD();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for variables at positions ["
|
|
<< offset << ", " << offset + num << ")\n");
|
|
LLVM_DEBUG(dumpPretty());
|
|
|
|
// Record computed/detected variables.
|
|
SmallVector<AffineExpr, 8> memo(getNumVars());
|
|
computeUnknownVars(*this, context, offset, num, memo);
|
|
|
|
int64_t ubAdjustment = closedUB ? 0 : 1;
|
|
|
|
// Set the lower and upper bound maps for all the variables that were
|
|
// computed as affine expressions of the rest as the "detected expr" and
|
|
// "detected expr + 1" respectively; set the undetected ones to null.
|
|
std::optional<FlatLinearConstraints> tmpClone;
|
|
for (unsigned pos = 0; pos < num; pos++) {
|
|
unsigned numMapDims = getNumDimVars() - num;
|
|
unsigned numMapSymbols = getNumSymbolVars();
|
|
AffineExpr expr = memo[pos + offset];
|
|
if (expr)
|
|
expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols);
|
|
|
|
AffineMap &lbMap = (*lbMaps)[pos];
|
|
AffineMap &ubMap = (*ubMaps)[pos];
|
|
|
|
if (expr) {
|
|
lbMap = AffineMap::get(numMapDims, numMapSymbols, expr);
|
|
ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + ubAdjustment);
|
|
} else {
|
|
// TODO: Whenever there are local variables in the dependence
|
|
// constraints, we'll conservatively over-approximate, since we don't
|
|
// always explicitly compute them above (in the while loop).
|
|
if (getNumLocalVars() == 0) {
|
|
// Work on a copy so that we don't update this constraint system.
|
|
if (!tmpClone) {
|
|
tmpClone.emplace(FlatLinearConstraints(*this));
|
|
// Removing redundant inequalities is necessary so that we don't get
|
|
// redundant loop bounds.
|
|
tmpClone->removeRedundantInequalities();
|
|
}
|
|
std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound(
|
|
pos, offset, num, getNumDimVars(), /*localExprs=*/{}, context,
|
|
closedUB);
|
|
}
|
|
|
|
// If the above fails, we'll just use the constant lower bound and the
|
|
// constant upper bound (if they exist) as the slice bounds.
|
|
// TODO: being conservative for the moment in cases that
|
|
// lead to multiple bounds - until getConstDifference in LoopFusion.cpp is
|
|
// fixed (b/126426796).
|
|
if (!lbMap || lbMap.getNumResults() != 1) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "WARNING: Potentially over-approximating slice lb\n");
|
|
auto lbConst = getConstantBound64(BoundType::LB, pos + offset);
|
|
if (lbConst.has_value()) {
|
|
lbMap = AffineMap::get(numMapDims, numMapSymbols,
|
|
getAffineConstantExpr(*lbConst, context));
|
|
}
|
|
}
|
|
if (!ubMap || ubMap.getNumResults() != 1) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "WARNING: Potentially over-approximating slice ub\n");
|
|
auto ubConst = getConstantBound64(BoundType::UB, pos + offset);
|
|
if (ubConst.has_value()) {
|
|
ubMap = AffineMap::get(
|
|
numMapDims, numMapSymbols,
|
|
getAffineConstantExpr(*ubConst + ubAdjustment, context));
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Slice bounds:\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "lb map for pos = " << Twine(pos + offset)
|
|
<< ", expr: " << lbMap << '\n');
|
|
LLVM_DEBUG(llvm::dbgs() << "ub map for pos = " << Twine(pos + offset)
|
|
<< ", expr: " << ubMap << '\n');
|
|
}
|
|
}
|
|
|
|
LogicalResult FlatLinearConstraints::flattenAlignedMapAndMergeLocals(
|
|
AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
|
|
bool addConservativeSemiAffineBounds) {
|
|
FlatLinearConstraints localCst;
|
|
if (failed(getFlattenedAffineExprs(map, flattenedExprs, &localCst,
|
|
addConservativeSemiAffineBounds))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "composition unimplemented for semi-affine maps\n");
|
|
return failure();
|
|
}
|
|
|
|
// Add localCst information.
|
|
if (localCst.getNumLocalVars() > 0) {
|
|
unsigned numLocalVars = getNumLocalVars();
|
|
// Insert local dims of localCst at the beginning.
|
|
insertLocalVar(/*pos=*/0, /*num=*/localCst.getNumLocalVars());
|
|
// Insert local dims of `this` at the end of localCst.
|
|
localCst.appendLocalVar(/*num=*/numLocalVars);
|
|
// Dimensions of localCst and this constraint set match. Append localCst to
|
|
// this constraint set.
|
|
append(localCst);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult FlatLinearConstraints::addBound(
|
|
BoundType type, unsigned pos, AffineMap boundMap, bool isClosedBound,
|
|
AddConservativeSemiAffineBounds addSemiAffineBounds) {
|
|
assert(boundMap.getNumDims() == getNumDimVars() && "dim mismatch");
|
|
assert(boundMap.getNumSymbols() == getNumSymbolVars() && "symbol mismatch");
|
|
assert(pos < getNumDimAndSymbolVars() && "invalid position");
|
|
assert((type != BoundType::EQ || isClosedBound) &&
|
|
"EQ bound must be closed.");
|
|
|
|
// Equality follows the logic of lower bound except that we add an equality
|
|
// instead of an inequality.
|
|
assert((type != BoundType::EQ || boundMap.getNumResults() == 1) &&
|
|
"single result expected");
|
|
bool lower = type == BoundType::LB || type == BoundType::EQ;
|
|
|
|
std::vector<SmallVector<int64_t, 8>> flatExprs;
|
|
if (failed(flattenAlignedMapAndMergeLocals(
|
|
boundMap, &flatExprs,
|
|
addSemiAffineBounds == AddConservativeSemiAffineBounds::Yes)))
|
|
return failure();
|
|
assert(flatExprs.size() == boundMap.getNumResults());
|
|
|
|
// Add one (in)equality for each result.
|
|
for (const auto &flatExpr : flatExprs) {
|
|
SmallVector<int64_t> ineq(getNumCols(), 0);
|
|
// Dims and symbols.
|
|
for (unsigned j = 0, e = boundMap.getNumInputs(); j < e; j++) {
|
|
ineq[j] = lower ? -flatExpr[j] : flatExpr[j];
|
|
}
|
|
// Invalid bound: pos appears in `boundMap`.
|
|
// TODO: This should be an assertion. Fix `addDomainFromSliceMaps` and/or
|
|
// its callers to prevent invalid bounds from being added.
|
|
if (ineq[pos] != 0)
|
|
continue;
|
|
ineq[pos] = lower ? 1 : -1;
|
|
// Local columns of `ineq` are at the beginning.
|
|
unsigned j = getNumDimVars() + getNumSymbolVars();
|
|
unsigned end = flatExpr.size() - 1;
|
|
for (unsigned i = boundMap.getNumInputs(); i < end; i++, j++) {
|
|
ineq[j] = lower ? -flatExpr[i] : flatExpr[i];
|
|
}
|
|
// Make the bound closed in if flatExpr is open. The inequality is always
|
|
// created in the upper bound form, so the adjustment is -1.
|
|
int64_t boundAdjustment = (isClosedBound || type == BoundType::EQ) ? 0 : -1;
|
|
// Constant term.
|
|
ineq[getNumCols() - 1] = (lower ? -flatExpr[flatExpr.size() - 1]
|
|
: flatExpr[flatExpr.size() - 1]) +
|
|
boundAdjustment;
|
|
type == BoundType::EQ ? addEquality(ineq) : addInequality(ineq);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult FlatLinearConstraints::addBound(
|
|
BoundType type, unsigned pos, AffineMap boundMap,
|
|
AddConservativeSemiAffineBounds addSemiAffineBounds) {
|
|
return addBound(type, pos, boundMap,
|
|
/*isClosedBound=*/type != BoundType::UB, addSemiAffineBounds);
|
|
}
|
|
|
|
/// Compute an explicit representation for local vars. For all systems coming
|
|
/// from MLIR integer sets, maps, or expressions where local vars were
|
|
/// introduced to model floordivs and mods, this always succeeds.
|
|
LogicalResult
|
|
FlatLinearConstraints::computeLocalVars(SmallVectorImpl<AffineExpr> &memo,
|
|
MLIRContext *context) const {
|
|
unsigned numDims = getNumDimVars();
|
|
unsigned numSyms = getNumSymbolVars();
|
|
|
|
// Initialize dimensional and symbolic variables.
|
|
for (unsigned i = 0; i < numDims; i++)
|
|
memo[i] = getAffineDimExpr(i, context);
|
|
for (unsigned i = numDims, e = numDims + numSyms; i < e; i++)
|
|
memo[i] = getAffineSymbolExpr(i - numDims, context);
|
|
|
|
bool changed;
|
|
do {
|
|
// Each time `changed` is true at the end of this iteration, one or more
|
|
// local vars would have been detected as floordivs and set in memo; so the
|
|
// number of null entries in memo[...] strictly reduces; so this converges.
|
|
changed = false;
|
|
for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i)
|
|
if (!memo[numDims + numSyms + i] &&
|
|
detectAsFloorDiv(*this, /*pos=*/numDims + numSyms + i, context, memo))
|
|
changed = true;
|
|
} while (changed);
|
|
|
|
ArrayRef<AffineExpr> localExprs =
|
|
ArrayRef<AffineExpr>(memo).take_back(getNumLocalVars());
|
|
return success(
|
|
llvm::all_of(localExprs, [](AffineExpr expr) { return expr; }));
|
|
}
|
|
|
|
/// Given an equality or inequality (`isEquality` used to disambiguate) of `cst`
|
|
/// at `idx`, traverse and sum up `AffineExpr`s of all known ids other than the
|
|
/// `pos`th. Known `AffineExpr`s are given in `exprs` (unknowns are null). If
|
|
/// the equality/inequality contains any unknown id, return None. Otherwise
|
|
/// return sum as `AffineExpr`.
|
|
static std::optional<AffineExpr> getAsExpr(const FlatLinearConstraints &cst,
|
|
unsigned pos, MLIRContext *context,
|
|
ArrayRef<AffineExpr> exprs,
|
|
unsigned idx, bool isEquality) {
|
|
// Initialize with a `0` expression.
|
|
auto expr = getAffineConstantExpr(0, context);
|
|
|
|
SmallVector<int64_t, 8> row =
|
|
isEquality ? cst.getEquality64(idx) : cst.getInequality64(idx);
|
|
|
|
// Traverse `idx`th equality and construct the possible affine expression in
|
|
// terms of known identifiers.
|
|
unsigned j, e;
|
|
for (j = 0, e = cst.getNumVars(); j < e; ++j) {
|
|
if (j == pos)
|
|
continue;
|
|
int64_t c = row[j];
|
|
if (c == 0)
|
|
continue;
|
|
// If any of the involved IDs hasn't been found yet, we can't proceed.
|
|
if (!exprs[j])
|
|
break;
|
|
expr = expr + exprs[j] * c;
|
|
}
|
|
if (j < e)
|
|
// Can't construct expression as it depends on a yet uncomputed
|
|
// identifier.
|
|
return std::nullopt;
|
|
|
|
// Add constant term to AffineExpr.
|
|
expr = expr + row[cst.getNumVars()];
|
|
return expr;
|
|
}
|
|
|
|
std::optional<int64_t> FlatLinearConstraints::getConstantBoundOnDimSize(
|
|
MLIRContext *context, unsigned pos, AffineMap *lb, AffineMap *ub,
|
|
unsigned *minLbPos, unsigned *minUbPos) const {
|
|
|
|
assert(pos < getNumDimVars() && "Invalid identifier position");
|
|
|
|
auto freeOfUnknownLocalVars = [&](ArrayRef<int64_t> cst,
|
|
ArrayRef<AffineExpr> whiteListCols) {
|
|
for (int i = getNumDimAndSymbolVars(), e = cst.size() - 1; i < e; ++i) {
|
|
if (whiteListCols[i] && whiteListCols[i].isSymbolicOrConstant())
|
|
continue;
|
|
if (cst[i] != 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Detect the necesary local variables first.
|
|
SmallVector<AffineExpr, 8> memo(getNumVars(), AffineExpr());
|
|
(void)computeLocalVars(memo, context);
|
|
|
|
// Find an equality for 'pos'^th identifier that equates it to some function
|
|
// of the symbolic identifiers (+ constant).
|
|
int eqPos = findEqualityToConstant(pos, /*symbolic=*/true);
|
|
// If the equality involves a local var that can not be expressed as a
|
|
// symbolic or constant affine expression, we bail out.
|
|
if (eqPos != -1 && freeOfUnknownLocalVars(getEquality64(eqPos), memo)) {
|
|
// This identifier can only take a single value.
|
|
if (lb && detectAsExpr(*this, pos, eqPos, context, memo)) {
|
|
AffineExpr equalityExpr =
|
|
simplifyAffineExpr(memo[pos], 0, getNumSymbolVars());
|
|
*lb = AffineMap::get(/*dimCount=*/0, getNumSymbolVars(), equalityExpr);
|
|
if (ub)
|
|
*ub = *lb;
|
|
}
|
|
if (minLbPos)
|
|
*minLbPos = eqPos;
|
|
if (minUbPos)
|
|
*minUbPos = eqPos;
|
|
return 1;
|
|
}
|
|
|
|
// Positions of constraints that are lower/upper bounds on the variable.
|
|
SmallVector<unsigned, 4> lbIndices, ubIndices;
|
|
|
|
// Note inequalities that give lower and upper bounds.
|
|
getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
|
|
/*eqIndices=*/nullptr, /*offset=*/0,
|
|
/*num=*/getNumDimVars());
|
|
|
|
std::optional<int64_t> minDiff = std::nullopt;
|
|
unsigned minLbPosition = 0, minUbPosition = 0;
|
|
AffineExpr minLbExpr, minUbExpr;
|
|
|
|
// Traverse each lower bound and upper bound pair, to compute the difference
|
|
// between them.
|
|
for (unsigned ubPos : ubIndices) {
|
|
// Construct sum of all ids other than `pos`th in the given upper bound row.
|
|
std::optional<AffineExpr> maybeUbExpr =
|
|
getAsExpr(*this, pos, context, memo, ubPos, /*isEquality=*/false);
|
|
if (!maybeUbExpr.has_value() || !(*maybeUbExpr).isSymbolicOrConstant())
|
|
continue;
|
|
|
|
// Canonical form of an inequality that constrains the upper bound on
|
|
// an id `x_i` is of the form:
|
|
// `c_1*x_1 + c_2*x_2 + ... + c_0 >= 0`, where `c_i` <= -1.
|
|
// Therefore the upper bound on `x_i` will be
|
|
// `(
|
|
// sum(c_j*x_j) where j != i
|
|
// +
|
|
// c_0
|
|
// )
|
|
// /
|
|
// -(c_i)`. Divison here is a floorDiv.
|
|
AffineExpr ubExpr = maybeUbExpr->floorDiv(-atIneq64(ubPos, pos));
|
|
assert(-atIneq64(ubPos, pos) > 0 && "invalid upper bound index");
|
|
|
|
// Go over each lower bound.
|
|
for (unsigned lbPos : lbIndices) {
|
|
// Construct sum of all ids other than `pos`th in the given lower bound
|
|
// row.
|
|
std::optional<AffineExpr> maybeLbExpr =
|
|
getAsExpr(*this, pos, context, memo, lbPos, /*isEquality=*/false);
|
|
if (!maybeLbExpr.has_value() || !(*maybeLbExpr).isSymbolicOrConstant())
|
|
continue;
|
|
|
|
// Canonical form of an inequality that is constraining the lower bound
|
|
// on an id `x_i is of the form:
|
|
// `c_1*x_1 + c_2*x_2 + ... + c_0 >= 0`, where `c_i` >= 1.
|
|
// Therefore upperBound on `x_i` will be
|
|
// `-(
|
|
// sum(c_j*x_j) where j != i
|
|
// +
|
|
// c_0
|
|
// )
|
|
// /
|
|
// c_i`. Divison here is a ceilDiv.
|
|
int64_t divisor = atIneq64(lbPos, pos);
|
|
// We convert the `ceilDiv` for floordiv with the formula:
|
|
// `expr ceildiv divisor is (expr + divisor - 1) floordiv divisor`,
|
|
// since uniformly keeping divisons as `floorDiv` helps their
|
|
// simplification.
|
|
AffineExpr lbExpr = (-(*maybeLbExpr) + divisor - 1).floorDiv(divisor);
|
|
assert(atIneq64(lbPos, pos) > 0 && "invalid lower bound index");
|
|
|
|
AffineExpr difference =
|
|
simplifyAffineExpr(ubExpr - lbExpr + 1, 0, getNumSymbolVars());
|
|
// If the difference is not constant, ignore the lower bound - upper bound
|
|
// pair.
|
|
auto constantDiff = dyn_cast<AffineConstantExpr>(difference);
|
|
if (!constantDiff)
|
|
continue;
|
|
|
|
int64_t diffValue = constantDiff.getValue();
|
|
// This bound is non-negative by definition.
|
|
diffValue = std::max<int64_t>(diffValue, 0);
|
|
if (!minDiff || diffValue < *minDiff) {
|
|
minDiff = diffValue;
|
|
minLbPosition = lbPos;
|
|
minUbPosition = ubPos;
|
|
minLbExpr = lbExpr;
|
|
minUbExpr = ubExpr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Populate outputs where available and needed.
|
|
if (lb && minDiff) {
|
|
*lb = AffineMap::get(/*dimCount=*/0, getNumSymbolVars(), minLbExpr);
|
|
}
|
|
if (ub)
|
|
*ub = AffineMap::get(/*dimCount=*/0, getNumSymbolVars(), minUbExpr);
|
|
if (minLbPos)
|
|
*minLbPos = minLbPosition;
|
|
if (minUbPos)
|
|
*minUbPos = minUbPosition;
|
|
|
|
return minDiff;
|
|
}
|
|
|
|
IntegerSet FlatLinearConstraints::getAsIntegerSet(MLIRContext *context) const {
|
|
if (getNumConstraints() == 0)
|
|
// Return universal set (always true): 0 == 0.
|
|
return IntegerSet::get(getNumDimVars(), getNumSymbolVars(),
|
|
getAffineConstantExpr(/*constant=*/0, context),
|
|
/*eqFlags=*/true);
|
|
|
|
// Construct local references.
|
|
SmallVector<AffineExpr, 8> memo(getNumVars(), AffineExpr());
|
|
|
|
if (failed(computeLocalVars(memo, context))) {
|
|
// Check if the local variables without an explicit representation have
|
|
// zero coefficients everywhere.
|
|
SmallVector<unsigned> noLocalRepVars;
|
|
unsigned numDimsSymbols = getNumDimAndSymbolVars();
|
|
for (unsigned i = numDimsSymbols, e = getNumVars(); i < e; ++i) {
|
|
if (!memo[i] && !isColZero(/*pos=*/i))
|
|
noLocalRepVars.push_back(i - numDimsSymbols);
|
|
}
|
|
if (!noLocalRepVars.empty()) {
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "local variables at position(s) "
|
|
<< llvm::interleaved(noLocalRepVars)
|
|
<< " do not have an explicit representation in:\n";
|
|
this->dump();
|
|
});
|
|
return IntegerSet();
|
|
}
|
|
}
|
|
|
|
ArrayRef<AffineExpr> localExprs =
|
|
ArrayRef<AffineExpr>(memo).take_back(getNumLocalVars());
|
|
|
|
// Construct the IntegerSet from the equalities/inequalities.
|
|
unsigned numDims = getNumDimVars();
|
|
unsigned numSyms = getNumSymbolVars();
|
|
|
|
SmallVector<bool, 16> eqFlags(getNumConstraints());
|
|
std::fill(eqFlags.begin(), eqFlags.begin() + getNumEqualities(), true);
|
|
std::fill(eqFlags.begin() + getNumEqualities(), eqFlags.end(), false);
|
|
|
|
SmallVector<AffineExpr, 8> exprs;
|
|
exprs.reserve(getNumConstraints());
|
|
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
|
|
exprs.push_back(getAffineExprFromFlatForm(getEquality64(i), numDims,
|
|
numSyms, localExprs, context));
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
|
|
exprs.push_back(getAffineExprFromFlatForm(getInequality64(i), numDims,
|
|
numSyms, localExprs, context));
|
|
return IntegerSet::get(numDims, numSyms, exprs, eqFlags);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FlatLinearValueConstraints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Construct from an IntegerSet.
|
|
FlatLinearValueConstraints::FlatLinearValueConstraints(IntegerSet set,
|
|
ValueRange operands)
|
|
: FlatLinearConstraints(set.getNumInequalities(), set.getNumEqualities(),
|
|
set.getNumDims() + set.getNumSymbols() + 1,
|
|
set.getNumDims(), set.getNumSymbols(),
|
|
/*numLocals=*/0) {
|
|
assert((operands.empty() || set.getNumInputs() == operands.size()) &&
|
|
"operand count mismatch");
|
|
// Set the values for the non-local variables.
|
|
for (unsigned i = 0, e = operands.size(); i < e; ++i)
|
|
setValue(i, operands[i]);
|
|
|
|
// Flatten expressions and add them to the constraint system.
|
|
std::vector<SmallVector<int64_t, 8>> flatExprs;
|
|
FlatLinearConstraints localVarCst;
|
|
if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) {
|
|
assert(false && "flattening unimplemented for semi-affine integer sets");
|
|
return;
|
|
}
|
|
assert(flatExprs.size() == set.getNumConstraints());
|
|
insertVar(VarKind::Local, getNumVarKind(VarKind::Local),
|
|
/*num=*/localVarCst.getNumLocalVars());
|
|
|
|
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
|
|
const auto &flatExpr = flatExprs[i];
|
|
assert(flatExpr.size() == getNumCols());
|
|
if (set.getEqFlags()[i]) {
|
|
addEquality(flatExpr);
|
|
} else {
|
|
addInequality(flatExpr);
|
|
}
|
|
}
|
|
// Add the other constraints involving local vars from flattening.
|
|
append(localVarCst);
|
|
}
|
|
|
|
unsigned FlatLinearValueConstraints::appendDimVar(ValueRange vals) {
|
|
unsigned pos = getNumDimVars();
|
|
return insertVar(VarKind::SetDim, pos, vals);
|
|
}
|
|
|
|
unsigned FlatLinearValueConstraints::appendSymbolVar(ValueRange vals) {
|
|
unsigned pos = getNumSymbolVars();
|
|
return insertVar(VarKind::Symbol, pos, vals);
|
|
}
|
|
|
|
unsigned FlatLinearValueConstraints::insertDimVar(unsigned pos,
|
|
ValueRange vals) {
|
|
return insertVar(VarKind::SetDim, pos, vals);
|
|
}
|
|
|
|
unsigned FlatLinearValueConstraints::insertSymbolVar(unsigned pos,
|
|
ValueRange vals) {
|
|
return insertVar(VarKind::Symbol, pos, vals);
|
|
}
|
|
|
|
unsigned FlatLinearValueConstraints::insertVar(VarKind kind, unsigned pos,
|
|
unsigned num) {
|
|
unsigned absolutePos = IntegerPolyhedron::insertVar(kind, pos, num);
|
|
|
|
return absolutePos;
|
|
}
|
|
|
|
unsigned FlatLinearValueConstraints::insertVar(VarKind kind, unsigned pos,
|
|
ValueRange vals) {
|
|
assert(!vals.empty() && "expected ValueRange with Values.");
|
|
assert(kind != VarKind::Local &&
|
|
"values cannot be attached to local variables.");
|
|
unsigned num = vals.size();
|
|
unsigned absolutePos = IntegerPolyhedron::insertVar(kind, pos, num);
|
|
|
|
// If a Value is provided, insert it; otherwise use std::nullopt.
|
|
for (unsigned i = 0, e = vals.size(); i < e; ++i)
|
|
if (vals[i])
|
|
setValue(absolutePos + i, vals[i]);
|
|
|
|
return absolutePos;
|
|
}
|
|
|
|
/// Checks if two constraint systems are in the same space, i.e., if they are
|
|
/// associated with the same set of variables, appearing in the same order.
|
|
static bool areVarsAligned(const FlatLinearValueConstraints &a,
|
|
const FlatLinearValueConstraints &b) {
|
|
if (a.getNumDomainVars() != b.getNumDomainVars() ||
|
|
a.getNumRangeVars() != b.getNumRangeVars() ||
|
|
a.getNumSymbolVars() != b.getNumSymbolVars())
|
|
return false;
|
|
SmallVector<std::optional<Value>> aMaybeValues = a.getMaybeValues(),
|
|
bMaybeValues = b.getMaybeValues();
|
|
return std::equal(aMaybeValues.begin(), aMaybeValues.end(),
|
|
bMaybeValues.begin(), bMaybeValues.end());
|
|
}
|
|
|
|
/// Calls areVarsAligned to check if two constraint systems have the same set
|
|
/// of variables in the same order.
|
|
bool FlatLinearValueConstraints::areVarsAlignedWithOther(
|
|
const FlatLinearConstraints &other) {
|
|
return areVarsAligned(*this, other);
|
|
}
|
|
|
|
/// Checks if the SSA values associated with `cst`'s variables in range
|
|
/// [start, end) are unique.
|
|
static bool LLVM_ATTRIBUTE_UNUSED areVarsUnique(
|
|
const FlatLinearValueConstraints &cst, unsigned start, unsigned end) {
|
|
|
|
assert(start <= cst.getNumDimAndSymbolVars() &&
|
|
"Start position out of bounds");
|
|
assert(end <= cst.getNumDimAndSymbolVars() && "End position out of bounds");
|
|
|
|
if (start >= end)
|
|
return true;
|
|
|
|
SmallPtrSet<Value, 8> uniqueVars;
|
|
SmallVector<std::optional<Value>, 8> maybeValuesAll = cst.getMaybeValues();
|
|
ArrayRef<std::optional<Value>> maybeValues = {maybeValuesAll.data() + start,
|
|
maybeValuesAll.data() + end};
|
|
|
|
for (std::optional<Value> val : maybeValues)
|
|
if (val && !uniqueVars.insert(*val).second)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the SSA values associated with `cst`'s variables are unique.
|
|
static bool LLVM_ATTRIBUTE_UNUSED
|
|
areVarsUnique(const FlatLinearValueConstraints &cst) {
|
|
return areVarsUnique(cst, 0, cst.getNumDimAndSymbolVars());
|
|
}
|
|
|
|
/// Checks if the SSA values associated with `cst`'s variables of kind `kind`
|
|
/// are unique.
|
|
static bool LLVM_ATTRIBUTE_UNUSED
|
|
areVarsUnique(const FlatLinearValueConstraints &cst, VarKind kind) {
|
|
|
|
if (kind == VarKind::SetDim)
|
|
return areVarsUnique(cst, 0, cst.getNumDimVars());
|
|
if (kind == VarKind::Symbol)
|
|
return areVarsUnique(cst, cst.getNumDimVars(),
|
|
cst.getNumDimAndSymbolVars());
|
|
llvm_unreachable("Unexpected VarKind");
|
|
}
|
|
|
|
/// Merge and align the variables of A and B starting at 'offset', so that
|
|
/// both constraint systems get the union of the contained variables that is
|
|
/// dimension-wise and symbol-wise unique; both constraint systems are updated
|
|
/// so that they have the union of all variables, with A's original
|
|
/// variables appearing first followed by any of B's variables that didn't
|
|
/// appear in A. Local variables in B that have the same division
|
|
/// representation as local variables in A are merged into one. We allow A
|
|
/// and B to have non-unique values for their variables; in such cases, they are
|
|
/// still aligned with the variables appearing first aligned with those
|
|
/// appearing first in the other system from left to right.
|
|
// E.g.: Input: A has ((%i, %j) [%M, %N]) and B has (%k, %j) [%P, %N, %M])
|
|
// Output: both A, B have (%i, %j, %k) [%M, %N, %P]
|
|
static void mergeAndAlignVars(unsigned offset, FlatLinearValueConstraints *a,
|
|
FlatLinearValueConstraints *b) {
|
|
assert(offset <= a->getNumDimVars() && offset <= b->getNumDimVars());
|
|
|
|
assert(llvm::all_of(
|
|
llvm::drop_begin(a->getMaybeValues(), offset),
|
|
[](const std::optional<Value> &var) { return var.has_value(); }));
|
|
|
|
assert(llvm::all_of(
|
|
llvm::drop_begin(b->getMaybeValues(), offset),
|
|
[](const std::optional<Value> &var) { return var.has_value(); }));
|
|
|
|
SmallVector<Value, 4> aDimValues;
|
|
a->getValues(offset, a->getNumDimVars(), &aDimValues);
|
|
|
|
{
|
|
// Merge dims from A into B.
|
|
unsigned d = offset;
|
|
for (Value aDimValue : aDimValues) {
|
|
unsigned loc;
|
|
// Find from the position `d` since we'd like to also consider the
|
|
// possibility of multiple variables with the same `Value`. We align with
|
|
// the next appearing one.
|
|
if (b->findVar(aDimValue, &loc, d)) {
|
|
assert(loc >= offset && "A's dim appears in B's aligned range");
|
|
assert(loc < b->getNumDimVars() &&
|
|
"A's dim appears in B's non-dim position");
|
|
b->swapVar(d, loc);
|
|
} else {
|
|
b->insertDimVar(d, aDimValue);
|
|
}
|
|
d++;
|
|
}
|
|
// Dimensions that are in B, but not in A, are added at the end.
|
|
for (unsigned t = a->getNumDimVars(), e = b->getNumDimVars(); t < e; t++) {
|
|
a->appendDimVar(b->getValue(t));
|
|
}
|
|
assert(a->getNumDimVars() == b->getNumDimVars() &&
|
|
"expected same number of dims");
|
|
}
|
|
|
|
// Merge and align symbols of A and B
|
|
a->mergeSymbolVars(*b);
|
|
// Merge and align locals of A and B
|
|
a->mergeLocalVars(*b);
|
|
|
|
assert(areVarsAligned(*a, *b) && "IDs expected to be aligned");
|
|
}
|
|
|
|
// Call 'mergeAndAlignVars' to align constraint systems of 'this' and 'other'.
|
|
void FlatLinearValueConstraints::mergeAndAlignVarsWithOther(
|
|
unsigned offset, FlatLinearValueConstraints *other) {
|
|
mergeAndAlignVars(offset, this, other);
|
|
}
|
|
|
|
/// Merge and align symbols of `this` and `other` such that both get union of
|
|
/// of symbols. Existing symbols need not be unique; they will be aligned from
|
|
/// left to right with duplicates aligned in the same order. Symbols with Value
|
|
/// as `None` are considered to be inequal to all other symbols.
|
|
void FlatLinearValueConstraints::mergeSymbolVars(
|
|
FlatLinearValueConstraints &other) {
|
|
|
|
SmallVector<Value, 4> aSymValues;
|
|
getValues(getNumDimVars(), getNumDimAndSymbolVars(), &aSymValues);
|
|
|
|
// Merge symbols: merge symbols into `other` first from `this`.
|
|
unsigned s = other.getNumDimVars();
|
|
for (Value aSymValue : aSymValues) {
|
|
unsigned loc;
|
|
// If the var is a symbol in `other`, then align it, otherwise assume that
|
|
// it is a new symbol. Search in `other` starting at position `s` since the
|
|
// left of it is aligned.
|
|
if (other.findVar(aSymValue, &loc, s) && loc >= other.getNumDimVars() &&
|
|
loc < other.getNumDimAndSymbolVars())
|
|
other.swapVar(s, loc);
|
|
else
|
|
other.insertSymbolVar(s - other.getNumDimVars(), aSymValue);
|
|
s++;
|
|
}
|
|
|
|
// Symbols that are in other, but not in this, are added at the end.
|
|
for (unsigned t = other.getNumDimVars() + getNumSymbolVars(),
|
|
e = other.getNumDimAndSymbolVars();
|
|
t < e; t++)
|
|
insertSymbolVar(getNumSymbolVars(), other.getValue(t));
|
|
|
|
assert(getNumSymbolVars() == other.getNumSymbolVars() &&
|
|
"expected same number of symbols");
|
|
}
|
|
|
|
void FlatLinearValueConstraints::removeVarRange(VarKind kind, unsigned varStart,
|
|
unsigned varLimit) {
|
|
IntegerPolyhedron::removeVarRange(kind, varStart, varLimit);
|
|
}
|
|
|
|
AffineMap
|
|
FlatLinearValueConstraints::computeAlignedMap(AffineMap map,
|
|
ValueRange operands) const {
|
|
assert(map.getNumInputs() == operands.size() && "number of inputs mismatch");
|
|
|
|
SmallVector<Value> dims, syms;
|
|
#ifndef NDEBUG
|
|
SmallVector<Value> newSyms;
|
|
SmallVector<Value> *newSymsPtr = &newSyms;
|
|
#else
|
|
SmallVector<Value> *newSymsPtr = nullptr;
|
|
#endif // NDEBUG
|
|
|
|
dims.reserve(getNumDimVars());
|
|
syms.reserve(getNumSymbolVars());
|
|
for (unsigned i = 0, e = getNumVarKind(VarKind::SetDim); i < e; ++i) {
|
|
Identifier id = space.getId(VarKind::SetDim, i);
|
|
dims.push_back(id.hasValue() ? Value(id.getValue<Value>()) : Value());
|
|
}
|
|
for (unsigned i = 0, e = getNumVarKind(VarKind::Symbol); i < e; ++i) {
|
|
Identifier id = space.getId(VarKind::Symbol, i);
|
|
syms.push_back(id.hasValue() ? Value(id.getValue<Value>()) : Value());
|
|
}
|
|
|
|
AffineMap alignedMap =
|
|
alignAffineMapWithValues(map, operands, dims, syms, newSymsPtr);
|
|
// All symbols are already part of this FlatAffineValueConstraints.
|
|
assert(syms.size() == newSymsPtr->size() && "unexpected new/missing symbols");
|
|
assert(std::equal(syms.begin(), syms.end(), newSymsPtr->begin()) &&
|
|
"unexpected new/missing symbols");
|
|
return alignedMap;
|
|
}
|
|
|
|
bool FlatLinearValueConstraints::findVar(Value val, unsigned *pos,
|
|
unsigned offset) const {
|
|
SmallVector<std::optional<Value>> maybeValues = getMaybeValues();
|
|
for (unsigned i = offset, e = maybeValues.size(); i < e; ++i)
|
|
if (maybeValues[i] && maybeValues[i].value() == val) {
|
|
*pos = i;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool FlatLinearValueConstraints::containsVar(Value val) const {
|
|
unsigned pos;
|
|
return findVar(val, &pos, 0);
|
|
}
|
|
|
|
void FlatLinearValueConstraints::addBound(BoundType type, Value val,
|
|
int64_t value) {
|
|
unsigned pos;
|
|
if (!findVar(val, &pos))
|
|
// This is a pre-condition for this method.
|
|
assert(0 && "var not found");
|
|
addBound(type, pos, value);
|
|
}
|
|
|
|
void FlatLinearConstraints::printSpace(raw_ostream &os) const {
|
|
IntegerPolyhedron::printSpace(os);
|
|
os << "(";
|
|
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; i++)
|
|
os << "None\t";
|
|
for (unsigned i = getVarKindOffset(VarKind::Local),
|
|
e = getVarKindEnd(VarKind::Local);
|
|
i < e; ++i)
|
|
os << "Local\t";
|
|
os << "const)\n";
|
|
}
|
|
|
|
void FlatLinearValueConstraints::printSpace(raw_ostream &os) const {
|
|
IntegerPolyhedron::printSpace(os);
|
|
os << "(";
|
|
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; i++) {
|
|
if (hasValue(i))
|
|
os << "Value\t";
|
|
else
|
|
os << "None\t";
|
|
}
|
|
for (unsigned i = getVarKindOffset(VarKind::Local),
|
|
e = getVarKindEnd(VarKind::Local);
|
|
i < e; ++i)
|
|
os << "Local\t";
|
|
os << "const)\n";
|
|
}
|
|
|
|
void FlatLinearValueConstraints::projectOut(Value val) {
|
|
unsigned pos;
|
|
bool ret = findVar(val, &pos);
|
|
assert(ret);
|
|
(void)ret;
|
|
fourierMotzkinEliminate(pos);
|
|
}
|
|
|
|
LogicalResult FlatLinearValueConstraints::unionBoundingBox(
|
|
const FlatLinearValueConstraints &otherCst) {
|
|
assert(otherCst.getNumDimVars() == getNumDimVars() && "dims mismatch");
|
|
SmallVector<std::optional<Value>> maybeValues = getMaybeValues(),
|
|
otherMaybeValues =
|
|
otherCst.getMaybeValues();
|
|
assert(std::equal(maybeValues.begin(), maybeValues.begin() + getNumDimVars(),
|
|
otherMaybeValues.begin(),
|
|
otherMaybeValues.begin() + getNumDimVars()) &&
|
|
"dim values mismatch");
|
|
assert(otherCst.getNumLocalVars() == 0 && "local vars not supported here");
|
|
assert(getNumLocalVars() == 0 && "local vars not supported yet here");
|
|
|
|
// Align `other` to this.
|
|
if (!areVarsAligned(*this, otherCst)) {
|
|
FlatLinearValueConstraints otherCopy(otherCst);
|
|
mergeAndAlignVars(/*offset=*/getNumDimVars(), this, &otherCopy);
|
|
return IntegerPolyhedron::unionBoundingBox(otherCopy);
|
|
}
|
|
|
|
return IntegerPolyhedron::unionBoundingBox(otherCst);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineMap mlir::alignAffineMapWithValues(AffineMap map, ValueRange operands,
|
|
ValueRange dims, ValueRange syms,
|
|
SmallVector<Value> *newSyms) {
|
|
assert(operands.size() == map.getNumInputs() &&
|
|
"expected same number of operands and map inputs");
|
|
MLIRContext *ctx = map.getContext();
|
|
Builder builder(ctx);
|
|
SmallVector<AffineExpr> dimReplacements(map.getNumDims(), {});
|
|
unsigned numSymbols = syms.size();
|
|
SmallVector<AffineExpr> symReplacements(map.getNumSymbols(), {});
|
|
if (newSyms) {
|
|
newSyms->clear();
|
|
newSyms->append(syms.begin(), syms.end());
|
|
}
|
|
|
|
for (const auto &operand : llvm::enumerate(operands)) {
|
|
// Compute replacement dim/sym of operand.
|
|
AffineExpr replacement;
|
|
auto dimIt = llvm::find(dims, operand.value());
|
|
auto symIt = llvm::find(syms, operand.value());
|
|
if (dimIt != dims.end()) {
|
|
replacement =
|
|
builder.getAffineDimExpr(std::distance(dims.begin(), dimIt));
|
|
} else if (symIt != syms.end()) {
|
|
replacement =
|
|
builder.getAffineSymbolExpr(std::distance(syms.begin(), symIt));
|
|
} else {
|
|
// This operand is neither a dimension nor a symbol. Add it as a new
|
|
// symbol.
|
|
replacement = builder.getAffineSymbolExpr(numSymbols++);
|
|
if (newSyms)
|
|
newSyms->push_back(operand.value());
|
|
}
|
|
// Add to corresponding replacements vector.
|
|
if (operand.index() < map.getNumDims()) {
|
|
dimReplacements[operand.index()] = replacement;
|
|
} else {
|
|
symReplacements[operand.index() - map.getNumDims()] = replacement;
|
|
}
|
|
}
|
|
|
|
return map.replaceDimsAndSymbols(dimReplacements, symReplacements,
|
|
dims.size(), numSymbols);
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::getMultiAffineFunctionFromMap(AffineMap map,
|
|
MultiAffineFunction &multiAff) {
|
|
FlatLinearConstraints cst;
|
|
std::vector<SmallVector<int64_t, 8>> flattenedExprs;
|
|
LogicalResult result = getFlattenedAffineExprs(map, &flattenedExprs, &cst);
|
|
|
|
if (result.failed())
|
|
return failure();
|
|
|
|
DivisionRepr divs = cst.getLocalReprs();
|
|
assert(divs.hasAllReprs() &&
|
|
"AffineMap cannot produce divs without local representation");
|
|
|
|
// TODO: We shouldn't have to do this conversion.
|
|
Matrix<DynamicAPInt> mat(map.getNumResults(),
|
|
map.getNumInputs() + divs.getNumDivs() + 1);
|
|
for (unsigned i = 0, e = flattenedExprs.size(); i < e; ++i)
|
|
for (unsigned j = 0, f = flattenedExprs[i].size(); j < f; ++j)
|
|
mat(i, j) = flattenedExprs[i][j];
|
|
|
|
multiAff = MultiAffineFunction(
|
|
PresburgerSpace::getRelationSpace(map.getNumDims(), map.getNumResults(),
|
|
map.getNumSymbols(), divs.getNumDivs()),
|
|
mat, divs);
|
|
|
|
return success();
|
|
}
|