llvm-project/mlir/lib/Bindings/Python/DialectSparseTensor.cpp
Peter Hawkins 5cd4274772
[mlir python] Port in-tree dialects to nanobind. (#119924)
This is a companion to #118583, although it can be landed independently
because since #117922 dialects do not have to use the same Python
binding framework as the Python core code.

This PR ports all of the in-tree dialect and pass extensions to
nanobind, with the exception of those that remain for testing pybind11
support.

This PR also:
* removes CollectDiagnosticsToStringScope from NanobindAdaptors.h. This
was overlooked in a previous PR and it is duplicated in Diagnostics.h.

---------

Co-authored-by: Jacques Pienaar <jpienaar@google.com>
2024-12-20 20:32:32 -08:00

149 lines
6.4 KiB
C++

//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <optional>
#include <vector>
#include "mlir-c/AffineMap.h"
#include "mlir-c/Dialect/SparseTensor.h"
#include "mlir-c/IR.h"
#include "mlir/Bindings/Python/NanobindAdaptors.h"
#include "mlir/Bindings/Python/Nanobind.h"
namespace nb = nanobind;
using namespace llvm;
using namespace mlir;
using namespace mlir::python::nanobind_adaptors;
static void populateDialectSparseTensorSubmodule(const nb::module_ &m) {
nb::enum_<MlirSparseTensorLevelFormat>(m, "LevelFormat", nb::is_arithmetic(),
nb::is_flag())
.value("dense", MLIR_SPARSE_TENSOR_LEVEL_DENSE)
.value("n_out_of_m", MLIR_SPARSE_TENSOR_LEVEL_N_OUT_OF_M)
.value("compressed", MLIR_SPARSE_TENSOR_LEVEL_COMPRESSED)
.value("singleton", MLIR_SPARSE_TENSOR_LEVEL_SINGLETON)
.value("loose_compressed", MLIR_SPARSE_TENSOR_LEVEL_LOOSE_COMPRESSED);
nb::enum_<MlirSparseTensorLevelPropertyNondefault>(m, "LevelProperty")
.value("non_ordered", MLIR_SPARSE_PROPERTY_NON_ORDERED)
.value("non_unique", MLIR_SPARSE_PROPERTY_NON_UNIQUE)
.value("soa", MLIR_SPARSE_PROPERTY_SOA);
mlir_attribute_subclass(m, "EncodingAttr",
mlirAttributeIsASparseTensorEncodingAttr)
.def_classmethod(
"get",
[](nb::object cls, std::vector<MlirSparseTensorLevelType> lvlTypes,
std::optional<MlirAffineMap> dimToLvl,
std::optional<MlirAffineMap> lvlToDim, int posWidth, int crdWidth,
std::optional<MlirAttribute> explicitVal,
std::optional<MlirAttribute> implicitVal, MlirContext context) {
return cls(mlirSparseTensorEncodingAttrGet(
context, lvlTypes.size(), lvlTypes.data(),
dimToLvl ? *dimToLvl : MlirAffineMap{nullptr},
lvlToDim ? *lvlToDim : MlirAffineMap{nullptr}, posWidth,
crdWidth, explicitVal ? *explicitVal : MlirAttribute{nullptr},
implicitVal ? *implicitVal : MlirAttribute{nullptr}));
},
nb::arg("cls"), nb::arg("lvl_types"), nb::arg("dim_to_lvl").none(),
nb::arg("lvl_to_dim").none(), nb::arg("pos_width"),
nb::arg("crd_width"), nb::arg("explicit_val").none() = nb::none(),
nb::arg("implicit_val").none() = nb::none(),
nb::arg("context").none() = nb::none(),
"Gets a sparse_tensor.encoding from parameters.")
.def_classmethod(
"build_level_type",
[](nb::object cls, MlirSparseTensorLevelFormat lvlFmt,
const std::vector<MlirSparseTensorLevelPropertyNondefault>
&properties,
unsigned n, unsigned m) {
return mlirSparseTensorEncodingAttrBuildLvlType(
lvlFmt, properties.data(), properties.size(), n, m);
},
nb::arg("cls"), nb::arg("lvl_fmt"),
nb::arg("properties") =
std::vector<MlirSparseTensorLevelPropertyNondefault>(),
nb::arg("n") = 0, nb::arg("m") = 0,
"Builds a sparse_tensor.encoding.level_type from parameters.")
.def_property_readonly(
"lvl_types",
[](MlirAttribute self) {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
std::vector<MlirSparseTensorLevelType> ret;
ret.reserve(lvlRank);
for (int l = 0; l < lvlRank; ++l)
ret.push_back(mlirSparseTensorEncodingAttrGetLvlType(self, l));
return ret;
})
.def_property_readonly(
"dim_to_lvl",
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimToLvl(self);
if (mlirAffineMapIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"lvl_to_dim",
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetLvlToDim(self);
if (mlirAffineMapIsNull(ret))
return {};
return ret;
})
.def_property_readonly("pos_width",
mlirSparseTensorEncodingAttrGetPosWidth)
.def_property_readonly("crd_width",
mlirSparseTensorEncodingAttrGetCrdWidth)
.def_property_readonly(
"explicit_val",
[](MlirAttribute self) -> std::optional<MlirAttribute> {
MlirAttribute ret =
mlirSparseTensorEncodingAttrGetExplicitVal(self);
if (mlirAttributeIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"implicit_val",
[](MlirAttribute self) -> std::optional<MlirAttribute> {
MlirAttribute ret =
mlirSparseTensorEncodingAttrGetImplicitVal(self);
if (mlirAttributeIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"structured_n",
[](MlirAttribute self) -> unsigned {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
return mlirSparseTensorEncodingAttrGetStructuredN(
mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1));
})
.def_property_readonly(
"structured_m",
[](MlirAttribute self) -> unsigned {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
return mlirSparseTensorEncodingAttrGetStructuredM(
mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1));
})
.def_property_readonly("lvl_formats_enum", [](MlirAttribute self) {
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
std::vector<MlirSparseTensorLevelFormat> ret;
ret.reserve(lvlRank);
for (int l = 0; l < lvlRank; l++)
ret.push_back(mlirSparseTensorEncodingAttrGetLvlFmt(self, l));
return ret;
});
}
NB_MODULE(_mlirDialectsSparseTensor, m) {
m.doc() = "MLIR SparseTensor dialect.";
populateDialectSparseTensorSubmodule(m);
}