mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-18 00:46:36 +00:00

--export-dynamic should be a no-op when ctx.hasDynsym is false. * Drop unneeded ctx.hasDynsym checks. * Static linking with --export-dynamic does not prevent devirtualization.
686 lines
24 KiB
C++
686 lines
24 KiB
C++
//===- Symbols.cpp --------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Symbols.h"
|
|
#include "Driver.h"
|
|
#include "InputFiles.h"
|
|
#include "InputSection.h"
|
|
#include "OutputSections.h"
|
|
#include "SymbolTable.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Writer.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <cstring>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large");
|
|
|
|
template <typename T> struct AssertSymbol {
|
|
static_assert(std::is_trivially_destructible<T>(),
|
|
"Symbol types must be trivially destructible");
|
|
static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
|
|
static_assert(alignof(T) <= alignof(SymbolUnion),
|
|
"SymbolUnion not aligned enough");
|
|
};
|
|
|
|
LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() {
|
|
AssertSymbol<Defined>();
|
|
AssertSymbol<CommonSymbol>();
|
|
AssertSymbol<Undefined>();
|
|
AssertSymbol<SharedSymbol>();
|
|
AssertSymbol<LazySymbol>();
|
|
}
|
|
|
|
// Returns a symbol for an error message.
|
|
static std::string maybeDemangleSymbol(Ctx &ctx, StringRef symName) {
|
|
return ctx.arg.demangle ? demangle(symName.str()) : symName.str();
|
|
}
|
|
|
|
std::string elf::toStr(Ctx &ctx, const elf::Symbol &sym) {
|
|
StringRef name = sym.getName();
|
|
std::string ret = maybeDemangleSymbol(ctx, name);
|
|
|
|
const char *suffix = sym.getVersionSuffix();
|
|
if (*suffix == '@')
|
|
ret += suffix;
|
|
return ret;
|
|
}
|
|
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
const Symbol *sym) {
|
|
return s << toStr(s.ctx, *sym);
|
|
}
|
|
|
|
static uint64_t getSymVA(Ctx &ctx, const Symbol &sym, int64_t addend) {
|
|
switch (sym.kind()) {
|
|
case Symbol::DefinedKind: {
|
|
auto &d = cast<Defined>(sym);
|
|
SectionBase *isec = d.section;
|
|
|
|
// This is an absolute symbol.
|
|
if (!isec)
|
|
return d.value;
|
|
|
|
assert(isec != &InputSection::discarded);
|
|
|
|
uint64_t offset = d.value;
|
|
|
|
// An object in an SHF_MERGE section might be referenced via a
|
|
// section symbol (as a hack for reducing the number of local
|
|
// symbols).
|
|
// Depending on the addend, the reference via a section symbol
|
|
// refers to a different object in the merge section.
|
|
// Since the objects in the merge section are not necessarily
|
|
// contiguous in the output, the addend can thus affect the final
|
|
// VA in a non-linear way.
|
|
// To make this work, we incorporate the addend into the section
|
|
// offset (and zero out the addend for later processing) so that
|
|
// we find the right object in the section.
|
|
if (d.isSection())
|
|
offset += addend;
|
|
|
|
// In the typical case, this is actually very simple and boils
|
|
// down to adding together 3 numbers:
|
|
// 1. The address of the output section.
|
|
// 2. The offset of the input section within the output section.
|
|
// 3. The offset within the input section (this addition happens
|
|
// inside InputSection::getOffset).
|
|
//
|
|
// If you understand the data structures involved with this next
|
|
// line (and how they get built), then you have a pretty good
|
|
// understanding of the linker.
|
|
uint64_t va = isec->getVA(offset);
|
|
if (d.isSection())
|
|
va -= addend;
|
|
|
|
// MIPS relocatable files can mix regular and microMIPS code.
|
|
// Linker needs to distinguish such code. To do so microMIPS
|
|
// symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other`
|
|
// field. Unfortunately, the `MIPS::relocate()` method has
|
|
// a symbol value only. To pass type of the symbol (regular/microMIPS)
|
|
// to that routine as well as other places where we write
|
|
// a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry`
|
|
// field etc) do the same trick as compiler uses to mark microMIPS
|
|
// for CPU - set the less-significant bit.
|
|
if (ctx.arg.emachine == EM_MIPS && isMicroMips(ctx) &&
|
|
((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY)))
|
|
va |= 1;
|
|
|
|
if (d.isTls() && !ctx.arg.relocatable) {
|
|
// Use the address of the TLS segment's first section rather than the
|
|
// segment's address, because segment addresses aren't initialized until
|
|
// after sections are finalized. (e.g. Measuring the size of .rela.dyn
|
|
// for Android relocation packing requires knowing TLS symbol addresses
|
|
// during section finalization.)
|
|
if (!ctx.tlsPhdr || !ctx.tlsPhdr->firstSec) {
|
|
Err(ctx) << d.file
|
|
<< " has an STT_TLS symbol but doesn't have a PT_TLS segment";
|
|
return 0;
|
|
}
|
|
return va - ctx.tlsPhdr->firstSec->addr;
|
|
}
|
|
return va;
|
|
}
|
|
case Symbol::SharedKind:
|
|
case Symbol::UndefinedKind:
|
|
return 0;
|
|
case Symbol::LazyKind:
|
|
llvm_unreachable("lazy symbol reached writer");
|
|
case Symbol::CommonKind:
|
|
llvm_unreachable("common symbol reached writer");
|
|
case Symbol::PlaceholderKind:
|
|
llvm_unreachable("placeholder symbol reached writer");
|
|
}
|
|
llvm_unreachable("invalid symbol kind");
|
|
}
|
|
|
|
uint64_t Symbol::getVA(Ctx &ctx, int64_t addend) const {
|
|
return getSymVA(ctx, *this, addend) + addend;
|
|
}
|
|
|
|
uint64_t Symbol::getGotVA(Ctx &ctx) const {
|
|
if (gotInIgot)
|
|
return ctx.in.igotPlt->getVA() + getGotPltOffset(ctx);
|
|
return ctx.in.got->getVA() + getGotOffset(ctx);
|
|
}
|
|
|
|
uint64_t Symbol::getGotOffset(Ctx &ctx) const {
|
|
return getGotIdx(ctx) * ctx.target->gotEntrySize;
|
|
}
|
|
|
|
uint64_t Symbol::getGotPltVA(Ctx &ctx) const {
|
|
if (isInIplt)
|
|
return ctx.in.igotPlt->getVA() + getGotPltOffset(ctx);
|
|
return ctx.in.gotPlt->getVA() + getGotPltOffset(ctx);
|
|
}
|
|
|
|
uint64_t Symbol::getGotPltOffset(Ctx &ctx) const {
|
|
if (isInIplt)
|
|
return getPltIdx(ctx) * ctx.target->gotEntrySize;
|
|
return (getPltIdx(ctx) + ctx.target->gotPltHeaderEntriesNum) *
|
|
ctx.target->gotEntrySize;
|
|
}
|
|
|
|
uint64_t Symbol::getPltVA(Ctx &ctx) const {
|
|
uint64_t outVA = isInIplt ? ctx.in.iplt->getVA() +
|
|
getPltIdx(ctx) * ctx.target->ipltEntrySize
|
|
: ctx.in.plt->getVA() + ctx.in.plt->headerSize +
|
|
getPltIdx(ctx) * ctx.target->pltEntrySize;
|
|
|
|
// While linking microMIPS code PLT code are always microMIPS
|
|
// code. Set the less-significant bit to track that fact.
|
|
// See detailed comment in the `getSymVA` function.
|
|
if (ctx.arg.emachine == EM_MIPS && isMicroMips(ctx))
|
|
outVA |= 1;
|
|
return outVA;
|
|
}
|
|
|
|
uint64_t Symbol::getSize() const {
|
|
if (const auto *dr = dyn_cast<Defined>(this))
|
|
return dr->size;
|
|
return cast<SharedSymbol>(this)->size;
|
|
}
|
|
|
|
OutputSection *Symbol::getOutputSection() const {
|
|
if (auto *s = dyn_cast<Defined>(this)) {
|
|
if (auto *sec = s->section)
|
|
return sec->getOutputSection();
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// If a symbol name contains '@', the characters after that is
|
|
// a symbol version name. This function parses that.
|
|
void Symbol::parseSymbolVersion(Ctx &ctx) {
|
|
// Return if localized by a local: pattern in a version script.
|
|
if (versionId == VER_NDX_LOCAL)
|
|
return;
|
|
StringRef s = getName();
|
|
size_t pos = s.find('@');
|
|
if (pos == StringRef::npos)
|
|
return;
|
|
StringRef verstr = s.substr(pos + 1);
|
|
|
|
// Truncate the symbol name so that it doesn't include the version string.
|
|
nameSize = pos;
|
|
|
|
if (verstr.empty())
|
|
return;
|
|
|
|
// If this is not in this DSO, it is not a definition.
|
|
if (!isDefined())
|
|
return;
|
|
|
|
// '@@' in a symbol name means the default version.
|
|
// It is usually the most recent one.
|
|
bool isDefault = (verstr[0] == '@');
|
|
if (isDefault)
|
|
verstr = verstr.substr(1);
|
|
|
|
for (const VersionDefinition &ver : namedVersionDefs(ctx)) {
|
|
if (ver.name != verstr)
|
|
continue;
|
|
|
|
if (isDefault)
|
|
versionId = ver.id;
|
|
else
|
|
versionId = ver.id | VERSYM_HIDDEN;
|
|
return;
|
|
}
|
|
|
|
// It is an error if the specified version is not defined.
|
|
// Usually version script is not provided when linking executable,
|
|
// but we may still want to override a versioned symbol from DSO,
|
|
// so we do not report error in this case. We also do not error
|
|
// if the symbol has a local version as it won't be in the dynamic
|
|
// symbol table.
|
|
if (ctx.arg.shared && versionId != VER_NDX_LOCAL)
|
|
ErrAlways(ctx) << file << ": symbol " << s << " has undefined version "
|
|
<< verstr;
|
|
}
|
|
|
|
void Symbol::extract(Ctx &ctx) const {
|
|
assert(file->lazy);
|
|
file->lazy = false;
|
|
parseFile(ctx, file);
|
|
}
|
|
|
|
uint8_t Symbol::computeBinding(Ctx &ctx) const {
|
|
auto v = visibility();
|
|
if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL)
|
|
return STB_LOCAL;
|
|
if (binding == STB_GNU_UNIQUE && !ctx.arg.gnuUnique)
|
|
return STB_GLOBAL;
|
|
return binding;
|
|
}
|
|
|
|
// Print out a log message for --trace-symbol.
|
|
void elf::printTraceSymbol(const Symbol &sym, StringRef name) {
|
|
std::string s;
|
|
if (sym.isUndefined())
|
|
s = ": reference to ";
|
|
else if (sym.isLazy())
|
|
s = ": lazy definition of ";
|
|
else if (sym.isShared())
|
|
s = ": shared definition of ";
|
|
else if (sym.isCommon())
|
|
s = ": common definition of ";
|
|
else
|
|
s = ": definition of ";
|
|
|
|
Msg(sym.file->ctx) << sym.file << s << name;
|
|
}
|
|
|
|
static void recordWhyExtract(Ctx &ctx, const InputFile *reference,
|
|
const InputFile &extracted, const Symbol &sym) {
|
|
ctx.whyExtractRecords.emplace_back(toStr(ctx, reference), &extracted, sym);
|
|
}
|
|
|
|
void elf::maybeWarnUnorderableSymbol(Ctx &ctx, const Symbol *sym) {
|
|
if (!ctx.arg.warnSymbolOrdering)
|
|
return;
|
|
|
|
// If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning is
|
|
// emitted. It makes sense to not warn on undefined symbols (excluding those
|
|
// demoted by demoteSymbols).
|
|
//
|
|
// Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols,
|
|
// but we don't have to be compatible here.
|
|
if (sym->isUndefined() && !cast<Undefined>(sym)->discardedSecIdx &&
|
|
ctx.arg.unresolvedSymbols == UnresolvedPolicy::Ignore)
|
|
return;
|
|
|
|
const InputFile *file = sym->file;
|
|
auto *d = dyn_cast<Defined>(sym);
|
|
|
|
auto report = [&](StringRef s) { Warn(ctx) << file << s << sym->getName(); };
|
|
|
|
if (sym->isUndefined()) {
|
|
if (cast<Undefined>(sym)->discardedSecIdx)
|
|
report(": unable to order discarded symbol: ");
|
|
else
|
|
report(": unable to order undefined symbol: ");
|
|
} else if (sym->isShared())
|
|
report(": unable to order shared symbol: ");
|
|
else if (d && !d->section)
|
|
report(": unable to order absolute symbol: ");
|
|
else if (d && isa<OutputSection>(d->section))
|
|
report(": unable to order synthetic symbol: ");
|
|
else if (d && !d->section->isLive())
|
|
report(": unable to order discarded symbol: ");
|
|
}
|
|
|
|
// Returns true if a symbol can be replaced at load-time by a symbol
|
|
// with the same name defined in other ELF executable or DSO.
|
|
bool elf::computeIsPreemptible(Ctx &ctx, const Symbol &sym) {
|
|
assert(!sym.isLocal() || sym.isPlaceholder());
|
|
|
|
// Only symbols with default visibility that appear in dynsym can be
|
|
// preempted. Symbols with protected visibility cannot be preempted.
|
|
if (sym.visibility() != STV_DEFAULT)
|
|
return false;
|
|
|
|
// At this point copy relocations have not been created yet, so any
|
|
// symbol that is not defined locally is preemptible.
|
|
if (!sym.isDefined())
|
|
return true;
|
|
|
|
if (!ctx.arg.shared)
|
|
return false;
|
|
|
|
// If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is
|
|
// specified and the symbol is STT_FUNC, the symbol is preemptible iff it is
|
|
// in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of
|
|
// -Bsymbolic-functions.
|
|
if (ctx.arg.symbolic ||
|
|
(ctx.arg.bsymbolic == BsymbolicKind::NonWeak &&
|
|
sym.binding != STB_WEAK) ||
|
|
(ctx.arg.bsymbolic == BsymbolicKind::Functions && sym.isFunc()) ||
|
|
(ctx.arg.bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() &&
|
|
sym.binding != STB_WEAK))
|
|
return sym.inDynamicList;
|
|
return true;
|
|
}
|
|
|
|
void elf::parseVersionAndComputeIsPreemptible(Ctx &ctx) {
|
|
// Symbol themselves might know their versions because symbols
|
|
// can contain versions in the form of <name>@<version>.
|
|
// Let them parse and update their names to exclude version suffix.
|
|
// In addition, compute isExported and isPreemptible.
|
|
bool maybePreemptible = ctx.sharedFiles.size() || ctx.arg.shared;
|
|
for (Symbol *sym : ctx.symtab->getSymbols()) {
|
|
if (sym->hasVersionSuffix)
|
|
sym->parseSymbolVersion(ctx);
|
|
if (sym->computeBinding(ctx) == STB_LOCAL) {
|
|
sym->isExported = false;
|
|
continue;
|
|
}
|
|
if (!sym->isDefined() && !sym->isCommon()) {
|
|
sym->isPreemptible = maybePreemptible && computeIsPreemptible(ctx, *sym);
|
|
} else if (ctx.arg.exportDynamic &&
|
|
(sym->isUsedInRegularObj || !sym->ltoCanOmit)) {
|
|
sym->isExported = true;
|
|
sym->isPreemptible = maybePreemptible && computeIsPreemptible(ctx, *sym);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge symbol properties.
|
|
//
|
|
// When we have many symbols of the same name, we choose one of them,
|
|
// and that's the result of symbol resolution. However, symbols that
|
|
// were not chosen still affect some symbol properties.
|
|
void Symbol::mergeProperties(const Symbol &other) {
|
|
// DSO symbols do not affect visibility in the output.
|
|
if (!other.isShared() && other.visibility() != STV_DEFAULT) {
|
|
uint8_t v = visibility(), ov = other.visibility();
|
|
setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
|
|
}
|
|
}
|
|
|
|
void Symbol::resolve(Ctx &ctx, const Undefined &other) {
|
|
if (other.visibility() != STV_DEFAULT) {
|
|
uint8_t v = visibility(), ov = other.visibility();
|
|
setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
|
|
}
|
|
// An undefined symbol with non default visibility must be satisfied
|
|
// in the same DSO.
|
|
//
|
|
// If this is a non-weak defined symbol in a discarded section, override the
|
|
// existing undefined symbol for better error message later.
|
|
if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) ||
|
|
(isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) {
|
|
other.overwrite(*this);
|
|
return;
|
|
}
|
|
|
|
if (traced)
|
|
printTraceSymbol(other, getName());
|
|
|
|
if (isLazy()) {
|
|
// An undefined weak will not extract archive members. See comment on Lazy
|
|
// in Symbols.h for the details.
|
|
if (other.binding == STB_WEAK) {
|
|
binding = STB_WEAK;
|
|
type = other.type;
|
|
return;
|
|
}
|
|
|
|
// Do extra check for --warn-backrefs.
|
|
//
|
|
// --warn-backrefs is an option to prevent an undefined reference from
|
|
// extracting an archive member written earlier in the command line. It can
|
|
// be used to keep compatibility with GNU linkers to some degree. I'll
|
|
// explain the feature and why you may find it useful in this comment.
|
|
//
|
|
// lld's symbol resolution semantics is more relaxed than traditional Unix
|
|
// linkers. For example,
|
|
//
|
|
// ld.lld foo.a bar.o
|
|
//
|
|
// succeeds even if bar.o contains an undefined symbol that has to be
|
|
// resolved by some object file in foo.a. Traditional Unix linkers don't
|
|
// allow this kind of backward reference, as they visit each file only once
|
|
// from left to right in the command line while resolving all undefined
|
|
// symbols at the moment of visiting.
|
|
//
|
|
// In the above case, since there's no undefined symbol when a linker visits
|
|
// foo.a, no files are pulled out from foo.a, and because the linker forgets
|
|
// about foo.a after visiting, it can't resolve undefined symbols in bar.o
|
|
// that could have been resolved otherwise.
|
|
//
|
|
// That lld accepts more relaxed form means that (besides it'd make more
|
|
// sense) you can accidentally write a command line or a build file that
|
|
// works only with lld, even if you have a plan to distribute it to wider
|
|
// users who may be using GNU linkers. With --warn-backrefs, you can detect
|
|
// a library order that doesn't work with other Unix linkers.
|
|
//
|
|
// The option is also useful to detect cyclic dependencies between static
|
|
// archives. Again, lld accepts
|
|
//
|
|
// ld.lld foo.a bar.a
|
|
//
|
|
// even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
|
|
// handled as an error.
|
|
//
|
|
// Here is how the option works. We assign a group ID to each file. A file
|
|
// with a smaller group ID can pull out object files from an archive file
|
|
// with an equal or greater group ID. Otherwise, it is a reverse dependency
|
|
// and an error.
|
|
//
|
|
// A file outside --{start,end}-group gets a fresh ID when instantiated. All
|
|
// files within the same --{start,end}-group get the same group ID. E.g.
|
|
//
|
|
// ld.lld A B --start-group C D --end-group E
|
|
//
|
|
// A forms group 0. B form group 1. C and D (including their member object
|
|
// files) form group 2. E forms group 3. I think that you can see how this
|
|
// group assignment rule simulates the traditional linker's semantics.
|
|
bool backref = ctx.arg.warnBackrefs && file->groupId < other.file->groupId;
|
|
extract(ctx);
|
|
|
|
if (!ctx.arg.whyExtract.empty())
|
|
recordWhyExtract(ctx, other.file, *file, *this);
|
|
|
|
// We don't report backward references to weak symbols as they can be
|
|
// overridden later.
|
|
//
|
|
// A traditional linker does not error for -ldef1 -lref -ldef2 (linking
|
|
// sandwich), where def2 may or may not be the same as def1. We don't want
|
|
// to warn for this case, so dismiss the warning if we see a subsequent lazy
|
|
// definition. this->file needs to be saved because in the case of LTO it
|
|
// may be reset to internalFile or be replaced with a file named lto.tmp.
|
|
if (backref && !isWeak())
|
|
ctx.backwardReferences.try_emplace(this,
|
|
std::make_pair(other.file, file));
|
|
return;
|
|
}
|
|
|
|
// Undefined symbols in a SharedFile do not change the binding.
|
|
if (isa<SharedFile>(other.file))
|
|
return;
|
|
|
|
if (isUndefined() || isShared()) {
|
|
// The binding will be weak if there is at least one reference and all are
|
|
// weak. The binding has one opportunity to change to weak: if the first
|
|
// reference is weak.
|
|
if (other.binding != STB_WEAK || !referenced)
|
|
binding = other.binding;
|
|
}
|
|
}
|
|
|
|
// Compare two symbols. Return true if the new symbol should win.
|
|
bool Symbol::shouldReplace(Ctx &ctx, const Defined &other) const {
|
|
if (LLVM_UNLIKELY(isCommon())) {
|
|
if (ctx.arg.warnCommon)
|
|
Warn(ctx) << "common " << getName() << " is overridden";
|
|
return !other.isWeak();
|
|
}
|
|
if (!isDefined())
|
|
return true;
|
|
|
|
// Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes
|
|
// some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat
|
|
// STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all
|
|
// STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to
|
|
// an existing STB_WEAK, there may be discarded section errors because the
|
|
// selected copy may be in a non-prevailing COMDAT.
|
|
return !isGlobal() && other.isGlobal();
|
|
}
|
|
|
|
void elf::reportDuplicate(Ctx &ctx, const Symbol &sym, const InputFile *newFile,
|
|
InputSectionBase *errSec, uint64_t errOffset) {
|
|
if (ctx.arg.allowMultipleDefinition)
|
|
return;
|
|
// In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which
|
|
// is sort of proto-comdat. There is actually no duplicate if we have
|
|
// full support for .gnu.linkonce.
|
|
const Defined *d = dyn_cast<Defined>(&sym);
|
|
if (!d || d->getName() == "__x86.get_pc_thunk.bx")
|
|
return;
|
|
// Allow absolute symbols with the same value for GNU ld compatibility.
|
|
if (!d->section && !errSec && errOffset && d->value == errOffset)
|
|
return;
|
|
if (!d->section || !errSec) {
|
|
Err(ctx) << "duplicate symbol: " << &sym << "\n>>> defined in " << sym.file
|
|
<< "\n>>> defined in " << newFile;
|
|
return;
|
|
}
|
|
|
|
// Construct and print an error message in the form of:
|
|
//
|
|
// ld.lld: error: duplicate symbol: foo
|
|
// >>> defined at bar.c:30
|
|
// >>> bar.o (/home/alice/src/bar.o)
|
|
// >>> defined at baz.c:563
|
|
// >>> baz.o in archive libbaz.a
|
|
auto *sec1 = cast<InputSectionBase>(d->section);
|
|
auto diag = Err(ctx);
|
|
diag << "duplicate symbol: " << &sym << "\n>>> defined at ";
|
|
auto tell = diag.tell();
|
|
diag << sec1->getSrcMsg(sym, d->value);
|
|
if (tell != diag.tell())
|
|
diag << "\n>>> ";
|
|
diag << sec1->getObjMsg(d->value) << "\n>>> defined at ";
|
|
tell = diag.tell();
|
|
diag << errSec->getSrcMsg(sym, errOffset);
|
|
if (tell != diag.tell())
|
|
diag << "\n>>> ";
|
|
diag << errSec->getObjMsg(errOffset);
|
|
}
|
|
|
|
void Symbol::checkDuplicate(Ctx &ctx, const Defined &other) const {
|
|
if (isDefined() && !isWeak() && !other.isWeak())
|
|
reportDuplicate(ctx, *this, other.file,
|
|
dyn_cast_or_null<InputSectionBase>(other.section),
|
|
other.value);
|
|
}
|
|
|
|
void Symbol::resolve(Ctx &ctx, const CommonSymbol &other) {
|
|
if (other.visibility() != STV_DEFAULT) {
|
|
uint8_t v = visibility(), ov = other.visibility();
|
|
setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
|
|
}
|
|
if (isDefined() && !isWeak()) {
|
|
if (ctx.arg.warnCommon)
|
|
Warn(ctx) << "common " << getName() << " is overridden";
|
|
return;
|
|
}
|
|
|
|
if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) {
|
|
if (ctx.arg.warnCommon)
|
|
Warn(ctx) << "multiple common of " << getName();
|
|
oldSym->alignment = std::max(oldSym->alignment, other.alignment);
|
|
if (oldSym->size < other.size) {
|
|
oldSym->file = other.file;
|
|
oldSym->size = other.size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (auto *s = dyn_cast<SharedSymbol>(this)) {
|
|
// Increase st_size if the shared symbol has a larger st_size. The shared
|
|
// symbol may be created from common symbols. The fact that some object
|
|
// files were linked into a shared object first should not change the
|
|
// regular rule that picks the largest st_size.
|
|
uint64_t size = s->size;
|
|
other.overwrite(*this);
|
|
if (size > cast<CommonSymbol>(this)->size)
|
|
cast<CommonSymbol>(this)->size = size;
|
|
} else {
|
|
other.overwrite(*this);
|
|
}
|
|
}
|
|
|
|
void Symbol::resolve(Ctx &ctx, const Defined &other) {
|
|
if (other.visibility() != STV_DEFAULT) {
|
|
uint8_t v = visibility(), ov = other.visibility();
|
|
setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
|
|
}
|
|
if (shouldReplace(ctx, other))
|
|
other.overwrite(*this);
|
|
}
|
|
|
|
void Symbol::resolve(Ctx &ctx, const LazySymbol &other) {
|
|
if (isPlaceholder()) {
|
|
other.overwrite(*this);
|
|
return;
|
|
}
|
|
|
|
if (LLVM_UNLIKELY(!isUndefined())) {
|
|
// See the comment in resolve(Ctx &, const Undefined &).
|
|
if (isDefined()) {
|
|
ctx.backwardReferences.erase(this);
|
|
} else if (isCommon() && ctx.arg.fortranCommon &&
|
|
other.file->shouldExtractForCommon(getName())) {
|
|
// For common objects, we want to look for global or weak definitions that
|
|
// should be extracted as the canonical definition instead.
|
|
ctx.backwardReferences.erase(this);
|
|
other.overwrite(*this);
|
|
other.extract(ctx);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// An undefined weak will not extract archive members. See comment on Lazy in
|
|
// Symbols.h for the details.
|
|
if (isWeak()) {
|
|
uint8_t ty = type;
|
|
other.overwrite(*this);
|
|
type = ty;
|
|
binding = STB_WEAK;
|
|
return;
|
|
}
|
|
|
|
const InputFile *oldFile = file;
|
|
other.extract(ctx);
|
|
if (!ctx.arg.whyExtract.empty())
|
|
recordWhyExtract(ctx, oldFile, *file, *this);
|
|
}
|
|
|
|
void Symbol::resolve(Ctx &ctx, const SharedSymbol &other) {
|
|
isExported = true;
|
|
if (isPlaceholder()) {
|
|
other.overwrite(*this);
|
|
return;
|
|
}
|
|
if (isCommon()) {
|
|
// See the comment in resolveCommon() above.
|
|
if (other.size > cast<CommonSymbol>(this)->size)
|
|
cast<CommonSymbol>(this)->size = other.size;
|
|
return;
|
|
}
|
|
if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) {
|
|
// An undefined symbol with non default visibility must be satisfied
|
|
// in the same DSO.
|
|
uint8_t bind = binding;
|
|
other.overwrite(*this);
|
|
binding = bind;
|
|
} else if (traced)
|
|
printTraceSymbol(other, getName());
|
|
}
|
|
|
|
void Defined::overwrite(Symbol &sym) const {
|
|
if (isa_and_nonnull<SharedFile>(sym.file))
|
|
sym.versionId = VER_NDX_GLOBAL;
|
|
Symbol::overwrite(sym, DefinedKind);
|
|
auto &s = static_cast<Defined &>(sym);
|
|
s.value = value;
|
|
s.size = size;
|
|
s.section = section;
|
|
}
|