mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-18 02:26:40 +00:00

Reland 994cea3f0a2d0caf4d66321ad5a06ab330144d89 after bolt tests no longer rely on -pie --unresolved-symbols=ignore-all with no input DSO generating PLT entries. --- Commit f10441ad003236ef3b9e5415a571d2be0c0ce5ce , while dropping a special case for isUndefWeak and --no-dynamic-linking, made --export-dynamic ineffective when -pie is used without any input DSO. This change restores --export-dynamic and unifies -pie and -pie --no-dynamic-linker when there is no input DSO. * -pie with no input DSO suppresses undefined symbols in .dynsym. Previously this only appied to -pie --no-dynamic-linker. * As a side effect, -pie with no input DSO suppresses PLT.
5015 lines
183 KiB
C++
5015 lines
183 KiB
C++
//===- SyntheticSections.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains linker-synthesized sections. Currently,
|
|
// synthetic sections are created either output sections or input sections,
|
|
// but we are rewriting code so that all synthetic sections are created as
|
|
// input sections.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SyntheticSections.h"
|
|
#include "Config.h"
|
|
#include "DWARF.h"
|
|
#include "EhFrame.h"
|
|
#include "InputFiles.h"
|
|
#include "LinkerScript.h"
|
|
#include "OutputSections.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "Target.h"
|
|
#include "Thunks.h"
|
|
#include "Writer.h"
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "lld/Common/Strings.h"
|
|
#include "lld/Common/Version.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
|
|
#include "llvm/Support/DJB.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include <cinttypes>
|
|
#include <cstdlib>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::dwarf;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
using llvm::support::endian::read32le;
|
|
using llvm::support::endian::write32le;
|
|
using llvm::support::endian::write64le;
|
|
|
|
constexpr size_t MergeNoTailSection::numShards;
|
|
|
|
static uint64_t readUint(Ctx &ctx, uint8_t *buf) {
|
|
return ctx.arg.is64 ? read64(ctx, buf) : read32(ctx, buf);
|
|
}
|
|
|
|
static void writeUint(Ctx &ctx, uint8_t *buf, uint64_t val) {
|
|
if (ctx.arg.is64)
|
|
write64(ctx, buf, val);
|
|
else
|
|
write32(ctx, buf, val);
|
|
}
|
|
|
|
// Returns an LLD version string.
|
|
static ArrayRef<uint8_t> getVersion(Ctx &ctx) {
|
|
// Check LLD_VERSION first for ease of testing.
|
|
// You can get consistent output by using the environment variable.
|
|
// This is only for testing.
|
|
StringRef s = getenv("LLD_VERSION");
|
|
if (s.empty())
|
|
s = ctx.saver.save(Twine("Linker: ") + getLLDVersion());
|
|
|
|
// +1 to include the terminating '\0'.
|
|
return {(const uint8_t *)s.data(), s.size() + 1};
|
|
}
|
|
|
|
// Creates a .comment section containing LLD version info.
|
|
// With this feature, you can identify LLD-generated binaries easily
|
|
// by "readelf --string-dump .comment <file>".
|
|
// The returned object is a mergeable string section.
|
|
MergeInputSection *elf::createCommentSection(Ctx &ctx) {
|
|
auto *sec =
|
|
make<MergeInputSection>(ctx, ".comment", SHT_PROGBITS,
|
|
SHF_MERGE | SHF_STRINGS, 1, getVersion(ctx));
|
|
sec->splitIntoPieces();
|
|
return sec;
|
|
}
|
|
|
|
// .MIPS.abiflags section.
|
|
template <class ELFT>
|
|
MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Ctx &ctx,
|
|
Elf_Mips_ABIFlags flags)
|
|
: SyntheticSection(ctx, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, 8),
|
|
flags(flags) {
|
|
this->entsize = sizeof(Elf_Mips_ABIFlags);
|
|
}
|
|
|
|
template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
|
|
memcpy(buf, &flags, sizeof(flags));
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::unique_ptr<MipsAbiFlagsSection<ELFT>>
|
|
MipsAbiFlagsSection<ELFT>::create(Ctx &ctx) {
|
|
Elf_Mips_ABIFlags flags = {};
|
|
bool create = false;
|
|
|
|
for (InputSectionBase *sec : ctx.inputSections) {
|
|
if (sec->type != SHT_MIPS_ABIFLAGS)
|
|
continue;
|
|
sec->markDead();
|
|
create = true;
|
|
|
|
const size_t size = sec->content().size();
|
|
// Older version of BFD (such as the default FreeBSD linker) concatenate
|
|
// .MIPS.abiflags instead of merging. To allow for this case (or potential
|
|
// zero padding) we ignore everything after the first Elf_Mips_ABIFlags
|
|
if (size < sizeof(Elf_Mips_ABIFlags)) {
|
|
Err(ctx) << sec->file << ": invalid size of .MIPS.abiflags section: got "
|
|
<< size << " instead of " << sizeof(Elf_Mips_ABIFlags);
|
|
return nullptr;
|
|
}
|
|
auto *s =
|
|
reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
|
|
if (s->version != 0) {
|
|
Err(ctx) << sec->file << ": unexpected .MIPS.abiflags version "
|
|
<< s->version;
|
|
return nullptr;
|
|
}
|
|
|
|
// LLD checks ISA compatibility in calcMipsEFlags(). Here we just
|
|
// select the highest number of ISA/Rev/Ext.
|
|
flags.isa_level = std::max(flags.isa_level, s->isa_level);
|
|
flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
|
|
flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
|
|
flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
|
|
flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
|
|
flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
|
|
flags.ases |= s->ases;
|
|
flags.flags1 |= s->flags1;
|
|
flags.flags2 |= s->flags2;
|
|
flags.fp_abi =
|
|
elf::getMipsFpAbiFlag(ctx, sec->file, flags.fp_abi, s->fp_abi);
|
|
};
|
|
|
|
if (create)
|
|
return std::make_unique<MipsAbiFlagsSection<ELFT>>(ctx, flags);
|
|
return nullptr;
|
|
}
|
|
|
|
// .MIPS.options section.
|
|
template <class ELFT>
|
|
MipsOptionsSection<ELFT>::MipsOptionsSection(Ctx &ctx, Elf_Mips_RegInfo reginfo)
|
|
: SyntheticSection(ctx, ".MIPS.options", SHT_MIPS_OPTIONS, SHF_ALLOC, 8),
|
|
reginfo(reginfo) {
|
|
this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
|
|
}
|
|
|
|
template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
|
|
auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
|
|
options->kind = ODK_REGINFO;
|
|
options->size = getSize();
|
|
|
|
if (!ctx.arg.relocatable)
|
|
reginfo.ri_gp_value = ctx.in.mipsGot->getGp();
|
|
memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo));
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::unique_ptr<MipsOptionsSection<ELFT>>
|
|
MipsOptionsSection<ELFT>::create(Ctx &ctx) {
|
|
// N64 ABI only.
|
|
if (!ELFT::Is64Bits)
|
|
return nullptr;
|
|
|
|
SmallVector<InputSectionBase *, 0> sections;
|
|
for (InputSectionBase *sec : ctx.inputSections)
|
|
if (sec->type == SHT_MIPS_OPTIONS)
|
|
sections.push_back(sec);
|
|
|
|
if (sections.empty())
|
|
return nullptr;
|
|
|
|
Elf_Mips_RegInfo reginfo = {};
|
|
for (InputSectionBase *sec : sections) {
|
|
sec->markDead();
|
|
|
|
ArrayRef<uint8_t> d = sec->content();
|
|
while (!d.empty()) {
|
|
if (d.size() < sizeof(Elf_Mips_Options)) {
|
|
Err(ctx) << sec->file << ": invalid size of .MIPS.options section";
|
|
break;
|
|
}
|
|
|
|
auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
|
|
if (opt->kind == ODK_REGINFO) {
|
|
reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
|
|
sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
|
|
break;
|
|
}
|
|
|
|
if (!opt->size) {
|
|
Err(ctx) << sec->file << ": zero option descriptor size";
|
|
break;
|
|
}
|
|
d = d.slice(opt->size);
|
|
}
|
|
};
|
|
|
|
return std::make_unique<MipsOptionsSection<ELFT>>(ctx, reginfo);
|
|
}
|
|
|
|
// MIPS .reginfo section.
|
|
template <class ELFT>
|
|
MipsReginfoSection<ELFT>::MipsReginfoSection(Ctx &ctx, Elf_Mips_RegInfo reginfo)
|
|
: SyntheticSection(ctx, ".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC, 4),
|
|
reginfo(reginfo) {
|
|
this->entsize = sizeof(Elf_Mips_RegInfo);
|
|
}
|
|
|
|
template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
|
|
if (!ctx.arg.relocatable)
|
|
reginfo.ri_gp_value = ctx.in.mipsGot->getGp();
|
|
memcpy(buf, ®info, sizeof(reginfo));
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::unique_ptr<MipsReginfoSection<ELFT>>
|
|
MipsReginfoSection<ELFT>::create(Ctx &ctx) {
|
|
// Section should be alive for O32 and N32 ABIs only.
|
|
if (ELFT::Is64Bits)
|
|
return nullptr;
|
|
|
|
SmallVector<InputSectionBase *, 0> sections;
|
|
for (InputSectionBase *sec : ctx.inputSections)
|
|
if (sec->type == SHT_MIPS_REGINFO)
|
|
sections.push_back(sec);
|
|
|
|
if (sections.empty())
|
|
return nullptr;
|
|
|
|
Elf_Mips_RegInfo reginfo = {};
|
|
for (InputSectionBase *sec : sections) {
|
|
sec->markDead();
|
|
|
|
if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
|
|
Err(ctx) << sec->file << ": invalid size of .reginfo section";
|
|
return nullptr;
|
|
}
|
|
|
|
auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
|
|
reginfo.ri_gprmask |= r->ri_gprmask;
|
|
sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
|
|
};
|
|
|
|
return std::make_unique<MipsReginfoSection<ELFT>>(ctx, reginfo);
|
|
}
|
|
|
|
InputSection *elf::createInterpSection(Ctx &ctx) {
|
|
// StringSaver guarantees that the returned string ends with '\0'.
|
|
StringRef s = ctx.saver.save(ctx.arg.dynamicLinker);
|
|
ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
|
|
|
|
return make<InputSection>(ctx.internalFile, ".interp", SHT_PROGBITS,
|
|
SHF_ALLOC,
|
|
/*addralign=*/1, /*entsize=*/0, contents);
|
|
}
|
|
|
|
Defined *elf::addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type,
|
|
uint64_t value, uint64_t size,
|
|
InputSectionBase §ion) {
|
|
Defined *s = makeDefined(ctx, section.file, name, STB_LOCAL, STV_DEFAULT,
|
|
type, value, size, §ion);
|
|
if (ctx.in.symTab)
|
|
ctx.in.symTab->addSymbol(s);
|
|
|
|
if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 &&
|
|
(section.flags & SHF_EXECINSTR))
|
|
// Adding Linker generated mapping symbols to the arm specific mapping
|
|
// symbols list.
|
|
addArmSyntheticSectionMappingSymbol(s);
|
|
|
|
return s;
|
|
}
|
|
|
|
static size_t getHashSize(Ctx &ctx) {
|
|
switch (ctx.arg.buildId) {
|
|
case BuildIdKind::Fast:
|
|
return 8;
|
|
case BuildIdKind::Md5:
|
|
case BuildIdKind::Uuid:
|
|
return 16;
|
|
case BuildIdKind::Sha1:
|
|
return 20;
|
|
case BuildIdKind::Hexstring:
|
|
return ctx.arg.buildIdVector.size();
|
|
default:
|
|
llvm_unreachable("unknown BuildIdKind");
|
|
}
|
|
}
|
|
|
|
// This class represents a linker-synthesized .note.gnu.property section.
|
|
//
|
|
// In x86 and AArch64, object files may contain feature flags indicating the
|
|
// features that they have used. The flags are stored in a .note.gnu.property
|
|
// section.
|
|
//
|
|
// lld reads the sections from input files and merges them by computing AND of
|
|
// the flags. The result is written as a new .note.gnu.property section.
|
|
//
|
|
// If the flag is zero (which indicates that the intersection of the feature
|
|
// sets is empty, or some input files didn't have .note.gnu.property sections),
|
|
// we don't create this section.
|
|
GnuPropertySection::GnuPropertySection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".note.gnu.property", SHT_NOTE, SHF_ALLOC,
|
|
ctx.arg.wordsize) {}
|
|
|
|
void GnuPropertySection::writeTo(uint8_t *buf) {
|
|
write32(ctx, buf, 4); // Name size
|
|
write32(ctx, buf + 4, getSize() - 16); // Content size
|
|
write32(ctx, buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type
|
|
memcpy(buf + 12, "GNU", 4); // Name string
|
|
|
|
uint32_t featureAndType = ctx.arg.emachine == EM_AARCH64
|
|
? GNU_PROPERTY_AARCH64_FEATURE_1_AND
|
|
: GNU_PROPERTY_X86_FEATURE_1_AND;
|
|
|
|
unsigned offset = 16;
|
|
if (ctx.arg.andFeatures != 0) {
|
|
write32(ctx, buf + offset + 0, featureAndType); // Feature type
|
|
write32(ctx, buf + offset + 4, 4); // Feature size
|
|
write32(ctx, buf + offset + 8, ctx.arg.andFeatures); // Feature flags
|
|
if (ctx.arg.is64)
|
|
write32(ctx, buf + offset + 12, 0); // Padding
|
|
offset += 16;
|
|
}
|
|
|
|
if (!ctx.aarch64PauthAbiCoreInfo.empty()) {
|
|
write32(ctx, buf + offset + 0, GNU_PROPERTY_AARCH64_FEATURE_PAUTH);
|
|
write32(ctx, buf + offset + 4, ctx.aarch64PauthAbiCoreInfo.size());
|
|
memcpy(buf + offset + 8, ctx.aarch64PauthAbiCoreInfo.data(),
|
|
ctx.aarch64PauthAbiCoreInfo.size());
|
|
}
|
|
}
|
|
|
|
size_t GnuPropertySection::getSize() const {
|
|
uint32_t contentSize = 0;
|
|
if (ctx.arg.andFeatures != 0)
|
|
contentSize += ctx.arg.is64 ? 16 : 12;
|
|
if (!ctx.aarch64PauthAbiCoreInfo.empty())
|
|
contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size();
|
|
assert(contentSize != 0);
|
|
return contentSize + 16;
|
|
}
|
|
|
|
BuildIdSection::BuildIdSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".note.gnu.build-id", SHT_NOTE, SHF_ALLOC, 4),
|
|
hashSize(getHashSize(ctx)) {}
|
|
|
|
void BuildIdSection::writeTo(uint8_t *buf) {
|
|
write32(ctx, buf, 4); // Name size
|
|
write32(ctx, buf + 4, hashSize); // Content size
|
|
write32(ctx, buf + 8, NT_GNU_BUILD_ID); // Type
|
|
memcpy(buf + 12, "GNU", 4); // Name string
|
|
hashBuf = buf + 16;
|
|
}
|
|
|
|
void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
|
|
assert(buf.size() == hashSize);
|
|
memcpy(hashBuf, buf.data(), hashSize);
|
|
}
|
|
|
|
BssSection::BssSection(Ctx &ctx, StringRef name, uint64_t size,
|
|
uint32_t alignment)
|
|
: SyntheticSection(ctx, name, SHT_NOBITS, SHF_ALLOC | SHF_WRITE,
|
|
alignment) {
|
|
this->bss = true;
|
|
this->size = size;
|
|
}
|
|
|
|
EhFrameSection::EhFrameSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, 1) {}
|
|
|
|
// Search for an existing CIE record or create a new one.
|
|
// CIE records from input object files are uniquified by their contents
|
|
// and where their relocations point to.
|
|
template <class ELFT, class RelTy>
|
|
CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
|
|
Symbol *personality = nullptr;
|
|
unsigned firstRelI = cie.firstRelocation;
|
|
if (firstRelI != (unsigned)-1)
|
|
personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]);
|
|
|
|
// Search for an existing CIE by CIE contents/relocation target pair.
|
|
CieRecord *&rec = cieMap[{cie.data(), personality}];
|
|
|
|
// If not found, create a new one.
|
|
if (!rec) {
|
|
rec = make<CieRecord>();
|
|
rec->cie = &cie;
|
|
cieRecords.push_back(rec);
|
|
}
|
|
return rec;
|
|
}
|
|
|
|
// There is one FDE per function. Returns a non-null pointer to the function
|
|
// symbol if the given FDE points to a live function.
|
|
template <class ELFT, class RelTy>
|
|
Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
|
|
auto *sec = cast<EhInputSection>(fde.sec);
|
|
unsigned firstRelI = fde.firstRelocation;
|
|
|
|
// An FDE should point to some function because FDEs are to describe
|
|
// functions. That's however not always the case due to an issue of
|
|
// ld.gold with -r. ld.gold may discard only functions and leave their
|
|
// corresponding FDEs, which results in creating bad .eh_frame sections.
|
|
// To deal with that, we ignore such FDEs.
|
|
if (firstRelI == (unsigned)-1)
|
|
return nullptr;
|
|
|
|
const RelTy &rel = rels[firstRelI];
|
|
Symbol &b = sec->file->getRelocTargetSym(rel);
|
|
|
|
// FDEs for garbage-collected or merged-by-ICF sections, or sections in
|
|
// another partition, are dead.
|
|
if (auto *d = dyn_cast<Defined>(&b))
|
|
if (!d->folded && d->section && d->section->partition == partition)
|
|
return d;
|
|
return nullptr;
|
|
}
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. In general, there
|
|
// is one CIE record per input object file which is followed by
|
|
// a list of FDEs. This function searches an existing CIE or create a new
|
|
// one and associates FDEs to the CIE.
|
|
template <class ELFT, class RelTy>
|
|
void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
|
|
offsetToCie.clear();
|
|
for (EhSectionPiece &cie : sec->cies)
|
|
offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
|
|
for (EhSectionPiece &fde : sec->fdes) {
|
|
uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4);
|
|
CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
|
|
if (!rec)
|
|
Fatal(ctx) << sec << ": invalid CIE reference";
|
|
|
|
if (!isFdeLive<ELFT>(fde, rels))
|
|
continue;
|
|
rec->fdes.push_back(&fde);
|
|
numFdes++;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhFrameSection::addSectionAux(EhInputSection *sec) {
|
|
if (!sec->isLive())
|
|
return;
|
|
const RelsOrRelas<ELFT> rels =
|
|
sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false);
|
|
if (rels.areRelocsRel())
|
|
addRecords<ELFT>(sec, rels.rels);
|
|
else
|
|
addRecords<ELFT>(sec, rels.relas);
|
|
}
|
|
|
|
// Used by ICF<ELFT>::handleLSDA(). This function is very similar to
|
|
// EhFrameSection::addRecords().
|
|
template <class ELFT, class RelTy>
|
|
void EhFrameSection::iterateFDEWithLSDAAux(
|
|
EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
|
|
llvm::function_ref<void(InputSection &)> fn) {
|
|
for (EhSectionPiece &cie : sec.cies)
|
|
if (hasLSDA(cie))
|
|
ciesWithLSDA.insert(cie.inputOff);
|
|
for (EhSectionPiece &fde : sec.fdes) {
|
|
uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4);
|
|
if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
|
|
continue;
|
|
|
|
// The CIE has a LSDA argument. Call fn with d's section.
|
|
if (Defined *d = isFdeLive<ELFT>(fde, rels))
|
|
if (auto *s = dyn_cast_or_null<InputSection>(d->section))
|
|
fn(*s);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhFrameSection::iterateFDEWithLSDA(
|
|
llvm::function_ref<void(InputSection &)> fn) {
|
|
DenseSet<size_t> ciesWithLSDA;
|
|
for (EhInputSection *sec : sections) {
|
|
ciesWithLSDA.clear();
|
|
const RelsOrRelas<ELFT> rels =
|
|
sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false);
|
|
if (rels.areRelocsRel())
|
|
iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
|
|
else
|
|
iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
|
|
}
|
|
}
|
|
|
|
static void writeCieFde(Ctx &ctx, uint8_t *buf, ArrayRef<uint8_t> d) {
|
|
memcpy(buf, d.data(), d.size());
|
|
// Fix the size field. -4 since size does not include the size field itself.
|
|
write32(ctx, buf, d.size() - 4);
|
|
}
|
|
|
|
void EhFrameSection::finalizeContents() {
|
|
assert(!this->size); // Not finalized.
|
|
|
|
switch (ctx.arg.ekind) {
|
|
case ELFNoneKind:
|
|
llvm_unreachable("invalid ekind");
|
|
case ELF32LEKind:
|
|
for (EhInputSection *sec : sections)
|
|
addSectionAux<ELF32LE>(sec);
|
|
break;
|
|
case ELF32BEKind:
|
|
for (EhInputSection *sec : sections)
|
|
addSectionAux<ELF32BE>(sec);
|
|
break;
|
|
case ELF64LEKind:
|
|
for (EhInputSection *sec : sections)
|
|
addSectionAux<ELF64LE>(sec);
|
|
break;
|
|
case ELF64BEKind:
|
|
for (EhInputSection *sec : sections)
|
|
addSectionAux<ELF64BE>(sec);
|
|
break;
|
|
}
|
|
|
|
size_t off = 0;
|
|
for (CieRecord *rec : cieRecords) {
|
|
rec->cie->outputOff = off;
|
|
off += rec->cie->size;
|
|
|
|
for (EhSectionPiece *fde : rec->fdes) {
|
|
fde->outputOff = off;
|
|
off += fde->size;
|
|
}
|
|
}
|
|
|
|
// The LSB standard does not allow a .eh_frame section with zero
|
|
// Call Frame Information records. glibc unwind-dw2-fde.c
|
|
// classify_object_over_fdes expects there is a CIE record length 0 as a
|
|
// terminator. Thus we add one unconditionally.
|
|
off += 4;
|
|
|
|
this->size = off;
|
|
}
|
|
|
|
// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
|
|
// to get an FDE from an address to which FDE is applied. This function
|
|
// returns a list of such pairs.
|
|
SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
|
|
uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff;
|
|
SmallVector<FdeData, 0> ret;
|
|
|
|
uint64_t va = getPartition(ctx).ehFrameHdr->getVA();
|
|
for (CieRecord *rec : cieRecords) {
|
|
uint8_t enc = getFdeEncoding(rec->cie);
|
|
for (EhSectionPiece *fde : rec->fdes) {
|
|
uint64_t pc = getFdePc(buf, fde->outputOff, enc);
|
|
uint64_t fdeVA = getParent()->addr + fde->outputOff;
|
|
if (!isInt<32>(pc - va)) {
|
|
Err(ctx) << fde->sec << ": PC offset is too large: 0x"
|
|
<< Twine::utohexstr(pc - va);
|
|
continue;
|
|
}
|
|
ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
|
|
}
|
|
}
|
|
|
|
// Sort the FDE list by their PC and uniqueify. Usually there is only
|
|
// one FDE for a PC (i.e. function), but if ICF merges two functions
|
|
// into one, there can be more than one FDEs pointing to the address.
|
|
auto less = [](const FdeData &a, const FdeData &b) {
|
|
return a.pcRel < b.pcRel;
|
|
};
|
|
llvm::stable_sort(ret, less);
|
|
auto eq = [](const FdeData &a, const FdeData &b) {
|
|
return a.pcRel == b.pcRel;
|
|
};
|
|
ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint64_t readFdeAddr(Ctx &ctx, uint8_t *buf, int size) {
|
|
switch (size) {
|
|
case DW_EH_PE_udata2:
|
|
return read16(ctx, buf);
|
|
case DW_EH_PE_sdata2:
|
|
return (int16_t)read16(ctx, buf);
|
|
case DW_EH_PE_udata4:
|
|
return read32(ctx, buf);
|
|
case DW_EH_PE_sdata4:
|
|
return (int32_t)read32(ctx, buf);
|
|
case DW_EH_PE_udata8:
|
|
case DW_EH_PE_sdata8:
|
|
return read64(ctx, buf);
|
|
case DW_EH_PE_absptr:
|
|
return readUint(ctx, buf);
|
|
}
|
|
Err(ctx) << "unknown FDE size encoding";
|
|
return 0;
|
|
}
|
|
|
|
// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
|
|
// We need it to create .eh_frame_hdr section.
|
|
uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
|
|
uint8_t enc) const {
|
|
// The starting address to which this FDE applies is
|
|
// stored at FDE + 8 byte. And this offset is within
|
|
// the .eh_frame section.
|
|
size_t off = fdeOff + 8;
|
|
uint64_t addr = readFdeAddr(ctx, buf + off, enc & 0xf);
|
|
if ((enc & 0x70) == DW_EH_PE_absptr)
|
|
return ctx.arg.is64 ? addr : uint32_t(addr);
|
|
if ((enc & 0x70) == DW_EH_PE_pcrel)
|
|
return addr + getParent()->addr + off + outSecOff;
|
|
Err(ctx) << "unknown FDE size relative encoding";
|
|
return 0;
|
|
}
|
|
|
|
void EhFrameSection::writeTo(uint8_t *buf) {
|
|
// Write CIE and FDE records.
|
|
for (CieRecord *rec : cieRecords) {
|
|
size_t cieOffset = rec->cie->outputOff;
|
|
writeCieFde(ctx, buf + cieOffset, rec->cie->data());
|
|
|
|
for (EhSectionPiece *fde : rec->fdes) {
|
|
size_t off = fde->outputOff;
|
|
writeCieFde(ctx, buf + off, fde->data());
|
|
|
|
// FDE's second word should have the offset to an associated CIE.
|
|
// Write it.
|
|
write32(ctx, buf + off + 4, off + 4 - cieOffset);
|
|
}
|
|
}
|
|
|
|
// Apply relocations. .eh_frame section contents are not contiguous
|
|
// in the output buffer, but relocateAlloc() still works because
|
|
// getOffset() takes care of discontiguous section pieces.
|
|
for (EhInputSection *s : sections)
|
|
ctx.target->relocateAlloc(*s, buf);
|
|
|
|
if (getPartition(ctx).ehFrameHdr && getPartition(ctx).ehFrameHdr->getParent())
|
|
getPartition(ctx).ehFrameHdr->write();
|
|
}
|
|
|
|
GotSection::GotSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
|
|
ctx.target->gotEntrySize) {
|
|
numEntries = ctx.target->gotHeaderEntriesNum;
|
|
}
|
|
|
|
void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
|
|
void GotSection::addEntry(const Symbol &sym) {
|
|
assert(sym.auxIdx == ctx.symAux.size() - 1);
|
|
ctx.symAux.back().gotIdx = numEntries++;
|
|
}
|
|
|
|
void GotSection::addAuthEntry(const Symbol &sym) {
|
|
authEntries.push_back({(numEntries - 1) * ctx.arg.wordsize, sym.isFunc()});
|
|
}
|
|
|
|
bool GotSection::addTlsDescEntry(const Symbol &sym) {
|
|
assert(sym.auxIdx == ctx.symAux.size() - 1);
|
|
ctx.symAux.back().tlsDescIdx = numEntries;
|
|
numEntries += 2;
|
|
return true;
|
|
}
|
|
|
|
void GotSection::addTlsDescAuthEntry() {
|
|
authEntries.push_back({(numEntries - 2) * ctx.arg.wordsize, true});
|
|
authEntries.push_back({(numEntries - 1) * ctx.arg.wordsize, false});
|
|
}
|
|
|
|
bool GotSection::addDynTlsEntry(const Symbol &sym) {
|
|
assert(sym.auxIdx == ctx.symAux.size() - 1);
|
|
ctx.symAux.back().tlsGdIdx = numEntries;
|
|
// Global Dynamic TLS entries take two GOT slots.
|
|
numEntries += 2;
|
|
return true;
|
|
}
|
|
|
|
// Reserves TLS entries for a TLS module ID and a TLS block offset.
|
|
// In total it takes two GOT slots.
|
|
bool GotSection::addTlsIndex() {
|
|
if (tlsIndexOff != uint32_t(-1))
|
|
return false;
|
|
tlsIndexOff = numEntries * ctx.arg.wordsize;
|
|
numEntries += 2;
|
|
return true;
|
|
}
|
|
|
|
uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
|
|
return sym.getTlsDescIdx(ctx) * ctx.arg.wordsize;
|
|
}
|
|
|
|
uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
|
|
return getVA() + getTlsDescOffset(sym);
|
|
}
|
|
|
|
uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
|
|
return this->getVA() + b.getTlsGdIdx(ctx) * ctx.arg.wordsize;
|
|
}
|
|
|
|
uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
|
|
return b.getTlsGdIdx(ctx) * ctx.arg.wordsize;
|
|
}
|
|
|
|
void GotSection::finalizeContents() {
|
|
if (ctx.arg.emachine == EM_PPC64 &&
|
|
numEntries <= ctx.target->gotHeaderEntriesNum &&
|
|
!ctx.sym.globalOffsetTable)
|
|
size = 0;
|
|
else
|
|
size = numEntries * ctx.arg.wordsize;
|
|
}
|
|
|
|
bool GotSection::isNeeded() const {
|
|
// Needed if the GOT symbol is used or the number of entries is more than just
|
|
// the header. A GOT with just the header may not be needed.
|
|
return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum;
|
|
}
|
|
|
|
void GotSection::writeTo(uint8_t *buf) {
|
|
// On PPC64 .got may be needed but empty. Skip the write.
|
|
if (size == 0)
|
|
return;
|
|
ctx.target->writeGotHeader(buf);
|
|
ctx.target->relocateAlloc(*this, buf);
|
|
for (const AuthEntryInfo &authEntry : authEntries) {
|
|
// https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#default-signing-schema
|
|
// Signed GOT entries use the IA key for symbols of type STT_FUNC and the
|
|
// DA key for all other symbol types, with the address of the GOT entry as
|
|
// the modifier. The static linker must encode the signing schema into the
|
|
// GOT slot.
|
|
//
|
|
// https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#encoding-the-signing-schema
|
|
// If address diversity is set and the discriminator
|
|
// is 0 then modifier = Place
|
|
uint8_t *dest = buf + authEntry.offset;
|
|
uint64_t key = authEntry.isSymbolFunc ? /*IA=*/0b00 : /*DA=*/0b10;
|
|
uint64_t addrDiversity = 1;
|
|
write64(ctx, dest, (addrDiversity << 63) | (key << 60));
|
|
}
|
|
}
|
|
|
|
static uint64_t getMipsPageAddr(uint64_t addr) {
|
|
return (addr + 0x8000) & ~0xffff;
|
|
}
|
|
|
|
static uint64_t getMipsPageCount(uint64_t size) {
|
|
return (size + 0xfffe) / 0xffff + 1;
|
|
}
|
|
|
|
MipsGotSection::MipsGotSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".got", SHT_PROGBITS,
|
|
SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, 16) {}
|
|
|
|
void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
|
|
RelExpr expr) {
|
|
FileGot &g = getGot(file);
|
|
if (expr == RE_MIPS_GOT_LOCAL_PAGE) {
|
|
if (const OutputSection *os = sym.getOutputSection())
|
|
g.pagesMap.insert({os, {}});
|
|
else
|
|
g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(ctx, addend))}, 0});
|
|
} else if (sym.isTls())
|
|
g.tls.insert({&sym, 0});
|
|
else if (sym.isPreemptible && expr == R_ABS)
|
|
g.relocs.insert({&sym, 0});
|
|
else if (sym.isPreemptible)
|
|
g.global.insert({&sym, 0});
|
|
else if (expr == RE_MIPS_GOT_OFF32)
|
|
g.local32.insert({{&sym, addend}, 0});
|
|
else
|
|
g.local16.insert({{&sym, addend}, 0});
|
|
}
|
|
|
|
void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
|
|
getGot(file).dynTlsSymbols.insert({&sym, 0});
|
|
}
|
|
|
|
void MipsGotSection::addTlsIndex(InputFile &file) {
|
|
getGot(file).dynTlsSymbols.insert({nullptr, 0});
|
|
}
|
|
|
|
size_t MipsGotSection::FileGot::getEntriesNum() const {
|
|
return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
|
|
tls.size() + dynTlsSymbols.size() * 2;
|
|
}
|
|
|
|
size_t MipsGotSection::FileGot::getPageEntriesNum() const {
|
|
size_t num = 0;
|
|
for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
|
|
num += p.second.count;
|
|
return num;
|
|
}
|
|
|
|
size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
|
|
size_t count = getPageEntriesNum() + local16.size() + global.size();
|
|
// If there are relocation-only entries in the GOT, TLS entries
|
|
// are allocated after them. TLS entries should be addressable
|
|
// by 16-bit index so count both reloc-only and TLS entries.
|
|
if (!tls.empty() || !dynTlsSymbols.empty())
|
|
count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
|
|
return count;
|
|
}
|
|
|
|
MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
|
|
if (f.mipsGotIndex == uint32_t(-1)) {
|
|
gots.emplace_back();
|
|
gots.back().file = &f;
|
|
f.mipsGotIndex = gots.size() - 1;
|
|
}
|
|
return gots[f.mipsGotIndex];
|
|
}
|
|
|
|
uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
|
|
const Symbol &sym,
|
|
int64_t addend) const {
|
|
const FileGot &g = gots[f->mipsGotIndex];
|
|
uint64_t index = 0;
|
|
if (const OutputSection *outSec = sym.getOutputSection()) {
|
|
uint64_t secAddr = getMipsPageAddr(outSec->addr);
|
|
uint64_t symAddr = getMipsPageAddr(sym.getVA(ctx, addend));
|
|
index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
|
|
} else {
|
|
index =
|
|
g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(ctx, addend))});
|
|
}
|
|
return index * ctx.arg.wordsize;
|
|
}
|
|
|
|
uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
|
|
int64_t addend) const {
|
|
const FileGot &g = gots[f->mipsGotIndex];
|
|
Symbol *sym = const_cast<Symbol *>(&s);
|
|
if (sym->isTls())
|
|
return g.tls.lookup(sym) * ctx.arg.wordsize;
|
|
if (sym->isPreemptible)
|
|
return g.global.lookup(sym) * ctx.arg.wordsize;
|
|
return g.local16.lookup({sym, addend}) * ctx.arg.wordsize;
|
|
}
|
|
|
|
uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
|
|
const FileGot &g = gots[f->mipsGotIndex];
|
|
return g.dynTlsSymbols.lookup(nullptr) * ctx.arg.wordsize;
|
|
}
|
|
|
|
uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
|
|
const Symbol &s) const {
|
|
const FileGot &g = gots[f->mipsGotIndex];
|
|
Symbol *sym = const_cast<Symbol *>(&s);
|
|
return g.dynTlsSymbols.lookup(sym) * ctx.arg.wordsize;
|
|
}
|
|
|
|
const Symbol *MipsGotSection::getFirstGlobalEntry() const {
|
|
if (gots.empty())
|
|
return nullptr;
|
|
const FileGot &primGot = gots.front();
|
|
if (!primGot.global.empty())
|
|
return primGot.global.front().first;
|
|
if (!primGot.relocs.empty())
|
|
return primGot.relocs.front().first;
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned MipsGotSection::getLocalEntriesNum() const {
|
|
if (gots.empty())
|
|
return headerEntriesNum;
|
|
return headerEntriesNum + gots.front().getPageEntriesNum() +
|
|
gots.front().local16.size();
|
|
}
|
|
|
|
bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
|
|
FileGot tmp = dst;
|
|
set_union(tmp.pagesMap, src.pagesMap);
|
|
set_union(tmp.local16, src.local16);
|
|
set_union(tmp.global, src.global);
|
|
set_union(tmp.relocs, src.relocs);
|
|
set_union(tmp.tls, src.tls);
|
|
set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
|
|
|
|
size_t count = isPrimary ? headerEntriesNum : 0;
|
|
count += tmp.getIndexedEntriesNum();
|
|
|
|
if (count * ctx.arg.wordsize > ctx.arg.mipsGotSize)
|
|
return false;
|
|
|
|
std::swap(tmp, dst);
|
|
return true;
|
|
}
|
|
|
|
void MipsGotSection::finalizeContents() { updateAllocSize(ctx); }
|
|
|
|
bool MipsGotSection::updateAllocSize(Ctx &ctx) {
|
|
size = headerEntriesNum * ctx.arg.wordsize;
|
|
for (const FileGot &g : gots)
|
|
size += g.getEntriesNum() * ctx.arg.wordsize;
|
|
return false;
|
|
}
|
|
|
|
void MipsGotSection::build() {
|
|
if (gots.empty())
|
|
return;
|
|
|
|
std::vector<FileGot> mergedGots(1);
|
|
|
|
// For each GOT move non-preemptible symbols from the `Global`
|
|
// to `Local16` list. Preemptible symbol might become non-preemptible
|
|
// one if, for example, it gets a related copy relocation.
|
|
for (FileGot &got : gots) {
|
|
for (auto &p: got.global)
|
|
if (!p.first->isPreemptible)
|
|
got.local16.insert({{p.first, 0}, 0});
|
|
got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
|
|
return !p.first->isPreemptible;
|
|
});
|
|
}
|
|
|
|
// For each GOT remove "reloc-only" entry if there is "global"
|
|
// entry for the same symbol. And add local entries which indexed
|
|
// using 32-bit value at the end of 16-bit entries.
|
|
for (FileGot &got : gots) {
|
|
got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
|
|
return got.global.count(p.first);
|
|
});
|
|
set_union(got.local16, got.local32);
|
|
got.local32.clear();
|
|
}
|
|
|
|
// Evaluate number of "reloc-only" entries in the resulting GOT.
|
|
// To do that put all unique "reloc-only" and "global" entries
|
|
// from all GOTs to the future primary GOT.
|
|
FileGot *primGot = &mergedGots.front();
|
|
for (FileGot &got : gots) {
|
|
set_union(primGot->relocs, got.global);
|
|
set_union(primGot->relocs, got.relocs);
|
|
got.relocs.clear();
|
|
}
|
|
|
|
// Evaluate number of "page" entries in each GOT.
|
|
for (FileGot &got : gots) {
|
|
for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
|
|
got.pagesMap) {
|
|
const OutputSection *os = p.first;
|
|
uint64_t secSize = 0;
|
|
for (SectionCommand *cmd : os->commands) {
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
|
|
for (InputSection *isec : isd->sections) {
|
|
uint64_t off = alignToPowerOf2(secSize, isec->addralign);
|
|
secSize = off + isec->getSize();
|
|
}
|
|
}
|
|
p.second.count = getMipsPageCount(secSize);
|
|
}
|
|
}
|
|
|
|
// Merge GOTs. Try to join as much as possible GOTs but do not exceed
|
|
// maximum GOT size. At first, try to fill the primary GOT because
|
|
// the primary GOT can be accessed in the most effective way. If it
|
|
// is not possible, try to fill the last GOT in the list, and finally
|
|
// create a new GOT if both attempts failed.
|
|
for (FileGot &srcGot : gots) {
|
|
InputFile *file = srcGot.file;
|
|
if (tryMergeGots(mergedGots.front(), srcGot, true)) {
|
|
file->mipsGotIndex = 0;
|
|
} else {
|
|
// If this is the first time we failed to merge with the primary GOT,
|
|
// MergedGots.back() will also be the primary GOT. We must make sure not
|
|
// to try to merge again with isPrimary=false, as otherwise, if the
|
|
// inputs are just right, we could allow the primary GOT to become 1 or 2
|
|
// words bigger due to ignoring the header size.
|
|
if (mergedGots.size() == 1 ||
|
|
!tryMergeGots(mergedGots.back(), srcGot, false)) {
|
|
mergedGots.emplace_back();
|
|
std::swap(mergedGots.back(), srcGot);
|
|
}
|
|
file->mipsGotIndex = mergedGots.size() - 1;
|
|
}
|
|
}
|
|
std::swap(gots, mergedGots);
|
|
|
|
// Reduce number of "reloc-only" entries in the primary GOT
|
|
// by subtracting "global" entries in the primary GOT.
|
|
primGot = &gots.front();
|
|
primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
|
|
return primGot->global.count(p.first);
|
|
});
|
|
|
|
// Calculate indexes for each GOT entry.
|
|
size_t index = headerEntriesNum;
|
|
for (FileGot &got : gots) {
|
|
got.startIndex = &got == primGot ? 0 : index;
|
|
for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
|
|
got.pagesMap) {
|
|
// For each output section referenced by GOT page relocations calculate
|
|
// and save into pagesMap an upper bound of MIPS GOT entries required
|
|
// to store page addresses of local symbols. We assume the worst case -
|
|
// each 64kb page of the output section has at least one GOT relocation
|
|
// against it. And take in account the case when the section intersects
|
|
// page boundaries.
|
|
p.second.firstIndex = index;
|
|
index += p.second.count;
|
|
}
|
|
for (auto &p: got.local16)
|
|
p.second = index++;
|
|
for (auto &p: got.global)
|
|
p.second = index++;
|
|
for (auto &p: got.relocs)
|
|
p.second = index++;
|
|
for (auto &p: got.tls)
|
|
p.second = index++;
|
|
for (auto &p: got.dynTlsSymbols) {
|
|
p.second = index;
|
|
index += 2;
|
|
}
|
|
}
|
|
|
|
// Update SymbolAux::gotIdx field to use this
|
|
// value later in the `sortMipsSymbols` function.
|
|
for (auto &p : primGot->global) {
|
|
if (p.first->auxIdx == 0)
|
|
p.first->allocateAux(ctx);
|
|
ctx.symAux.back().gotIdx = p.second;
|
|
}
|
|
for (auto &p : primGot->relocs) {
|
|
if (p.first->auxIdx == 0)
|
|
p.first->allocateAux(ctx);
|
|
ctx.symAux.back().gotIdx = p.second;
|
|
}
|
|
|
|
// Create dynamic relocations.
|
|
for (FileGot &got : gots) {
|
|
// Create dynamic relocations for TLS entries.
|
|
for (std::pair<Symbol *, size_t> &p : got.tls) {
|
|
Symbol *s = p.first;
|
|
uint64_t offset = p.second * ctx.arg.wordsize;
|
|
// When building a shared library we still need a dynamic relocation
|
|
// for the TP-relative offset as we don't know how much other data will
|
|
// be allocated before us in the static TLS block.
|
|
if (s->isPreemptible || ctx.arg.shared)
|
|
ctx.mainPart->relaDyn->addReloc(
|
|
{ctx.target->tlsGotRel, this, offset,
|
|
DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS});
|
|
}
|
|
for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
|
|
Symbol *s = p.first;
|
|
uint64_t offset = p.second * ctx.arg.wordsize;
|
|
if (s == nullptr) {
|
|
if (!ctx.arg.shared)
|
|
continue;
|
|
ctx.mainPart->relaDyn->addReloc(
|
|
{ctx.target->tlsModuleIndexRel, this, offset});
|
|
} else {
|
|
// When building a shared library we still need a dynamic relocation
|
|
// for the module index. Therefore only checking for
|
|
// S->isPreemptible is not sufficient (this happens e.g. for
|
|
// thread-locals that have been marked as local through a linker script)
|
|
if (!s->isPreemptible && !ctx.arg.shared)
|
|
continue;
|
|
ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsModuleIndexRel,
|
|
*this, offset, *s);
|
|
// However, we can skip writing the TLS offset reloc for non-preemptible
|
|
// symbols since it is known even in shared libraries
|
|
if (!s->isPreemptible)
|
|
continue;
|
|
offset += ctx.arg.wordsize;
|
|
ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsOffsetRel, *this,
|
|
offset, *s);
|
|
}
|
|
}
|
|
|
|
// Do not create dynamic relocations for non-TLS
|
|
// entries in the primary GOT.
|
|
if (&got == primGot)
|
|
continue;
|
|
|
|
// Dynamic relocations for "global" entries.
|
|
for (const std::pair<Symbol *, size_t> &p : got.global) {
|
|
uint64_t offset = p.second * ctx.arg.wordsize;
|
|
ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->relativeRel, *this,
|
|
offset, *p.first);
|
|
}
|
|
if (!ctx.arg.isPic)
|
|
continue;
|
|
// Dynamic relocations for "local" entries in case of PIC.
|
|
for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
|
|
got.pagesMap) {
|
|
size_t pageCount = l.second.count;
|
|
for (size_t pi = 0; pi < pageCount; ++pi) {
|
|
uint64_t offset = (l.second.firstIndex + pi) * ctx.arg.wordsize;
|
|
ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset,
|
|
l.first, int64_t(pi * 0x10000)});
|
|
}
|
|
}
|
|
for (const std::pair<GotEntry, size_t> &p : got.local16) {
|
|
uint64_t offset = p.second * ctx.arg.wordsize;
|
|
ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset,
|
|
DynamicReloc::AddendOnlyWithTargetVA,
|
|
*p.first.first, p.first.second, R_ABS});
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MipsGotSection::isNeeded() const {
|
|
// We add the .got section to the result for dynamic MIPS target because
|
|
// its address and properties are mentioned in the .dynamic section.
|
|
return !ctx.arg.relocatable;
|
|
}
|
|
|
|
uint64_t MipsGotSection::getGp(const InputFile *f) const {
|
|
// For files without related GOT or files refer a primary GOT
|
|
// returns "common" _gp value. For secondary GOTs calculate
|
|
// individual _gp values.
|
|
if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
|
|
return ctx.sym.mipsGp->getVA(ctx, 0);
|
|
return getVA() + gots[f->mipsGotIndex].startIndex * ctx.arg.wordsize + 0x7ff0;
|
|
}
|
|
|
|
void MipsGotSection::writeTo(uint8_t *buf) {
|
|
// Set the MSB of the second GOT slot. This is not required by any
|
|
// MIPS ABI documentation, though.
|
|
//
|
|
// There is a comment in glibc saying that "The MSB of got[1] of a
|
|
// gnu object is set to identify gnu objects," and in GNU gold it
|
|
// says "the second entry will be used by some runtime loaders".
|
|
// But how this field is being used is unclear.
|
|
//
|
|
// We are not really willing to mimic other linkers behaviors
|
|
// without understanding why they do that, but because all files
|
|
// generated by GNU tools have this special GOT value, and because
|
|
// we've been doing this for years, it is probably a safe bet to
|
|
// keep doing this for now. We really need to revisit this to see
|
|
// if we had to do this.
|
|
writeUint(ctx, buf + ctx.arg.wordsize,
|
|
(uint64_t)1 << (ctx.arg.wordsize * 8 - 1));
|
|
for (const FileGot &g : gots) {
|
|
auto write = [&](size_t i, const Symbol *s, int64_t a) {
|
|
uint64_t va = a;
|
|
if (s)
|
|
va = s->getVA(ctx, a);
|
|
writeUint(ctx, buf + i * ctx.arg.wordsize, va);
|
|
};
|
|
// Write 'page address' entries to the local part of the GOT.
|
|
for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
|
|
g.pagesMap) {
|
|
size_t pageCount = l.second.count;
|
|
uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
|
|
for (size_t pi = 0; pi < pageCount; ++pi)
|
|
write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
|
|
}
|
|
// Local, global, TLS, reloc-only entries.
|
|
// If TLS entry has a corresponding dynamic relocations, leave it
|
|
// initialized by zero. Write down adjusted TLS symbol's values otherwise.
|
|
// To calculate the adjustments use offsets for thread-local storage.
|
|
// http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
|
|
for (const std::pair<GotEntry, size_t> &p : g.local16)
|
|
write(p.second, p.first.first, p.first.second);
|
|
// Write VA to the primary GOT only. For secondary GOTs that
|
|
// will be done by REL32 dynamic relocations.
|
|
if (&g == &gots.front())
|
|
for (const std::pair<Symbol *, size_t> &p : g.global)
|
|
write(p.second, p.first, 0);
|
|
for (const std::pair<Symbol *, size_t> &p : g.relocs)
|
|
write(p.second, p.first, 0);
|
|
for (const std::pair<Symbol *, size_t> &p : g.tls)
|
|
write(p.second, p.first,
|
|
p.first->isPreemptible || ctx.arg.shared ? 0 : -0x7000);
|
|
for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
|
|
if (p.first == nullptr && !ctx.arg.shared)
|
|
write(p.second, nullptr, 1);
|
|
else if (p.first && !p.first->isPreemptible) {
|
|
// If we are emitting a shared library with relocations we mustn't write
|
|
// anything to the GOT here. When using Elf_Rel relocations the value
|
|
// one will be treated as an addend and will cause crashes at runtime
|
|
if (!ctx.arg.shared)
|
|
write(p.second, nullptr, 1);
|
|
write(p.second + 1, p.first, -0x8000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// On PowerPC the .plt section is used to hold the table of function addresses
|
|
// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
|
|
// section. I don't know why we have a BSS style type for the section but it is
|
|
// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
|
|
GotPltSection::GotPltSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
|
|
ctx.arg.wordsize) {
|
|
if (ctx.arg.emachine == EM_PPC) {
|
|
name = ".plt";
|
|
} else if (ctx.arg.emachine == EM_PPC64) {
|
|
type = SHT_NOBITS;
|
|
name = ".plt";
|
|
}
|
|
}
|
|
|
|
void GotPltSection::addEntry(Symbol &sym) {
|
|
assert(sym.auxIdx == ctx.symAux.size() - 1 &&
|
|
ctx.symAux.back().pltIdx == entries.size());
|
|
entries.push_back(&sym);
|
|
}
|
|
|
|
size_t GotPltSection::getSize() const {
|
|
return (ctx.target->gotPltHeaderEntriesNum + entries.size()) *
|
|
ctx.target->gotEntrySize;
|
|
}
|
|
|
|
void GotPltSection::writeTo(uint8_t *buf) {
|
|
ctx.target->writeGotPltHeader(buf);
|
|
buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize;
|
|
for (const Symbol *b : entries) {
|
|
ctx.target->writeGotPlt(buf, *b);
|
|
buf += ctx.target->gotEntrySize;
|
|
}
|
|
}
|
|
|
|
bool GotPltSection::isNeeded() const {
|
|
// We need to emit GOTPLT even if it's empty if there's a relocation relative
|
|
// to it.
|
|
return !entries.empty() || hasGotPltOffRel;
|
|
}
|
|
|
|
static StringRef getIgotPltName(Ctx &ctx) {
|
|
// On ARM the IgotPltSection is part of the GotSection.
|
|
if (ctx.arg.emachine == EM_ARM)
|
|
return ".got";
|
|
|
|
// On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
|
|
// needs to be named the same.
|
|
if (ctx.arg.emachine == EM_PPC64)
|
|
return ".plt";
|
|
|
|
return ".got.plt";
|
|
}
|
|
|
|
// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
|
|
// with the IgotPltSection.
|
|
IgotPltSection::IgotPltSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, getIgotPltName(ctx),
|
|
ctx.arg.emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
|
|
SHF_ALLOC | SHF_WRITE, ctx.target->gotEntrySize) {}
|
|
|
|
void IgotPltSection::addEntry(Symbol &sym) {
|
|
assert(ctx.symAux.back().pltIdx == entries.size());
|
|
entries.push_back(&sym);
|
|
}
|
|
|
|
size_t IgotPltSection::getSize() const {
|
|
return entries.size() * ctx.target->gotEntrySize;
|
|
}
|
|
|
|
void IgotPltSection::writeTo(uint8_t *buf) {
|
|
for (const Symbol *b : entries) {
|
|
ctx.target->writeIgotPlt(buf, *b);
|
|
buf += ctx.target->gotEntrySize;
|
|
}
|
|
}
|
|
|
|
StringTableSection::StringTableSection(Ctx &ctx, StringRef name, bool dynamic)
|
|
: SyntheticSection(ctx, name, SHT_STRTAB, dynamic ? (uint64_t)SHF_ALLOC : 0,
|
|
1),
|
|
dynamic(dynamic) {
|
|
// ELF string tables start with a NUL byte.
|
|
strings.push_back("");
|
|
stringMap.try_emplace(CachedHashStringRef(""), 0);
|
|
size = 1;
|
|
}
|
|
|
|
// Adds a string to the string table. If `hashIt` is true we hash and check for
|
|
// duplicates. It is optional because the name of global symbols are already
|
|
// uniqued and hashing them again has a big cost for a small value: uniquing
|
|
// them with some other string that happens to be the same.
|
|
unsigned StringTableSection::addString(StringRef s, bool hashIt) {
|
|
if (hashIt) {
|
|
auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
|
|
if (!r.second)
|
|
return r.first->second;
|
|
}
|
|
if (s.empty())
|
|
return 0;
|
|
unsigned ret = this->size;
|
|
this->size = this->size + s.size() + 1;
|
|
strings.push_back(s);
|
|
return ret;
|
|
}
|
|
|
|
void StringTableSection::writeTo(uint8_t *buf) {
|
|
for (StringRef s : strings) {
|
|
memcpy(buf, s.data(), s.size());
|
|
buf[s.size()] = '\0';
|
|
buf += s.size() + 1;
|
|
}
|
|
}
|
|
|
|
// Returns the number of entries in .gnu.version_d: the number of
|
|
// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
|
|
// Note that we don't support vd_cnt > 1 yet.
|
|
static unsigned getVerDefNum(Ctx &ctx) {
|
|
return namedVersionDefs(ctx).size() + 1;
|
|
}
|
|
|
|
template <class ELFT>
|
|
DynamicSection<ELFT>::DynamicSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE,
|
|
ctx.arg.wordsize) {
|
|
this->entsize = ELFT::Is64Bits ? 16 : 8;
|
|
|
|
// .dynamic section is not writable on MIPS and on Fuchsia OS
|
|
// which passes -z rodynamic.
|
|
// See "Special Section" in Chapter 4 in the following document:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
if (ctx.arg.emachine == EM_MIPS || ctx.arg.zRodynamic)
|
|
this->flags = SHF_ALLOC;
|
|
}
|
|
|
|
// The output section .rela.dyn may include these synthetic sections:
|
|
//
|
|
// - part.relaDyn
|
|
// - ctx.in.relaPlt: this is included if a linker script places .rela.plt inside
|
|
// .rela.dyn
|
|
//
|
|
// DT_RELASZ is the total size of the included sections.
|
|
static uint64_t addRelaSz(Ctx &ctx, const RelocationBaseSection &relaDyn) {
|
|
size_t size = relaDyn.getSize();
|
|
if (ctx.in.relaPlt->getParent() == relaDyn.getParent())
|
|
size += ctx.in.relaPlt->getSize();
|
|
return size;
|
|
}
|
|
|
|
// A Linker script may assign the RELA relocation sections to the same
|
|
// output section. When this occurs we cannot just use the OutputSection
|
|
// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
|
|
// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
|
|
static uint64_t addPltRelSz(Ctx &ctx) { return ctx.in.relaPlt->getSize(); }
|
|
|
|
// Add remaining entries to complete .dynamic contents.
|
|
template <class ELFT>
|
|
std::vector<std::pair<int32_t, uint64_t>>
|
|
DynamicSection<ELFT>::computeContents() {
|
|
elf::Partition &part = getPartition(ctx);
|
|
bool isMain = part.name.empty();
|
|
std::vector<std::pair<int32_t, uint64_t>> entries;
|
|
|
|
auto addInt = [&](int32_t tag, uint64_t val) {
|
|
entries.emplace_back(tag, val);
|
|
};
|
|
auto addInSec = [&](int32_t tag, const InputSection &sec) {
|
|
entries.emplace_back(tag, sec.getVA());
|
|
};
|
|
|
|
for (StringRef s : ctx.arg.filterList)
|
|
addInt(DT_FILTER, part.dynStrTab->addString(s));
|
|
for (StringRef s : ctx.arg.auxiliaryList)
|
|
addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
|
|
|
|
if (!ctx.arg.rpath.empty())
|
|
addInt(ctx.arg.enableNewDtags ? DT_RUNPATH : DT_RPATH,
|
|
part.dynStrTab->addString(ctx.arg.rpath));
|
|
|
|
for (SharedFile *file : ctx.sharedFiles)
|
|
if (file->isNeeded)
|
|
addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
|
|
|
|
if (isMain) {
|
|
if (!ctx.arg.soName.empty())
|
|
addInt(DT_SONAME, part.dynStrTab->addString(ctx.arg.soName));
|
|
} else {
|
|
if (!ctx.arg.soName.empty())
|
|
addInt(DT_NEEDED, part.dynStrTab->addString(ctx.arg.soName));
|
|
addInt(DT_SONAME, part.dynStrTab->addString(part.name));
|
|
}
|
|
|
|
// Set DT_FLAGS and DT_FLAGS_1.
|
|
uint32_t dtFlags = 0;
|
|
uint32_t dtFlags1 = 0;
|
|
if (ctx.arg.bsymbolic == BsymbolicKind::All)
|
|
dtFlags |= DF_SYMBOLIC;
|
|
if (ctx.arg.zGlobal)
|
|
dtFlags1 |= DF_1_GLOBAL;
|
|
if (ctx.arg.zInitfirst)
|
|
dtFlags1 |= DF_1_INITFIRST;
|
|
if (ctx.arg.zInterpose)
|
|
dtFlags1 |= DF_1_INTERPOSE;
|
|
if (ctx.arg.zNodefaultlib)
|
|
dtFlags1 |= DF_1_NODEFLIB;
|
|
if (ctx.arg.zNodelete)
|
|
dtFlags1 |= DF_1_NODELETE;
|
|
if (ctx.arg.zNodlopen)
|
|
dtFlags1 |= DF_1_NOOPEN;
|
|
if (ctx.arg.pie)
|
|
dtFlags1 |= DF_1_PIE;
|
|
if (ctx.arg.zNow) {
|
|
dtFlags |= DF_BIND_NOW;
|
|
dtFlags1 |= DF_1_NOW;
|
|
}
|
|
if (ctx.arg.zOrigin) {
|
|
dtFlags |= DF_ORIGIN;
|
|
dtFlags1 |= DF_1_ORIGIN;
|
|
}
|
|
if (!ctx.arg.zText)
|
|
dtFlags |= DF_TEXTREL;
|
|
if (ctx.hasTlsIe && ctx.arg.shared)
|
|
dtFlags |= DF_STATIC_TLS;
|
|
|
|
if (dtFlags)
|
|
addInt(DT_FLAGS, dtFlags);
|
|
if (dtFlags1)
|
|
addInt(DT_FLAGS_1, dtFlags1);
|
|
|
|
// DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
|
|
// need it for each process, so we don't write it for DSOs. The loader writes
|
|
// the pointer into this entry.
|
|
//
|
|
// DT_DEBUG is the only .dynamic entry that needs to be written to. Some
|
|
// systems (currently only Fuchsia OS) provide other means to give the
|
|
// debugger this information. Such systems may choose make .dynamic read-only.
|
|
// If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
|
|
if (!ctx.arg.shared && !ctx.arg.relocatable && !ctx.arg.zRodynamic)
|
|
addInt(DT_DEBUG, 0);
|
|
|
|
if (part.relaDyn->isNeeded()) {
|
|
addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
|
|
entries.emplace_back(part.relaDyn->sizeDynamicTag,
|
|
addRelaSz(ctx, *part.relaDyn));
|
|
|
|
bool isRela = ctx.arg.isRela;
|
|
addInt(isRela ? DT_RELAENT : DT_RELENT,
|
|
isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
|
|
|
|
// MIPS dynamic loader does not support RELCOUNT tag.
|
|
// The problem is in the tight relation between dynamic
|
|
// relocations and GOT. So do not emit this tag on MIPS.
|
|
if (ctx.arg.emachine != EM_MIPS) {
|
|
size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
|
|
if (ctx.arg.zCombreloc && numRelativeRels)
|
|
addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
|
|
}
|
|
}
|
|
if (part.relrDyn && part.relrDyn->getParent() &&
|
|
!part.relrDyn->relocs.empty()) {
|
|
addInSec(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
|
|
*part.relrDyn);
|
|
addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
|
|
part.relrDyn->getParent()->size);
|
|
addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
|
|
sizeof(Elf_Relr));
|
|
}
|
|
if (part.relrAuthDyn && part.relrAuthDyn->getParent() &&
|
|
!part.relrAuthDyn->relocs.empty()) {
|
|
addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn);
|
|
addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size);
|
|
addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr));
|
|
}
|
|
if (isMain && ctx.in.relaPlt->isNeeded()) {
|
|
addInSec(DT_JMPREL, *ctx.in.relaPlt);
|
|
entries.emplace_back(DT_PLTRELSZ, addPltRelSz(ctx));
|
|
switch (ctx.arg.emachine) {
|
|
case EM_MIPS:
|
|
addInSec(DT_MIPS_PLTGOT, *ctx.in.gotPlt);
|
|
break;
|
|
case EM_S390:
|
|
addInSec(DT_PLTGOT, *ctx.in.got);
|
|
break;
|
|
case EM_SPARCV9:
|
|
addInSec(DT_PLTGOT, *ctx.in.plt);
|
|
break;
|
|
case EM_AARCH64:
|
|
if (llvm::find_if(ctx.in.relaPlt->relocs, [&ctx = ctx](
|
|
const DynamicReloc &r) {
|
|
return r.type == ctx.target->pltRel &&
|
|
r.sym->stOther & STO_AARCH64_VARIANT_PCS;
|
|
}) != ctx.in.relaPlt->relocs.end())
|
|
addInt(DT_AARCH64_VARIANT_PCS, 0);
|
|
addInSec(DT_PLTGOT, *ctx.in.gotPlt);
|
|
break;
|
|
case EM_RISCV:
|
|
if (llvm::any_of(ctx.in.relaPlt->relocs, [&ctx = ctx](
|
|
const DynamicReloc &r) {
|
|
return r.type == ctx.target->pltRel &&
|
|
(r.sym->stOther & STO_RISCV_VARIANT_CC);
|
|
}))
|
|
addInt(DT_RISCV_VARIANT_CC, 0);
|
|
[[fallthrough]];
|
|
default:
|
|
addInSec(DT_PLTGOT, *ctx.in.gotPlt);
|
|
break;
|
|
}
|
|
addInt(DT_PLTREL, ctx.arg.isRela ? DT_RELA : DT_REL);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_AARCH64) {
|
|
if (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
|
|
addInt(DT_AARCH64_BTI_PLT, 0);
|
|
if (ctx.arg.zPacPlt)
|
|
addInt(DT_AARCH64_PAC_PLT, 0);
|
|
|
|
if (hasMemtag(ctx)) {
|
|
addInt(DT_AARCH64_MEMTAG_MODE, ctx.arg.androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC);
|
|
addInt(DT_AARCH64_MEMTAG_HEAP, ctx.arg.androidMemtagHeap);
|
|
addInt(DT_AARCH64_MEMTAG_STACK, ctx.arg.androidMemtagStack);
|
|
if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) {
|
|
addInSec(DT_AARCH64_MEMTAG_GLOBALS,
|
|
*ctx.mainPart->memtagGlobalDescriptors);
|
|
addInt(DT_AARCH64_MEMTAG_GLOBALSSZ,
|
|
ctx.mainPart->memtagGlobalDescriptors->getSize());
|
|
}
|
|
}
|
|
}
|
|
|
|
addInSec(DT_SYMTAB, *part.dynSymTab);
|
|
addInt(DT_SYMENT, sizeof(Elf_Sym));
|
|
addInSec(DT_STRTAB, *part.dynStrTab);
|
|
addInt(DT_STRSZ, part.dynStrTab->getSize());
|
|
if (!ctx.arg.zText)
|
|
addInt(DT_TEXTREL, 0);
|
|
if (part.gnuHashTab && part.gnuHashTab->getParent())
|
|
addInSec(DT_GNU_HASH, *part.gnuHashTab);
|
|
if (part.hashTab && part.hashTab->getParent())
|
|
addInSec(DT_HASH, *part.hashTab);
|
|
|
|
if (isMain) {
|
|
if (ctx.out.preinitArray) {
|
|
addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr);
|
|
addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size);
|
|
}
|
|
if (ctx.out.initArray) {
|
|
addInt(DT_INIT_ARRAY, ctx.out.initArray->addr);
|
|
addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size);
|
|
}
|
|
if (ctx.out.finiArray) {
|
|
addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr);
|
|
addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size);
|
|
}
|
|
|
|
if (Symbol *b = ctx.symtab->find(ctx.arg.init))
|
|
if (b->isDefined())
|
|
addInt(DT_INIT, b->getVA(ctx));
|
|
if (Symbol *b = ctx.symtab->find(ctx.arg.fini))
|
|
if (b->isDefined())
|
|
addInt(DT_FINI, b->getVA(ctx));
|
|
}
|
|
|
|
if (part.verSym && part.verSym->isNeeded())
|
|
addInSec(DT_VERSYM, *part.verSym);
|
|
if (part.verDef && part.verDef->isLive()) {
|
|
addInSec(DT_VERDEF, *part.verDef);
|
|
addInt(DT_VERDEFNUM, getVerDefNum(ctx));
|
|
}
|
|
if (part.verNeed && part.verNeed->isNeeded()) {
|
|
addInSec(DT_VERNEED, *part.verNeed);
|
|
unsigned needNum = 0;
|
|
for (SharedFile *f : ctx.sharedFiles)
|
|
if (!f->vernauxs.empty())
|
|
++needNum;
|
|
addInt(DT_VERNEEDNUM, needNum);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_MIPS) {
|
|
addInt(DT_MIPS_RLD_VERSION, 1);
|
|
addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
|
|
addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase());
|
|
addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
|
|
addInt(DT_MIPS_LOCAL_GOTNO, ctx.in.mipsGot->getLocalEntriesNum());
|
|
|
|
if (const Symbol *b = ctx.in.mipsGot->getFirstGlobalEntry())
|
|
addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
|
|
else
|
|
addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
|
|
addInSec(DT_PLTGOT, *ctx.in.mipsGot);
|
|
if (ctx.in.mipsRldMap) {
|
|
if (!ctx.arg.pie)
|
|
addInSec(DT_MIPS_RLD_MAP, *ctx.in.mipsRldMap);
|
|
// Store the offset to the .rld_map section
|
|
// relative to the address of the tag.
|
|
addInt(DT_MIPS_RLD_MAP_REL,
|
|
ctx.in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
|
|
}
|
|
}
|
|
|
|
// DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
|
|
// glibc assumes the old-style BSS PLT layout which we don't support.
|
|
if (ctx.arg.emachine == EM_PPC)
|
|
addInSec(DT_PPC_GOT, *ctx.in.got);
|
|
|
|
// Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
|
|
if (ctx.arg.emachine == EM_PPC64 && ctx.in.plt->isNeeded()) {
|
|
// The Glink tag points to 32 bytes before the first lazy symbol resolution
|
|
// stub, which starts directly after the header.
|
|
addInt(DT_PPC64_GLINK,
|
|
ctx.in.plt->getVA() + ctx.target->pltHeaderSize - 32);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_PPC64)
|
|
addInt(DT_PPC64_OPT, ctx.target->ppc64DynamicSectionOpt);
|
|
|
|
addInt(DT_NULL, 0);
|
|
return entries;
|
|
}
|
|
|
|
template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
|
|
if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
|
|
getParent()->link = sec->sectionIndex;
|
|
this->size = computeContents().size() * this->entsize;
|
|
}
|
|
|
|
template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
|
|
auto *p = reinterpret_cast<Elf_Dyn *>(buf);
|
|
|
|
for (std::pair<int32_t, uint64_t> kv : computeContents()) {
|
|
p->d_tag = kv.first;
|
|
p->d_un.d_val = kv.second;
|
|
++p;
|
|
}
|
|
}
|
|
|
|
uint64_t DynamicReloc::getOffset() const {
|
|
return inputSec->getVA(offsetInSec);
|
|
}
|
|
|
|
int64_t DynamicReloc::computeAddend(Ctx &ctx) const {
|
|
switch (kind) {
|
|
case AddendOnly:
|
|
assert(sym == nullptr);
|
|
return addend;
|
|
case AgainstSymbol:
|
|
assert(sym != nullptr);
|
|
return addend;
|
|
case AddendOnlyWithTargetVA:
|
|
case AgainstSymbolWithTargetVA: {
|
|
uint64_t ca = inputSec->getRelocTargetVA(
|
|
ctx, Relocation{expr, type, 0, addend, sym}, getOffset());
|
|
return ctx.arg.is64 ? ca : SignExtend64<32>(ca);
|
|
}
|
|
case MipsMultiGotPage:
|
|
assert(sym == nullptr);
|
|
return getMipsPageAddr(outputSec->addr) + addend;
|
|
}
|
|
llvm_unreachable("Unknown DynamicReloc::Kind enum");
|
|
}
|
|
|
|
uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
|
|
if (!needsDynSymIndex())
|
|
return 0;
|
|
|
|
size_t index = symTab->getSymbolIndex(*sym);
|
|
assert((index != 0 ||
|
|
(type != symTab->ctx.target->gotRel &&
|
|
type != symTab->ctx.target->pltRel) ||
|
|
!symTab->ctx.mainPart->dynSymTab->getParent()) &&
|
|
"GOT or PLT relocation must refer to symbol in dynamic symbol table");
|
|
return index;
|
|
}
|
|
|
|
RelocationBaseSection::RelocationBaseSection(Ctx &ctx, StringRef name,
|
|
uint32_t type, int32_t dynamicTag,
|
|
int32_t sizeDynamicTag,
|
|
bool combreloc,
|
|
unsigned concurrency)
|
|
: SyntheticSection(ctx, name, type, SHF_ALLOC, ctx.arg.wordsize),
|
|
dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
|
|
relocsVec(concurrency), combreloc(combreloc) {}
|
|
|
|
void RelocationBaseSection::addSymbolReloc(
|
|
RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
|
|
int64_t addend, std::optional<RelType> addendRelType) {
|
|
addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
|
|
R_ADDEND, addendRelType ? *addendRelType : ctx.target->noneRel);
|
|
}
|
|
|
|
void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
|
|
RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
|
|
RelType addendRelType) {
|
|
// No need to write an addend to the section for preemptible symbols.
|
|
if (sym.isPreemptible)
|
|
addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
|
|
R_ABS});
|
|
else
|
|
addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec,
|
|
sym, 0, R_ABS, addendRelType);
|
|
}
|
|
|
|
void RelocationBaseSection::mergeRels() {
|
|
size_t newSize = relocs.size();
|
|
for (const auto &v : relocsVec)
|
|
newSize += v.size();
|
|
relocs.reserve(newSize);
|
|
for (const auto &v : relocsVec)
|
|
llvm::append_range(relocs, v);
|
|
relocsVec.clear();
|
|
}
|
|
|
|
void RelocationBaseSection::partitionRels() {
|
|
if (!combreloc)
|
|
return;
|
|
const RelType relativeRel = ctx.target->relativeRel;
|
|
numRelativeRelocs =
|
|
std::stable_partition(relocs.begin(), relocs.end(),
|
|
[=](auto &r) { return r.type == relativeRel; }) -
|
|
relocs.begin();
|
|
}
|
|
|
|
void RelocationBaseSection::finalizeContents() {
|
|
SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
|
|
|
|
// When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
|
|
// relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
|
|
// case.
|
|
if (symTab && symTab->getParent())
|
|
getParent()->link = symTab->getParent()->sectionIndex;
|
|
else
|
|
getParent()->link = 0;
|
|
|
|
if (ctx.in.relaPlt.get() == this && ctx.in.gotPlt->getParent()) {
|
|
getParent()->flags |= ELF::SHF_INFO_LINK;
|
|
getParent()->info = ctx.in.gotPlt->getParent()->sectionIndex;
|
|
}
|
|
}
|
|
|
|
void DynamicReloc::computeRaw(Ctx &ctx, SymbolTableBaseSection *symt) {
|
|
r_offset = getOffset();
|
|
r_sym = getSymIndex(symt);
|
|
addend = computeAddend(ctx);
|
|
kind = AddendOnly; // Catch errors
|
|
}
|
|
|
|
void RelocationBaseSection::computeRels() {
|
|
SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
|
|
parallelForEach(relocs, [&ctx = ctx, symTab](DynamicReloc &rel) {
|
|
rel.computeRaw(ctx, symTab);
|
|
});
|
|
|
|
auto irelative = std::stable_partition(
|
|
relocs.begin() + numRelativeRelocs, relocs.end(),
|
|
[t = ctx.target->iRelativeRel](auto &r) { return r.type != t; });
|
|
|
|
// Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
|
|
// place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
|
|
// is to make results easier to read.
|
|
if (combreloc) {
|
|
auto nonRelative = relocs.begin() + numRelativeRelocs;
|
|
parallelSort(relocs.begin(), nonRelative,
|
|
[&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
|
|
// Non-relative relocations are few, so don't bother with parallelSort.
|
|
llvm::sort(nonRelative, irelative, [&](auto &a, auto &b) {
|
|
return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
|
|
});
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelocationSection<ELFT>::RelocationSection(Ctx &ctx, StringRef name,
|
|
bool combreloc, unsigned concurrency)
|
|
: RelocationBaseSection(ctx, name, ctx.arg.isRela ? SHT_RELA : SHT_REL,
|
|
ctx.arg.isRela ? DT_RELA : DT_REL,
|
|
ctx.arg.isRela ? DT_RELASZ : DT_RELSZ, combreloc,
|
|
concurrency) {
|
|
this->entsize = ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
}
|
|
|
|
template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
|
|
computeRels();
|
|
for (const DynamicReloc &rel : relocs) {
|
|
auto *p = reinterpret_cast<Elf_Rela *>(buf);
|
|
p->r_offset = rel.r_offset;
|
|
p->setSymbolAndType(rel.r_sym, rel.type, ctx.arg.isMips64EL);
|
|
if (ctx.arg.isRela)
|
|
p->r_addend = rel.addend;
|
|
buf += ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
}
|
|
}
|
|
|
|
RelrBaseSection::RelrBaseSection(Ctx &ctx, unsigned concurrency,
|
|
bool isAArch64Auth)
|
|
: SyntheticSection(
|
|
ctx, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn",
|
|
isAArch64Auth
|
|
? SHT_AARCH64_AUTH_RELR
|
|
: (ctx.arg.useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR),
|
|
SHF_ALLOC, ctx.arg.wordsize),
|
|
relocsVec(concurrency) {}
|
|
|
|
void RelrBaseSection::mergeRels() {
|
|
size_t newSize = relocs.size();
|
|
for (const auto &v : relocsVec)
|
|
newSize += v.size();
|
|
relocs.reserve(newSize);
|
|
for (const auto &v : relocsVec)
|
|
llvm::append_range(relocs, v);
|
|
relocsVec.clear();
|
|
}
|
|
|
|
template <class ELFT>
|
|
AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
|
|
Ctx &ctx, StringRef name, unsigned concurrency)
|
|
: RelocationBaseSection(
|
|
ctx, name, ctx.arg.isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
|
|
ctx.arg.isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
|
|
ctx.arg.isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
|
|
/*combreloc=*/false, concurrency) {
|
|
this->entsize = 1;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool AndroidPackedRelocationSection<ELFT>::updateAllocSize(Ctx &ctx) {
|
|
// This function computes the contents of an Android-format packed relocation
|
|
// section.
|
|
//
|
|
// This format compresses relocations by using relocation groups to factor out
|
|
// fields that are common between relocations and storing deltas from previous
|
|
// relocations in SLEB128 format (which has a short representation for small
|
|
// numbers). A good example of a relocation type with common fields is
|
|
// R_*_RELATIVE, which is normally used to represent function pointers in
|
|
// vtables. In the REL format, each relative relocation has the same r_info
|
|
// field, and is only different from other relative relocations in terms of
|
|
// the r_offset field. By sorting relocations by offset, grouping them by
|
|
// r_info and representing each relocation with only the delta from the
|
|
// previous offset, each 8-byte relocation can be compressed to as little as 1
|
|
// byte (or less with run-length encoding). This relocation packer was able to
|
|
// reduce the size of the relocation section in an Android Chromium DSO from
|
|
// 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
|
|
//
|
|
// A relocation section consists of a header containing the literal bytes
|
|
// 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
|
|
// elements are the total number of relocations in the section and an initial
|
|
// r_offset value. The remaining elements define a sequence of relocation
|
|
// groups. Each relocation group starts with a header consisting of the
|
|
// following elements:
|
|
//
|
|
// - the number of relocations in the relocation group
|
|
// - flags for the relocation group
|
|
// - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
|
|
// for each relocation in the group.
|
|
// - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
|
|
// field for each relocation in the group.
|
|
// - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
|
|
// RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
|
|
// each relocation in the group.
|
|
//
|
|
// Following the relocation group header are descriptions of each of the
|
|
// relocations in the group. They consist of the following elements:
|
|
//
|
|
// - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
|
|
// delta for this relocation.
|
|
// - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
|
|
// field for this relocation.
|
|
// - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
|
|
// RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
|
|
// this relocation.
|
|
|
|
size_t oldSize = relocData.size();
|
|
|
|
relocData = {'A', 'P', 'S', '2'};
|
|
raw_svector_ostream os(relocData);
|
|
auto add = [&](int64_t v) { encodeSLEB128(v, os); };
|
|
|
|
// The format header includes the number of relocations and the initial
|
|
// offset (we set this to zero because the first relocation group will
|
|
// perform the initial adjustment).
|
|
add(relocs.size());
|
|
add(0);
|
|
|
|
std::vector<Elf_Rela> relatives, nonRelatives;
|
|
|
|
for (const DynamicReloc &rel : relocs) {
|
|
Elf_Rela r;
|
|
r.r_offset = rel.getOffset();
|
|
r.setSymbolAndType(rel.getSymIndex(getPartition(ctx).dynSymTab.get()),
|
|
rel.type, false);
|
|
r.r_addend = ctx.arg.isRela ? rel.computeAddend(ctx) : 0;
|
|
|
|
if (r.getType(ctx.arg.isMips64EL) == ctx.target->relativeRel)
|
|
relatives.push_back(r);
|
|
else
|
|
nonRelatives.push_back(r);
|
|
}
|
|
|
|
llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
|
|
return a.r_offset < b.r_offset;
|
|
});
|
|
|
|
// Try to find groups of relative relocations which are spaced one word
|
|
// apart from one another. These generally correspond to vtable entries. The
|
|
// format allows these groups to be encoded using a sort of run-length
|
|
// encoding, but each group will cost 7 bytes in addition to the offset from
|
|
// the previous group, so it is only profitable to do this for groups of
|
|
// size 8 or larger.
|
|
std::vector<Elf_Rela> ungroupedRelatives;
|
|
std::vector<std::vector<Elf_Rela>> relativeGroups;
|
|
for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
|
|
std::vector<Elf_Rela> group;
|
|
do {
|
|
group.push_back(*i++);
|
|
} while (i != e && (i - 1)->r_offset + ctx.arg.wordsize == i->r_offset);
|
|
|
|
if (group.size() < 8)
|
|
ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
|
|
group.end());
|
|
else
|
|
relativeGroups.emplace_back(std::move(group));
|
|
}
|
|
|
|
// For non-relative relocations, we would like to:
|
|
// 1. Have relocations with the same symbol offset to be consecutive, so
|
|
// that the runtime linker can speed-up symbol lookup by implementing an
|
|
// 1-entry cache.
|
|
// 2. Group relocations by r_info to reduce the size of the relocation
|
|
// section.
|
|
// Since the symbol offset is the high bits in r_info, sorting by r_info
|
|
// allows us to do both.
|
|
//
|
|
// For Rela, we also want to sort by r_addend when r_info is the same. This
|
|
// enables us to group by r_addend as well.
|
|
llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
|
|
if (a.r_info != b.r_info)
|
|
return a.r_info < b.r_info;
|
|
if (a.r_addend != b.r_addend)
|
|
return a.r_addend < b.r_addend;
|
|
return a.r_offset < b.r_offset;
|
|
});
|
|
|
|
// Group relocations with the same r_info. Note that each group emits a group
|
|
// header and that may make the relocation section larger. It is hard to
|
|
// estimate the size of a group header as the encoded size of that varies
|
|
// based on r_info. However, we can approximate this trade-off by the number
|
|
// of values encoded. Each group header contains 3 values, and each relocation
|
|
// in a group encodes one less value, as compared to when it is not grouped.
|
|
// Therefore, we only group relocations if there are 3 or more of them with
|
|
// the same r_info.
|
|
//
|
|
// For Rela, the addend for most non-relative relocations is zero, and thus we
|
|
// can usually get a smaller relocation section if we group relocations with 0
|
|
// addend as well.
|
|
std::vector<Elf_Rela> ungroupedNonRelatives;
|
|
std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
|
|
for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
|
|
auto j = i + 1;
|
|
while (j != e && i->r_info == j->r_info &&
|
|
(!ctx.arg.isRela || i->r_addend == j->r_addend))
|
|
++j;
|
|
if (j - i < 3 || (ctx.arg.isRela && i->r_addend != 0))
|
|
ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
|
|
else
|
|
nonRelativeGroups.emplace_back(i, j);
|
|
i = j;
|
|
}
|
|
|
|
// Sort ungrouped relocations by offset to minimize the encoded length.
|
|
llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
|
|
return a.r_offset < b.r_offset;
|
|
});
|
|
|
|
unsigned hasAddendIfRela =
|
|
ctx.arg.isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
|
|
|
|
uint64_t offset = 0;
|
|
uint64_t addend = 0;
|
|
|
|
// Emit the run-length encoding for the groups of adjacent relative
|
|
// relocations. Each group is represented using two groups in the packed
|
|
// format. The first is used to set the current offset to the start of the
|
|
// group (and also encodes the first relocation), and the second encodes the
|
|
// remaining relocations.
|
|
for (std::vector<Elf_Rela> &g : relativeGroups) {
|
|
// The first relocation in the group.
|
|
add(1);
|
|
add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
|
|
RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
|
|
add(g[0].r_offset - offset);
|
|
add(ctx.target->relativeRel);
|
|
if (ctx.arg.isRela) {
|
|
add(g[0].r_addend - addend);
|
|
addend = g[0].r_addend;
|
|
}
|
|
|
|
// The remaining relocations.
|
|
add(g.size() - 1);
|
|
add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
|
|
RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
|
|
add(ctx.arg.wordsize);
|
|
add(ctx.target->relativeRel);
|
|
if (ctx.arg.isRela) {
|
|
for (const auto &i : llvm::drop_begin(g)) {
|
|
add(i.r_addend - addend);
|
|
addend = i.r_addend;
|
|
}
|
|
}
|
|
|
|
offset = g.back().r_offset;
|
|
}
|
|
|
|
// Now the ungrouped relatives.
|
|
if (!ungroupedRelatives.empty()) {
|
|
add(ungroupedRelatives.size());
|
|
add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
|
|
add(ctx.target->relativeRel);
|
|
for (Elf_Rela &r : ungroupedRelatives) {
|
|
add(r.r_offset - offset);
|
|
offset = r.r_offset;
|
|
if (ctx.arg.isRela) {
|
|
add(r.r_addend - addend);
|
|
addend = r.r_addend;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Grouped non-relatives.
|
|
for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
|
|
add(g.size());
|
|
add(RELOCATION_GROUPED_BY_INFO_FLAG);
|
|
add(g[0].r_info);
|
|
for (const Elf_Rela &r : g) {
|
|
add(r.r_offset - offset);
|
|
offset = r.r_offset;
|
|
}
|
|
addend = 0;
|
|
}
|
|
|
|
// Finally the ungrouped non-relative relocations.
|
|
if (!ungroupedNonRelatives.empty()) {
|
|
add(ungroupedNonRelatives.size());
|
|
add(hasAddendIfRela);
|
|
for (Elf_Rela &r : ungroupedNonRelatives) {
|
|
add(r.r_offset - offset);
|
|
offset = r.r_offset;
|
|
add(r.r_info);
|
|
if (ctx.arg.isRela) {
|
|
add(r.r_addend - addend);
|
|
addend = r.r_addend;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't allow the section to shrink; otherwise the size of the section can
|
|
// oscillate infinitely.
|
|
if (relocData.size() < oldSize)
|
|
relocData.append(oldSize - relocData.size(), 0);
|
|
|
|
// Returns whether the section size changed. We need to keep recomputing both
|
|
// section layout and the contents of this section until the size converges
|
|
// because changing this section's size can affect section layout, which in
|
|
// turn can affect the sizes of the LEB-encoded integers stored in this
|
|
// section.
|
|
return relocData.size() != oldSize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelrSection<ELFT>::RelrSection(Ctx &ctx, unsigned concurrency,
|
|
bool isAArch64Auth)
|
|
: RelrBaseSection(ctx, concurrency, isAArch64Auth) {
|
|
this->entsize = ctx.arg.wordsize;
|
|
}
|
|
|
|
template <class ELFT> bool RelrSection<ELFT>::updateAllocSize(Ctx &ctx) {
|
|
// This function computes the contents of an SHT_RELR packed relocation
|
|
// section.
|
|
//
|
|
// Proposal for adding SHT_RELR sections to generic-abi is here:
|
|
// https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
|
|
//
|
|
// The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
|
|
// like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
|
|
//
|
|
// i.e. start with an address, followed by any number of bitmaps. The address
|
|
// entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
|
|
// relocations each, at subsequent offsets following the last address entry.
|
|
//
|
|
// The bitmap entries must have 1 in the least significant bit. The assumption
|
|
// here is that an address cannot have 1 in lsb. Odd addresses are not
|
|
// supported.
|
|
//
|
|
// Excluding the least significant bit in the bitmap, each non-zero bit in
|
|
// the bitmap represents a relocation to be applied to a corresponding machine
|
|
// word that follows the base address word. The second least significant bit
|
|
// represents the machine word immediately following the initial address, and
|
|
// each bit that follows represents the next word, in linear order. As such,
|
|
// a single bitmap can encode up to 31 relocations in a 32-bit object, and
|
|
// 63 relocations in a 64-bit object.
|
|
//
|
|
// This encoding has a couple of interesting properties:
|
|
// 1. Looking at any entry, it is clear whether it's an address or a bitmap:
|
|
// even means address, odd means bitmap.
|
|
// 2. Just a simple list of addresses is a valid encoding.
|
|
|
|
size_t oldSize = relrRelocs.size();
|
|
relrRelocs.clear();
|
|
|
|
const size_t wordsize = sizeof(typename ELFT::uint);
|
|
|
|
// Number of bits to use for the relocation offsets bitmap.
|
|
// Must be either 63 or 31.
|
|
const size_t nBits = wordsize * 8 - 1;
|
|
|
|
// Get offsets for all relative relocations and sort them.
|
|
std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
|
|
for (auto [i, r] : llvm::enumerate(relocs))
|
|
offsets[i] = r.getOffset();
|
|
llvm::sort(offsets.get(), offsets.get() + relocs.size());
|
|
|
|
// For each leading relocation, find following ones that can be folded
|
|
// as a bitmap and fold them.
|
|
for (size_t i = 0, e = relocs.size(); i != e;) {
|
|
// Add a leading relocation.
|
|
relrRelocs.push_back(Elf_Relr(offsets[i]));
|
|
uint64_t base = offsets[i] + wordsize;
|
|
++i;
|
|
|
|
// Find foldable relocations to construct bitmaps.
|
|
for (;;) {
|
|
uint64_t bitmap = 0;
|
|
for (; i != e; ++i) {
|
|
uint64_t d = offsets[i] - base;
|
|
if (d >= nBits * wordsize || d % wordsize)
|
|
break;
|
|
bitmap |= uint64_t(1) << (d / wordsize);
|
|
}
|
|
if (!bitmap)
|
|
break;
|
|
relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
|
|
base += nBits * wordsize;
|
|
}
|
|
}
|
|
|
|
// Don't allow the section to shrink; otherwise the size of the section can
|
|
// oscillate infinitely. Trailing 1s do not decode to more relocations.
|
|
if (relrRelocs.size() < oldSize) {
|
|
Log(ctx) << ".relr.dyn needs " << (oldSize - relrRelocs.size())
|
|
<< " padding word(s)";
|
|
relrRelocs.resize(oldSize, Elf_Relr(1));
|
|
}
|
|
|
|
return relrRelocs.size() != oldSize;
|
|
}
|
|
|
|
SymbolTableBaseSection::SymbolTableBaseSection(Ctx &ctx,
|
|
StringTableSection &strTabSec)
|
|
: SyntheticSection(ctx, strTabSec.isDynamic() ? ".dynsym" : ".symtab",
|
|
strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
|
|
strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
|
|
ctx.arg.wordsize),
|
|
strTabSec(strTabSec) {}
|
|
|
|
// Orders symbols according to their positions in the GOT,
|
|
// in compliance with MIPS ABI rules.
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed description:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
static void sortMipsSymbols(Ctx &ctx, SmallVector<SymbolTableEntry, 0> &syms) {
|
|
llvm::stable_sort(syms,
|
|
[&](const SymbolTableEntry &l, const SymbolTableEntry &r) {
|
|
// Sort entries related to non-local preemptible symbols
|
|
// by GOT indexes. All other entries go to the beginning
|
|
// of a dynsym in arbitrary order.
|
|
if (l.sym->isInGot(ctx) && r.sym->isInGot(ctx))
|
|
return l.sym->getGotIdx(ctx) < r.sym->getGotIdx(ctx);
|
|
if (!l.sym->isInGot(ctx) && !r.sym->isInGot(ctx))
|
|
return false;
|
|
return !l.sym->isInGot(ctx);
|
|
});
|
|
}
|
|
|
|
void SymbolTableBaseSection::finalizeContents() {
|
|
if (OutputSection *sec = strTabSec.getParent())
|
|
getParent()->link = sec->sectionIndex;
|
|
|
|
if (this->type != SHT_DYNSYM) {
|
|
sortSymTabSymbols();
|
|
return;
|
|
}
|
|
|
|
// If it is a .dynsym, there should be no local symbols, but we need
|
|
// to do a few things for the dynamic linker.
|
|
|
|
// Section's Info field has the index of the first non-local symbol.
|
|
// Because the first symbol entry is a null entry, 1 is the first.
|
|
getParent()->info = 1;
|
|
|
|
if (getPartition(ctx).gnuHashTab) {
|
|
// NB: It also sorts Symbols to meet the GNU hash table requirements.
|
|
getPartition(ctx).gnuHashTab->addSymbols(symbols);
|
|
} else if (ctx.arg.emachine == EM_MIPS) {
|
|
sortMipsSymbols(ctx, symbols);
|
|
}
|
|
|
|
// Only the main partition's dynsym indexes are stored in the symbols
|
|
// themselves. All other partitions use a lookup table.
|
|
if (this == ctx.mainPart->dynSymTab.get()) {
|
|
size_t i = 0;
|
|
for (const SymbolTableEntry &s : symbols)
|
|
s.sym->dynsymIndex = ++i;
|
|
}
|
|
}
|
|
|
|
// The ELF spec requires that all local symbols precede global symbols, so we
|
|
// sort symbol entries in this function. (For .dynsym, we don't do that because
|
|
// symbols for dynamic linking are inherently all globals.)
|
|
//
|
|
// Aside from above, we put local symbols in groups starting with the STT_FILE
|
|
// symbol. That is convenient for purpose of identifying where are local symbols
|
|
// coming from.
|
|
void SymbolTableBaseSection::sortSymTabSymbols() {
|
|
// Move all local symbols before global symbols.
|
|
auto e = std::stable_partition(
|
|
symbols.begin(), symbols.end(),
|
|
[](const SymbolTableEntry &s) { return s.sym->isLocal(); });
|
|
size_t numLocals = e - symbols.begin();
|
|
getParent()->info = numLocals + 1;
|
|
|
|
// We want to group the local symbols by file. For that we rebuild the local
|
|
// part of the symbols vector. We do not need to care about the STT_FILE
|
|
// symbols, they are already naturally placed first in each group. That
|
|
// happens because STT_FILE is always the first symbol in the object and hence
|
|
// precede all other local symbols we add for a file.
|
|
MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
|
|
for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
|
|
arr[s.sym->file].push_back(s);
|
|
|
|
auto i = symbols.begin();
|
|
for (auto &p : arr)
|
|
for (SymbolTableEntry &entry : p.second)
|
|
*i++ = entry;
|
|
}
|
|
|
|
void SymbolTableBaseSection::addSymbol(Symbol *b) {
|
|
// Adding a local symbol to a .dynsym is a bug.
|
|
assert(this->type != SHT_DYNSYM || !b->isLocal());
|
|
symbols.push_back({b, strTabSec.addString(b->getName(), false)});
|
|
}
|
|
|
|
size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) {
|
|
if (this == ctx.mainPart->dynSymTab.get())
|
|
return sym.dynsymIndex;
|
|
|
|
// Initializes symbol lookup tables lazily. This is used only for -r,
|
|
// --emit-relocs and dynsyms in partitions other than the main one.
|
|
llvm::call_once(onceFlag, [&] {
|
|
symbolIndexMap.reserve(symbols.size());
|
|
size_t i = 0;
|
|
for (const SymbolTableEntry &e : symbols) {
|
|
if (e.sym->type == STT_SECTION)
|
|
sectionIndexMap[e.sym->getOutputSection()] = ++i;
|
|
else
|
|
symbolIndexMap[e.sym] = ++i;
|
|
}
|
|
});
|
|
|
|
// Section symbols are mapped based on their output sections
|
|
// to maintain their semantics.
|
|
if (sym.type == STT_SECTION)
|
|
return sectionIndexMap.lookup(sym.getOutputSection());
|
|
return symbolIndexMap.lookup(&sym);
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolTableSection<ELFT>::SymbolTableSection(Ctx &ctx,
|
|
StringTableSection &strTabSec)
|
|
: SymbolTableBaseSection(ctx, strTabSec) {
|
|
this->entsize = sizeof(Elf_Sym);
|
|
}
|
|
|
|
static BssSection *getCommonSec(bool relocatable, Symbol *sym) {
|
|
if (relocatable)
|
|
if (auto *d = dyn_cast<Defined>(sym))
|
|
return dyn_cast_or_null<BssSection>(d->section);
|
|
return nullptr;
|
|
}
|
|
|
|
static uint32_t getSymSectionIndex(Symbol *sym) {
|
|
assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
|
|
if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
|
|
return SHN_UNDEF;
|
|
if (const OutputSection *os = sym->getOutputSection())
|
|
return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
|
|
: os->sectionIndex;
|
|
return SHN_ABS;
|
|
}
|
|
|
|
// Write the internal symbol table contents to the output symbol table.
|
|
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
|
|
// The first entry is a null entry as per the ELF spec.
|
|
buf += sizeof(Elf_Sym);
|
|
|
|
auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
|
|
bool relocatable = ctx.arg.relocatable;
|
|
for (SymbolTableEntry &ent : symbols) {
|
|
Symbol *sym = ent.sym;
|
|
bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
|
|
|
|
// Set st_name, st_info and st_other.
|
|
eSym->st_name = ent.strTabOffset;
|
|
eSym->setBindingAndType(sym->binding, sym->type);
|
|
eSym->st_other = sym->stOther;
|
|
|
|
if (BssSection *commonSec = getCommonSec(relocatable, sym)) {
|
|
// When -r is specified, a COMMON symbol is not allocated. Its st_shndx
|
|
// holds SHN_COMMON and st_value holds the alignment.
|
|
eSym->st_shndx = SHN_COMMON;
|
|
eSym->st_value = commonSec->addralign;
|
|
eSym->st_size = cast<Defined>(sym)->size;
|
|
} else {
|
|
const uint32_t shndx = getSymSectionIndex(sym);
|
|
if (isDefinedHere) {
|
|
eSym->st_shndx = shndx;
|
|
eSym->st_value = sym->getVA(ctx);
|
|
// Copy symbol size if it is a defined symbol. st_size is not
|
|
// significant for undefined symbols, so whether copying it or not is up
|
|
// to us if that's the case. We'll leave it as zero because by not
|
|
// setting a value, we can get the exact same outputs for two sets of
|
|
// input files that differ only in undefined symbol size in DSOs.
|
|
eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
|
|
} else {
|
|
eSym->st_shndx = 0;
|
|
eSym->st_value = 0;
|
|
eSym->st_size = 0;
|
|
}
|
|
}
|
|
|
|
++eSym;
|
|
}
|
|
|
|
// On MIPS we need to mark symbol which has a PLT entry and requires
|
|
// pointer equality by STO_MIPS_PLT flag. That is necessary to help
|
|
// dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
|
|
// https://sourceware.org/ml/binutils/2008-07/txt00000.txt
|
|
if (ctx.arg.emachine == EM_MIPS) {
|
|
auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
|
|
|
|
for (SymbolTableEntry &ent : symbols) {
|
|
Symbol *sym = ent.sym;
|
|
if (sym->isInPlt(ctx) && sym->hasFlag(NEEDS_COPY))
|
|
eSym->st_other |= STO_MIPS_PLT;
|
|
if (isMicroMips(ctx)) {
|
|
// We already set the less-significant bit for symbols
|
|
// marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
|
|
// records. That allows us to distinguish such symbols in
|
|
// the `MIPS<ELFT>::relocate()` routine. Now we should
|
|
// clear that bit for non-dynamic symbol table, so tools
|
|
// like `objdump` will be able to deal with a correct
|
|
// symbol position.
|
|
if (sym->isDefined() &&
|
|
((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
|
|
if (!strTabSec.isDynamic())
|
|
eSym->st_value &= ~1;
|
|
eSym->st_other |= STO_MIPS_MICROMIPS;
|
|
}
|
|
}
|
|
if (ctx.arg.relocatable)
|
|
if (auto *d = dyn_cast<Defined>(sym))
|
|
if (isMipsPIC<ELFT>(d))
|
|
eSym->st_other |= STO_MIPS_PIC;
|
|
++eSym;
|
|
}
|
|
}
|
|
}
|
|
|
|
SymtabShndxSection::SymtabShndxSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".symtab_shndx", SHT_SYMTAB_SHNDX, 0, 4) {
|
|
this->entsize = 4;
|
|
}
|
|
|
|
void SymtabShndxSection::writeTo(uint8_t *buf) {
|
|
// We write an array of 32 bit values, where each value has 1:1 association
|
|
// with an entry in ctx.in.symTab if the corresponding entry contains
|
|
// SHN_XINDEX, we need to write actual index, otherwise, we must write
|
|
// SHN_UNDEF(0).
|
|
buf += 4; // Ignore .symtab[0] entry.
|
|
bool relocatable = ctx.arg.relocatable;
|
|
for (const SymbolTableEntry &entry : ctx.in.symTab->getSymbols()) {
|
|
if (!getCommonSec(relocatable, entry.sym) &&
|
|
getSymSectionIndex(entry.sym) == SHN_XINDEX)
|
|
write32(ctx, buf, entry.sym->getOutputSection()->sectionIndex);
|
|
buf += 4;
|
|
}
|
|
}
|
|
|
|
bool SymtabShndxSection::isNeeded() const {
|
|
// SHT_SYMTAB can hold symbols with section indices values up to
|
|
// SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
|
|
// section. Problem is that we reveal the final section indices a bit too
|
|
// late, and we do not know them here. For simplicity, we just always create
|
|
// a .symtab_shndx section when the amount of output sections is huge.
|
|
size_t size = 0;
|
|
for (SectionCommand *cmd : ctx.script->sectionCommands)
|
|
if (isa<OutputDesc>(cmd))
|
|
++size;
|
|
return size >= SHN_LORESERVE;
|
|
}
|
|
|
|
void SymtabShndxSection::finalizeContents() {
|
|
getParent()->link = ctx.in.symTab->getParent()->sectionIndex;
|
|
}
|
|
|
|
size_t SymtabShndxSection::getSize() const {
|
|
return ctx.in.symTab->getNumSymbols() * 4;
|
|
}
|
|
|
|
// .hash and .gnu.hash sections contain on-disk hash tables that map
|
|
// symbol names to their dynamic symbol table indices. Their purpose
|
|
// is to help the dynamic linker resolve symbols quickly. If ELF files
|
|
// don't have them, the dynamic linker has to do linear search on all
|
|
// dynamic symbols, which makes programs slower. Therefore, a .hash
|
|
// section is added to a DSO by default.
|
|
//
|
|
// The Unix semantics of resolving dynamic symbols is somewhat expensive.
|
|
// Each ELF file has a list of DSOs that the ELF file depends on and a
|
|
// list of dynamic symbols that need to be resolved from any of the
|
|
// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
|
|
// where m is the number of DSOs and n is the number of dynamic
|
|
// symbols. For modern large programs, both m and n are large. So
|
|
// making each step faster by using hash tables substantially
|
|
// improves time to load programs.
|
|
//
|
|
// (Note that this is not the only way to design the shared library.
|
|
// For instance, the Windows DLL takes a different approach. On
|
|
// Windows, each dynamic symbol has a name of DLL from which the symbol
|
|
// has to be resolved. That makes the cost of symbol resolution O(n).
|
|
// This disables some hacky techniques you can use on Unix such as
|
|
// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
|
|
//
|
|
// Due to historical reasons, we have two different hash tables, .hash
|
|
// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
|
|
// and better version of .hash. .hash is just an on-disk hash table, but
|
|
// .gnu.hash has a bloom filter in addition to a hash table to skip
|
|
// DSOs very quickly. If you are sure that your dynamic linker knows
|
|
// about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
|
|
// safe bet is to specify --hash-style=both for backward compatibility.
|
|
GnuHashTableSection::GnuHashTableSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".gnu.hash", SHT_GNU_HASH, SHF_ALLOC,
|
|
ctx.arg.wordsize) {}
|
|
|
|
void GnuHashTableSection::finalizeContents() {
|
|
if (OutputSection *sec = getPartition(ctx).dynSymTab->getParent())
|
|
getParent()->link = sec->sectionIndex;
|
|
|
|
// Computes bloom filter size in word size. We want to allocate 12
|
|
// bits for each symbol. It must be a power of two.
|
|
if (symbols.empty()) {
|
|
maskWords = 1;
|
|
} else {
|
|
uint64_t numBits = symbols.size() * 12;
|
|
maskWords = NextPowerOf2(numBits / (ctx.arg.wordsize * 8));
|
|
}
|
|
|
|
size = 16; // Header
|
|
size += ctx.arg.wordsize * maskWords; // Bloom filter
|
|
size += nBuckets * 4; // Hash buckets
|
|
size += symbols.size() * 4; // Hash values
|
|
}
|
|
|
|
void GnuHashTableSection::writeTo(uint8_t *buf) {
|
|
// Write a header.
|
|
write32(ctx, buf, nBuckets);
|
|
write32(ctx, buf + 4,
|
|
getPartition(ctx).dynSymTab->getNumSymbols() - symbols.size());
|
|
write32(ctx, buf + 8, maskWords);
|
|
write32(ctx, buf + 12, Shift2);
|
|
buf += 16;
|
|
|
|
// Write the 2-bit bloom filter.
|
|
const unsigned c = ctx.arg.is64 ? 64 : 32;
|
|
for (const Entry &sym : symbols) {
|
|
// When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
|
|
// the word using bits [0:5] and [26:31].
|
|
size_t i = (sym.hash / c) & (maskWords - 1);
|
|
uint64_t val = readUint(ctx, buf + i * ctx.arg.wordsize);
|
|
val |= uint64_t(1) << (sym.hash % c);
|
|
val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
|
|
writeUint(ctx, buf + i * ctx.arg.wordsize, val);
|
|
}
|
|
buf += ctx.arg.wordsize * maskWords;
|
|
|
|
// Write the hash table.
|
|
uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
|
|
uint32_t oldBucket = -1;
|
|
uint32_t *values = buckets + nBuckets;
|
|
for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
|
|
// Write a hash value. It represents a sequence of chains that share the
|
|
// same hash modulo value. The last element of each chain is terminated by
|
|
// LSB 1.
|
|
uint32_t hash = i->hash;
|
|
bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
|
|
hash = isLastInChain ? hash | 1 : hash & ~1;
|
|
write32(ctx, values++, hash);
|
|
|
|
if (i->bucketIdx == oldBucket)
|
|
continue;
|
|
// Write a hash bucket. Hash buckets contain indices in the following hash
|
|
// value table.
|
|
write32(ctx, buckets + i->bucketIdx,
|
|
getPartition(ctx).dynSymTab->getSymbolIndex(*i->sym));
|
|
oldBucket = i->bucketIdx;
|
|
}
|
|
}
|
|
|
|
// Add symbols to this symbol hash table. Note that this function
|
|
// destructively sort a given vector -- which is needed because
|
|
// GNU-style hash table places some sorting requirements.
|
|
void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
|
|
// We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
|
|
// its type correctly.
|
|
auto mid =
|
|
std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
|
|
return !s.sym->isDefined() || s.sym->partition != partition;
|
|
});
|
|
|
|
// We chose load factor 4 for the on-disk hash table. For each hash
|
|
// collision, the dynamic linker will compare a uint32_t hash value.
|
|
// Since the integer comparison is quite fast, we believe we can
|
|
// make the load factor even larger. 4 is just a conservative choice.
|
|
//
|
|
// Note that we don't want to create a zero-sized hash table because
|
|
// Android loader as of 2018 doesn't like a .gnu.hash containing such
|
|
// table. If that's the case, we create a hash table with one unused
|
|
// dummy slot.
|
|
nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
|
|
|
|
if (mid == v.end())
|
|
return;
|
|
|
|
for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
|
|
Symbol *b = ent.sym;
|
|
uint32_t hash = hashGnu(b->getName());
|
|
uint32_t bucketIdx = hash % nBuckets;
|
|
symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
|
|
}
|
|
|
|
llvm::sort(symbols, [](const Entry &l, const Entry &r) {
|
|
return std::tie(l.bucketIdx, l.strTabOffset) <
|
|
std::tie(r.bucketIdx, r.strTabOffset);
|
|
});
|
|
|
|
v.erase(mid, v.end());
|
|
for (const Entry &ent : symbols)
|
|
v.push_back({ent.sym, ent.strTabOffset});
|
|
}
|
|
|
|
HashTableSection::HashTableSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".hash", SHT_HASH, SHF_ALLOC, 4) {
|
|
this->entsize = 4;
|
|
}
|
|
|
|
void HashTableSection::finalizeContents() {
|
|
SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
|
|
|
|
if (OutputSection *sec = symTab->getParent())
|
|
getParent()->link = sec->sectionIndex;
|
|
|
|
unsigned numEntries = 2; // nbucket and nchain.
|
|
numEntries += symTab->getNumSymbols(); // The chain entries.
|
|
|
|
// Create as many buckets as there are symbols.
|
|
numEntries += symTab->getNumSymbols();
|
|
this->size = numEntries * 4;
|
|
}
|
|
|
|
void HashTableSection::writeTo(uint8_t *buf) {
|
|
SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
|
|
unsigned numSymbols = symTab->getNumSymbols();
|
|
|
|
uint32_t *p = reinterpret_cast<uint32_t *>(buf);
|
|
write32(ctx, p++, numSymbols); // nbucket
|
|
write32(ctx, p++, numSymbols); // nchain
|
|
|
|
uint32_t *buckets = p;
|
|
uint32_t *chains = p + numSymbols;
|
|
|
|
for (const SymbolTableEntry &s : symTab->getSymbols()) {
|
|
Symbol *sym = s.sym;
|
|
StringRef name = sym->getName();
|
|
unsigned i = sym->dynsymIndex;
|
|
uint32_t hash = hashSysV(name) % numSymbols;
|
|
chains[i] = buckets[hash];
|
|
write32(ctx, buckets + hash, i);
|
|
}
|
|
}
|
|
|
|
PltSection::PltSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR,
|
|
16),
|
|
headerSize(ctx.target->pltHeaderSize) {
|
|
// On PowerPC, this section contains lazy symbol resolvers.
|
|
if (ctx.arg.emachine == EM_PPC64) {
|
|
name = ".glink";
|
|
addralign = 4;
|
|
}
|
|
|
|
// On x86 when IBT is enabled, this section contains the second PLT (lazy
|
|
// symbol resolvers).
|
|
if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) &&
|
|
(ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
|
|
name = ".plt.sec";
|
|
|
|
// The PLT needs to be writable on SPARC as the dynamic linker will
|
|
// modify the instructions in the PLT entries.
|
|
if (ctx.arg.emachine == EM_SPARCV9)
|
|
this->flags |= SHF_WRITE;
|
|
}
|
|
|
|
void PltSection::writeTo(uint8_t *buf) {
|
|
// At beginning of PLT, we have code to call the dynamic
|
|
// linker to resolve dynsyms at runtime. Write such code.
|
|
ctx.target->writePltHeader(buf);
|
|
size_t off = headerSize;
|
|
|
|
for (const Symbol *sym : entries) {
|
|
ctx.target->writePlt(buf + off, *sym, getVA() + off);
|
|
off += ctx.target->pltEntrySize;
|
|
}
|
|
}
|
|
|
|
void PltSection::addEntry(Symbol &sym) {
|
|
assert(sym.auxIdx == ctx.symAux.size() - 1);
|
|
ctx.symAux.back().pltIdx = entries.size();
|
|
entries.push_back(&sym);
|
|
}
|
|
|
|
size_t PltSection::getSize() const {
|
|
return headerSize + entries.size() * ctx.target->pltEntrySize;
|
|
}
|
|
|
|
bool PltSection::isNeeded() const {
|
|
// For -z retpolineplt, .iplt needs the .plt header.
|
|
return !entries.empty() || (ctx.arg.zRetpolineplt && ctx.in.iplt->isNeeded());
|
|
}
|
|
|
|
// Used by ARM to add mapping symbols in the PLT section, which aid
|
|
// disassembly.
|
|
void PltSection::addSymbols() {
|
|
ctx.target->addPltHeaderSymbols(*this);
|
|
|
|
size_t off = headerSize;
|
|
for (size_t i = 0; i < entries.size(); ++i) {
|
|
ctx.target->addPltSymbols(*this, off);
|
|
off += ctx.target->pltEntrySize;
|
|
}
|
|
}
|
|
|
|
IpltSection::IpltSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".iplt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR,
|
|
16) {
|
|
if (ctx.arg.emachine == EM_PPC || ctx.arg.emachine == EM_PPC64) {
|
|
name = ".glink";
|
|
addralign = 4;
|
|
}
|
|
}
|
|
|
|
void IpltSection::writeTo(uint8_t *buf) {
|
|
uint32_t off = 0;
|
|
for (const Symbol *sym : entries) {
|
|
ctx.target->writeIplt(buf + off, *sym, getVA() + off);
|
|
off += ctx.target->ipltEntrySize;
|
|
}
|
|
}
|
|
|
|
size_t IpltSection::getSize() const {
|
|
return entries.size() * ctx.target->ipltEntrySize;
|
|
}
|
|
|
|
void IpltSection::addEntry(Symbol &sym) {
|
|
assert(sym.auxIdx == ctx.symAux.size() - 1);
|
|
ctx.symAux.back().pltIdx = entries.size();
|
|
entries.push_back(&sym);
|
|
}
|
|
|
|
// ARM uses mapping symbols to aid disassembly.
|
|
void IpltSection::addSymbols() {
|
|
size_t off = 0;
|
|
for (size_t i = 0, e = entries.size(); i != e; ++i) {
|
|
ctx.target->addPltSymbols(*this, off);
|
|
off += ctx.target->pltEntrySize;
|
|
}
|
|
}
|
|
|
|
PPC32GlinkSection::PPC32GlinkSection(Ctx &ctx) : PltSection(ctx) {
|
|
name = ".glink";
|
|
addralign = 4;
|
|
}
|
|
|
|
void PPC32GlinkSection::writeTo(uint8_t *buf) {
|
|
writePPC32GlinkSection(ctx, buf, entries.size());
|
|
}
|
|
|
|
size_t PPC32GlinkSection::getSize() const {
|
|
return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize;
|
|
}
|
|
|
|
// This is an x86-only extra PLT section and used only when a security
|
|
// enhancement feature called CET is enabled. In this comment, I'll explain what
|
|
// the feature is and why we have two PLT sections if CET is enabled.
|
|
//
|
|
// So, what does CET do? CET introduces a new restriction to indirect jump
|
|
// instructions. CET works this way. Assume that CET is enabled. Then, if you
|
|
// execute an indirect jump instruction, the processor verifies that a special
|
|
// "landing pad" instruction (which is actually a repurposed NOP instruction and
|
|
// now called "endbr32" or "endbr64") is at the jump target. If the jump target
|
|
// does not start with that instruction, the processor raises an exception
|
|
// instead of continuing executing code.
|
|
//
|
|
// If CET is enabled, the compiler emits endbr to all locations where indirect
|
|
// jumps may jump to.
|
|
//
|
|
// This mechanism makes it extremely hard to transfer the control to a middle of
|
|
// a function that is not supporsed to be a indirect jump target, preventing
|
|
// certain types of attacks such as ROP or JOP.
|
|
//
|
|
// Note that the processors in the market as of 2019 don't actually support the
|
|
// feature. Only the spec is available at the moment.
|
|
//
|
|
// Now, I'll explain why we have this extra PLT section for CET.
|
|
//
|
|
// Since you can indirectly jump to a PLT entry, we have to make PLT entries
|
|
// start with endbr. The problem is there's no extra space for endbr (which is 4
|
|
// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
|
|
// used.
|
|
//
|
|
// In order to deal with the issue, we split a PLT entry into two PLT entries.
|
|
// Remember that each PLT entry contains code to jump to an address read from
|
|
// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
|
|
// the former code is written to .plt.sec, and the latter code is written to
|
|
// .plt.
|
|
//
|
|
// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
|
|
// that the regular .plt is now called .plt.sec and .plt is repurposed to
|
|
// contain only code for lazy symbol resolution.
|
|
//
|
|
// In other words, this is how the 2-PLT scheme works. Application code is
|
|
// supposed to jump to .plt.sec to call an external function. Each .plt.sec
|
|
// entry contains code to read an address from a corresponding .got.plt entry
|
|
// and jump to that address. Addresses in .got.plt initially point to .plt, so
|
|
// when an application calls an external function for the first time, the
|
|
// control is transferred to a function that resolves a symbol name from
|
|
// external shared object files. That function then rewrites a .got.plt entry
|
|
// with a resolved address, so that the subsequent function calls directly jump
|
|
// to a desired location from .plt.sec.
|
|
//
|
|
// There is an open question as to whether the 2-PLT scheme was desirable or
|
|
// not. We could have simply extended the PLT entry size to 32-bytes to
|
|
// accommodate endbr, and that scheme would have been much simpler than the
|
|
// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
|
|
// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
|
|
// that the optimization actually makes a difference.
|
|
//
|
|
// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
|
|
// depend on it, so we implement the ABI.
|
|
IBTPltSection::IBTPltSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR,
|
|
16) {}
|
|
|
|
void IBTPltSection::writeTo(uint8_t *buf) {
|
|
ctx.target->writeIBTPlt(buf, ctx.in.plt->getNumEntries());
|
|
}
|
|
|
|
size_t IBTPltSection::getSize() const {
|
|
// 16 is the header size of .plt.
|
|
return 16 + ctx.in.plt->getNumEntries() * ctx.target->pltEntrySize;
|
|
}
|
|
|
|
bool IBTPltSection::isNeeded() const { return ctx.in.plt->getNumEntries() > 0; }
|
|
|
|
RelroPaddingSection::RelroPaddingSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".relro_padding", SHT_NOBITS, SHF_ALLOC | SHF_WRITE,
|
|
1) {}
|
|
|
|
RandomizePaddingSection::RandomizePaddingSection(Ctx &ctx, uint64_t size,
|
|
OutputSection *parent)
|
|
: SyntheticSection(ctx, ".randomize_padding", SHT_PROGBITS, SHF_ALLOC, 1),
|
|
size(size) {
|
|
this->parent = parent;
|
|
}
|
|
|
|
void RandomizePaddingSection::writeTo(uint8_t *buf) {
|
|
std::array<uint8_t, 4> filler = getParent()->getFiller(ctx);
|
|
uint8_t *end = buf + size;
|
|
for (; buf + 4 <= end; buf += 4)
|
|
memcpy(buf, &filler[0], 4);
|
|
memcpy(buf, &filler[0], end - buf);
|
|
}
|
|
|
|
// The string hash function for .gdb_index.
|
|
static uint32_t computeGdbHash(StringRef s) {
|
|
uint32_t h = 0;
|
|
for (uint8_t c : s)
|
|
h = h * 67 + toLower(c) - 113;
|
|
return h;
|
|
}
|
|
|
|
// 4-byte alignment ensures that values in the hash lookup table and the name
|
|
// table are aligned.
|
|
DebugNamesBaseSection::DebugNamesBaseSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".debug_names", SHT_PROGBITS, 0, 4) {}
|
|
|
|
// Get the size of the .debug_names section header in bytes for DWARF32:
|
|
static uint32_t getDebugNamesHeaderSize(uint32_t augmentationStringSize) {
|
|
return /* unit length */ 4 +
|
|
/* version */ 2 +
|
|
/* padding */ 2 +
|
|
/* CU count */ 4 +
|
|
/* TU count */ 4 +
|
|
/* Foreign TU count */ 4 +
|
|
/* Bucket Count */ 4 +
|
|
/* Name Count */ 4 +
|
|
/* Abbrev table size */ 4 +
|
|
/* Augmentation string size */ 4 +
|
|
/* Augmentation string */ augmentationStringSize;
|
|
}
|
|
|
|
static Expected<DebugNamesBaseSection::IndexEntry *>
|
|
readEntry(uint64_t &offset, const DWARFDebugNames::NameIndex &ni,
|
|
uint64_t entriesBase, DWARFDataExtractor &namesExtractor,
|
|
const LLDDWARFSection &namesSec) {
|
|
auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>();
|
|
ie->poolOffset = offset;
|
|
Error err = Error::success();
|
|
uint64_t ulebVal = namesExtractor.getULEB128(&offset, &err);
|
|
if (err)
|
|
return createStringError(inconvertibleErrorCode(),
|
|
"invalid abbrev code: %s",
|
|
llvm::toString(std::move(err)).c_str());
|
|
if (!isUInt<32>(ulebVal))
|
|
return createStringError(inconvertibleErrorCode(),
|
|
"abbrev code too large for DWARF32: %" PRIu64,
|
|
ulebVal);
|
|
ie->abbrevCode = static_cast<uint32_t>(ulebVal);
|
|
auto it = ni.getAbbrevs().find_as(ie->abbrevCode);
|
|
if (it == ni.getAbbrevs().end())
|
|
return createStringError(inconvertibleErrorCode(),
|
|
"abbrev code not found in abbrev table: %" PRIu32,
|
|
ie->abbrevCode);
|
|
|
|
DebugNamesBaseSection::AttrValue attr, cuAttr = {0, 0};
|
|
for (DWARFDebugNames::AttributeEncoding a : it->Attributes) {
|
|
if (a.Index == dwarf::DW_IDX_parent) {
|
|
if (a.Form == dwarf::DW_FORM_ref4) {
|
|
attr.attrValue = namesExtractor.getU32(&offset, &err);
|
|
attr.attrSize = 4;
|
|
ie->parentOffset = entriesBase + attr.attrValue;
|
|
} else if (a.Form != DW_FORM_flag_present)
|
|
return createStringError(inconvertibleErrorCode(),
|
|
"invalid form for DW_IDX_parent");
|
|
} else {
|
|
switch (a.Form) {
|
|
case DW_FORM_data1:
|
|
case DW_FORM_ref1: {
|
|
attr.attrValue = namesExtractor.getU8(&offset, &err);
|
|
attr.attrSize = 1;
|
|
break;
|
|
}
|
|
case DW_FORM_data2:
|
|
case DW_FORM_ref2: {
|
|
attr.attrValue = namesExtractor.getU16(&offset, &err);
|
|
attr.attrSize = 2;
|
|
break;
|
|
}
|
|
case DW_FORM_data4:
|
|
case DW_FORM_ref4: {
|
|
attr.attrValue = namesExtractor.getU32(&offset, &err);
|
|
attr.attrSize = 4;
|
|
break;
|
|
}
|
|
default:
|
|
return createStringError(
|
|
inconvertibleErrorCode(),
|
|
"unrecognized form encoding %d in abbrev table", a.Form);
|
|
}
|
|
}
|
|
if (err)
|
|
return createStringError(inconvertibleErrorCode(),
|
|
"error while reading attributes: %s",
|
|
llvm::toString(std::move(err)).c_str());
|
|
if (a.Index == DW_IDX_compile_unit)
|
|
cuAttr = attr;
|
|
else if (a.Form != DW_FORM_flag_present)
|
|
ie->attrValues.push_back(attr);
|
|
}
|
|
// Canonicalize abbrev by placing the CU/TU index at the end.
|
|
ie->attrValues.push_back(cuAttr);
|
|
return ie;
|
|
}
|
|
|
|
void DebugNamesBaseSection::parseDebugNames(
|
|
Ctx &ctx, InputChunk &inputChunk, OutputChunk &chunk,
|
|
DWARFDataExtractor &namesExtractor, DataExtractor &strExtractor,
|
|
function_ref<SmallVector<uint32_t, 0>(
|
|
uint32_t numCus, const DWARFDebugNames::Header &,
|
|
const DWARFDebugNames::DWARFDebugNamesOffsets &)>
|
|
readOffsets) {
|
|
const LLDDWARFSection &namesSec = inputChunk.section;
|
|
DenseMap<uint32_t, IndexEntry *> offsetMap;
|
|
// Number of CUs seen in previous NameIndex sections within current chunk.
|
|
uint32_t numCus = 0;
|
|
for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) {
|
|
NameData &nd = inputChunk.nameData.emplace_back();
|
|
nd.hdr = ni.getHeader();
|
|
if (nd.hdr.Format != DwarfFormat::DWARF32) {
|
|
Err(ctx) << namesSec.sec
|
|
<< ": found DWARF64, which is currently unsupported";
|
|
return;
|
|
}
|
|
if (nd.hdr.Version != 5) {
|
|
Err(ctx) << namesSec.sec << ": unsupported version: " << nd.hdr.Version;
|
|
return;
|
|
}
|
|
uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(DwarfFormat::DWARF32);
|
|
DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets();
|
|
if (locs.EntriesBase > namesExtractor.getData().size()) {
|
|
Err(ctx) << namesSec.sec << ": entry pool start is beyond end of section";
|
|
return;
|
|
}
|
|
|
|
SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs);
|
|
|
|
// Read the entry pool.
|
|
offsetMap.clear();
|
|
nd.nameEntries.resize(nd.hdr.NameCount);
|
|
for (auto i : seq(nd.hdr.NameCount)) {
|
|
NameEntry &ne = nd.nameEntries[i];
|
|
uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize;
|
|
ne.stringOffset = strOffset;
|
|
uint64_t strp = namesExtractor.getRelocatedValue(dwarfSize, &strOffset);
|
|
StringRef name = strExtractor.getCStrRef(&strp);
|
|
ne.name = name.data();
|
|
ne.hashValue = caseFoldingDjbHash(name);
|
|
|
|
// Read a series of index entries that end with abbreviation code 0.
|
|
uint64_t offset = locs.EntriesBase + entryOffsets[i];
|
|
while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) {
|
|
// Read & store all entries (for the same string).
|
|
Expected<IndexEntry *> ieOrErr =
|
|
readEntry(offset, ni, locs.EntriesBase, namesExtractor, namesSec);
|
|
if (!ieOrErr) {
|
|
Err(ctx) << namesSec.sec << ": " << ieOrErr.takeError();
|
|
return;
|
|
}
|
|
ne.indexEntries.push_back(std::move(*ieOrErr));
|
|
}
|
|
if (offset >= namesSec.Data.size())
|
|
Err(ctx) << namesSec.sec << ": index entry is out of bounds";
|
|
|
|
for (IndexEntry &ie : ne.entries())
|
|
offsetMap[ie.poolOffset] = &ie;
|
|
}
|
|
|
|
// Assign parent pointers, which will be used to update DW_IDX_parent index
|
|
// attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will
|
|
// get parentEntry == null as well.
|
|
for (NameEntry &ne : nd.nameEntries)
|
|
for (IndexEntry &ie : ne.entries())
|
|
ie.parentEntry = offsetMap.lookup(ie.parentOffset);
|
|
numCus += nd.hdr.CompUnitCount;
|
|
}
|
|
}
|
|
|
|
// Compute the form for output DW_IDX_compile_unit attributes, similar to
|
|
// DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all
|
|
// the merged CU indices.
|
|
std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm(
|
|
uint32_t compUnitCount) {
|
|
if (compUnitCount > UINT16_MAX)
|
|
return {4, DW_FORM_data4};
|
|
if (compUnitCount > UINT8_MAX)
|
|
return {2, DW_FORM_data2};
|
|
return {1, DW_FORM_data1};
|
|
}
|
|
|
|
void DebugNamesBaseSection::computeHdrAndAbbrevTable(
|
|
MutableArrayRef<InputChunk> inputChunks) {
|
|
TimeTraceScope timeScope("Merge .debug_names", "hdr and abbrev table");
|
|
size_t numCu = 0;
|
|
hdr.Format = DwarfFormat::DWARF32;
|
|
hdr.Version = 5;
|
|
hdr.CompUnitCount = 0;
|
|
hdr.LocalTypeUnitCount = 0;
|
|
hdr.ForeignTypeUnitCount = 0;
|
|
hdr.AugmentationStringSize = 0;
|
|
|
|
// Compute CU and TU counts.
|
|
for (auto i : seq(numChunks)) {
|
|
InputChunk &inputChunk = inputChunks[i];
|
|
inputChunk.baseCuIdx = numCu;
|
|
numCu += chunks[i].compUnits.size();
|
|
for (const NameData &nd : inputChunk.nameData) {
|
|
hdr.CompUnitCount += nd.hdr.CompUnitCount;
|
|
// TODO: We don't handle type units yet, so LocalTypeUnitCount &
|
|
// ForeignTypeUnitCount are left as 0.
|
|
if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount)
|
|
Warn(ctx) << inputChunk.section.sec
|
|
<< ": type units are not implemented";
|
|
// If augmentation strings are not identical, use an empty string.
|
|
if (i == 0) {
|
|
hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize;
|
|
hdr.AugmentationString = nd.hdr.AugmentationString;
|
|
} else if (hdr.AugmentationString != nd.hdr.AugmentationString) {
|
|
// There are conflicting augmentation strings, so it's best for the
|
|
// merged index to not use an augmentation string.
|
|
hdr.AugmentationStringSize = 0;
|
|
hdr.AugmentationString.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the merged abbrev table, uniquifyinng the input abbrev tables and
|
|
// computing mapping from old (per-cu) abbrev codes to new (merged) abbrev
|
|
// codes.
|
|
FoldingSet<Abbrev> abbrevSet;
|
|
// Determine the form for the DW_IDX_compile_unit attributes in the merged
|
|
// index. The input form may not be big enough for all CU indices.
|
|
dwarf::Form cuAttrForm = getMergedCuCountForm(hdr.CompUnitCount).second;
|
|
for (InputChunk &inputChunk : inputChunks) {
|
|
for (auto [i, ni] : enumerate(*inputChunk.llvmDebugNames)) {
|
|
for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) {
|
|
// Canonicalize abbrev by placing the CU/TU index at the end,
|
|
// similar to 'parseDebugNames'.
|
|
Abbrev abbrev;
|
|
DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit,
|
|
cuAttrForm);
|
|
abbrev.code = oldAbbrev.Code;
|
|
abbrev.tag = oldAbbrev.Tag;
|
|
for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) {
|
|
if (a.Index == DW_IDX_compile_unit)
|
|
cuAttr.Index = a.Index;
|
|
else
|
|
abbrev.attributes.push_back({a.Index, a.Form});
|
|
}
|
|
// Put the CU/TU index at the end of the attributes list.
|
|
abbrev.attributes.push_back(cuAttr);
|
|
|
|
// Profile the abbrev, get or assign a new code, then record the abbrev
|
|
// code mapping.
|
|
FoldingSetNodeID id;
|
|
abbrev.Profile(id);
|
|
uint32_t newCode;
|
|
void *insertPos;
|
|
if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(id, insertPos)) {
|
|
// Found it; we've already seen an identical abbreviation.
|
|
newCode = existing->code;
|
|
} else {
|
|
Abbrev *abbrev2 =
|
|
new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev));
|
|
abbrevSet.InsertNode(abbrev2, insertPos);
|
|
abbrevTable.push_back(abbrev2);
|
|
newCode = abbrevTable.size();
|
|
abbrev2->code = newCode;
|
|
}
|
|
inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the merged abbrev table.
|
|
raw_svector_ostream os(abbrevTableBuf);
|
|
for (Abbrev *abbrev : abbrevTable) {
|
|
encodeULEB128(abbrev->code, os);
|
|
encodeULEB128(abbrev->tag, os);
|
|
for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) {
|
|
encodeULEB128(a.Index, os);
|
|
encodeULEB128(a.Form, os);
|
|
}
|
|
os.write("\0", 2); // attribute specification end
|
|
}
|
|
os.write(0); // abbrev table end
|
|
hdr.AbbrevTableSize = abbrevTableBuf.size();
|
|
}
|
|
|
|
void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const {
|
|
id.AddInteger(tag);
|
|
for (const DWARFDebugNames::AttributeEncoding &attr : attributes) {
|
|
id.AddInteger(attr.Index);
|
|
id.AddInteger(attr.Form);
|
|
}
|
|
}
|
|
|
|
std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool(
|
|
MutableArrayRef<InputChunk> inputChunks) {
|
|
TimeTraceScope timeScope("Merge .debug_names", "entry pool");
|
|
// Collect and de-duplicate all the names (preserving all the entries).
|
|
// Speed it up using multithreading, as the number of symbols can be in the
|
|
// order of millions.
|
|
const size_t concurrency =
|
|
bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards));
|
|
const size_t shift = 32 - countr_zero(numShards);
|
|
const uint8_t cuAttrSize = getMergedCuCountForm(hdr.CompUnitCount).first;
|
|
DenseMap<CachedHashStringRef, size_t> maps[numShards];
|
|
|
|
parallelFor(0, concurrency, [&](size_t threadId) {
|
|
for (auto i : seq(numChunks)) {
|
|
InputChunk &inputChunk = inputChunks[i];
|
|
for (auto j : seq(inputChunk.nameData.size())) {
|
|
NameData &nd = inputChunk.nameData[j];
|
|
// Deduplicate the NameEntry records (based on the string/name),
|
|
// appending all IndexEntries from duplicate NameEntry records to
|
|
// the single preserved copy.
|
|
for (NameEntry &ne : nd.nameEntries) {
|
|
auto shardId = ne.hashValue >> shift;
|
|
if ((shardId & (concurrency - 1)) != threadId)
|
|
continue;
|
|
|
|
ne.chunkIdx = i;
|
|
for (IndexEntry &ie : ne.entries()) {
|
|
// Update the IndexEntry's abbrev code to match the merged
|
|
// abbreviations.
|
|
ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode];
|
|
// Update the DW_IDX_compile_unit attribute (the last one after
|
|
// canonicalization) to have correct merged offset value and size.
|
|
auto &back = ie.attrValues.back();
|
|
back.attrValue += inputChunk.baseCuIdx + j;
|
|
back.attrSize = cuAttrSize;
|
|
}
|
|
|
|
auto &nameVec = nameVecs[shardId];
|
|
auto [it, inserted] = maps[shardId].try_emplace(
|
|
CachedHashStringRef(ne.name, ne.hashValue), nameVec.size());
|
|
if (inserted)
|
|
nameVec.push_back(std::move(ne));
|
|
else
|
|
nameVec[it->second].indexEntries.append(std::move(ne.indexEntries));
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
// Compute entry offsets in parallel. First, compute offsets relative to the
|
|
// current shard.
|
|
uint32_t offsets[numShards];
|
|
parallelFor(0, numShards, [&](size_t shard) {
|
|
uint32_t offset = 0;
|
|
for (NameEntry &ne : nameVecs[shard]) {
|
|
ne.entryOffset = offset;
|
|
for (IndexEntry &ie : ne.entries()) {
|
|
ie.poolOffset = offset;
|
|
offset += getULEB128Size(ie.abbrevCode);
|
|
for (AttrValue value : ie.attrValues)
|
|
offset += value.attrSize;
|
|
}
|
|
++offset; // index entry sentinel
|
|
}
|
|
offsets[shard] = offset;
|
|
});
|
|
// Then add shard offsets.
|
|
std::partial_sum(offsets, std::end(offsets), offsets);
|
|
parallelFor(1, numShards, [&](size_t shard) {
|
|
uint32_t offset = offsets[shard - 1];
|
|
for (NameEntry &ne : nameVecs[shard]) {
|
|
ne.entryOffset += offset;
|
|
for (IndexEntry &ie : ne.entries())
|
|
ie.poolOffset += offset;
|
|
}
|
|
});
|
|
|
|
// Update the DW_IDX_parent entries that refer to real parents (have
|
|
// DW_FORM_ref4).
|
|
parallelFor(0, numShards, [&](size_t shard) {
|
|
for (NameEntry &ne : nameVecs[shard]) {
|
|
for (IndexEntry &ie : ne.entries()) {
|
|
if (!ie.parentEntry)
|
|
continue;
|
|
// Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode
|
|
// corresponds to position in the merged table vector).
|
|
const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1];
|
|
for (const auto &[a, v] : zip_equal(abbrev->attributes, ie.attrValues))
|
|
if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4)
|
|
v.attrValue = ie.parentEntry->poolOffset;
|
|
}
|
|
}
|
|
});
|
|
|
|
// Return (entry pool size, number of entries).
|
|
uint32_t num = 0;
|
|
for (auto &map : maps)
|
|
num += map.size();
|
|
return {offsets[numShards - 1], num};
|
|
}
|
|
|
|
void DebugNamesBaseSection::init(
|
|
function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) {
|
|
TimeTraceScope timeScope("Merge .debug_names");
|
|
// Collect and remove input .debug_names sections. Save InputSection pointers
|
|
// to relocate string offsets in `writeTo`.
|
|
SetVector<InputFile *> files;
|
|
for (InputSectionBase *s : ctx.inputSections) {
|
|
InputSection *isec = dyn_cast<InputSection>(s);
|
|
if (!isec)
|
|
continue;
|
|
if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names") {
|
|
s->markDead();
|
|
inputSections.push_back(isec);
|
|
files.insert(isec->file);
|
|
}
|
|
}
|
|
|
|
// Parse input .debug_names sections and extract InputChunk and OutputChunk
|
|
// data. OutputChunk contains CU information, which will be needed by
|
|
// `writeTo`.
|
|
auto inputChunksPtr = std::make_unique<InputChunk[]>(files.size());
|
|
MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size());
|
|
numChunks = files.size();
|
|
chunks = std::make_unique<OutputChunk[]>(files.size());
|
|
{
|
|
TimeTraceScope timeScope("Merge .debug_names", "parse");
|
|
parallelFor(0, files.size(), [&](size_t i) {
|
|
parseFile(files[i], inputChunks[i], chunks[i]);
|
|
});
|
|
}
|
|
|
|
// Compute section header (except unit_length), abbrev table, and entry pool.
|
|
computeHdrAndAbbrevTable(inputChunks);
|
|
uint32_t entryPoolSize;
|
|
std::tie(entryPoolSize, hdr.NameCount) = computeEntryPool(inputChunks);
|
|
hdr.BucketCount = dwarf::getDebugNamesBucketCount(hdr.NameCount);
|
|
|
|
// Compute the section size. Subtract 4 to get the unit_length for DWARF32.
|
|
uint32_t hdrSize = getDebugNamesHeaderSize(hdr.AugmentationStringSize);
|
|
size = findDebugNamesOffsets(hdrSize, hdr).EntriesBase + entryPoolSize;
|
|
hdr.UnitLength = size - 4;
|
|
}
|
|
|
|
template <class ELFT>
|
|
DebugNamesSection<ELFT>::DebugNamesSection(Ctx &ctx)
|
|
: DebugNamesBaseSection(ctx) {
|
|
init([&](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) {
|
|
auto *file = cast<ObjFile<ELFT>>(f);
|
|
DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
|
|
auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
|
|
chunk.infoSec = dobj.getInfoSection();
|
|
DWARFDataExtractor namesExtractor(dobj, dobj.getNamesSection(),
|
|
ELFT::Endianness == endianness::little,
|
|
ELFT::Is64Bits ? 8 : 4);
|
|
// .debug_str is needed to get symbol names from string offsets.
|
|
DataExtractor strExtractor(dobj.getStrSection(),
|
|
ELFT::Endianness == endianness::little,
|
|
ELFT::Is64Bits ? 8 : 4);
|
|
inputChunk.section = dobj.getNamesSection();
|
|
|
|
inputChunk.llvmDebugNames.emplace(namesExtractor, strExtractor);
|
|
if (Error e = inputChunk.llvmDebugNames->extract()) {
|
|
Err(ctx) << dobj.getNamesSection().sec << ": " << std::move(e);
|
|
}
|
|
parseDebugNames(
|
|
ctx, inputChunk, chunk, namesExtractor, strExtractor,
|
|
[&chunk, namesData = dobj.getNamesSection().Data.data()](
|
|
uint32_t numCus, const DWARFDebugNames::Header &hdr,
|
|
const DWARFDebugNames::DWARFDebugNamesOffsets &locs) {
|
|
// Read CU offsets, which are relocated by .debug_info + X
|
|
// relocations. Record the section offset to be relocated by
|
|
// `finalizeContents`.
|
|
chunk.compUnits.resize_for_overwrite(numCus + hdr.CompUnitCount);
|
|
for (auto i : seq(hdr.CompUnitCount))
|
|
chunk.compUnits[numCus + i] = locs.CUsBase + i * 4;
|
|
|
|
// Read entry offsets.
|
|
const char *p = namesData + locs.EntryOffsetsBase;
|
|
SmallVector<uint32_t, 0> entryOffsets;
|
|
entryOffsets.resize_for_overwrite(hdr.NameCount);
|
|
for (uint32_t &offset : entryOffsets)
|
|
offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p);
|
|
return entryOffsets;
|
|
});
|
|
});
|
|
}
|
|
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
void DebugNamesSection<ELFT>::getNameRelocs(
|
|
const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs,
|
|
Relocs<RelTy> rels) {
|
|
for (const RelTy &rel : rels) {
|
|
Symbol &sym = file.getRelocTargetSym(rel);
|
|
relocs[rel.r_offset] = sym.getVA(ctx, getAddend<ELFT>(rel));
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() {
|
|
// Get relocations of .debug_names sections.
|
|
auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks);
|
|
parallelFor(0, numChunks, [&](size_t i) {
|
|
InputSection *sec = inputSections[i];
|
|
invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]);
|
|
|
|
// Relocate CU offsets with .debug_info + X relocations.
|
|
OutputChunk &chunk = chunks.get()[i];
|
|
for (auto [j, cuOffset] : enumerate(chunk.compUnits))
|
|
cuOffset = relocs.get()[i].lookup(cuOffset);
|
|
});
|
|
|
|
// Relocate string offsets in the name table with .debug_str + X relocations.
|
|
parallelForEach(nameVecs, [&](auto &nameVec) {
|
|
for (NameEntry &ne : nameVec)
|
|
ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset);
|
|
});
|
|
}
|
|
|
|
template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) {
|
|
[[maybe_unused]] const uint8_t *const beginBuf = buf;
|
|
// Write the header.
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength);
|
|
endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version);
|
|
buf += 2; // padding
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount);
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount);
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount);
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount);
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount);
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize);
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf,
|
|
hdr.AugmentationStringSize);
|
|
memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size());
|
|
buf += hdr.AugmentationStringSize;
|
|
|
|
// Write the CU list.
|
|
for (auto &chunk : getChunks())
|
|
for (uint32_t cuOffset : chunk.compUnits)
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset);
|
|
|
|
// TODO: Write the local TU list, then the foreign TU list..
|
|
|
|
// Write the hash lookup table.
|
|
SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount);
|
|
// Symbols enter into a bucket whose index is the hash modulo bucket_count.
|
|
for (auto &nameVec : nameVecs)
|
|
for (NameEntry &ne : nameVec)
|
|
buckets[ne.hashValue % hdr.BucketCount].push_back(&ne);
|
|
|
|
// Write buckets (accumulated bucket counts).
|
|
uint32_t bucketIdx = 1;
|
|
for (const SmallVector<NameEntry *, 0> &bucket : buckets) {
|
|
if (!bucket.empty())
|
|
endian::write32<ELFT::Endianness>(buf, bucketIdx);
|
|
buf += 4;
|
|
bucketIdx += bucket.size();
|
|
}
|
|
// Write the hashes.
|
|
for (const SmallVector<NameEntry *, 0> &bucket : buckets)
|
|
for (const NameEntry *e : bucket)
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue);
|
|
|
|
// Write the name table. The name entries are ordered by bucket_idx and
|
|
// correspond one-to-one with the hash lookup table.
|
|
//
|
|
// First, write the relocated string offsets.
|
|
for (const SmallVector<NameEntry *, 0> &bucket : buckets)
|
|
for (const NameEntry *ne : bucket)
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset);
|
|
|
|
// Then write the entry offsets.
|
|
for (const SmallVector<NameEntry *, 0> &bucket : buckets)
|
|
for (const NameEntry *ne : bucket)
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset);
|
|
|
|
// Write the abbrev table.
|
|
buf = llvm::copy(abbrevTableBuf, buf);
|
|
|
|
// Write the entry pool. Unlike the name table, the name entries follow the
|
|
// nameVecs order computed by `computeEntryPool`.
|
|
for (auto &nameVec : nameVecs) {
|
|
for (NameEntry &ne : nameVec) {
|
|
// Write all the entries for the string.
|
|
for (const IndexEntry &ie : ne.entries()) {
|
|
buf += encodeULEB128(ie.abbrevCode, buf);
|
|
for (AttrValue value : ie.attrValues) {
|
|
switch (value.attrSize) {
|
|
case 1:
|
|
*buf++ = value.attrValue;
|
|
break;
|
|
case 2:
|
|
endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue);
|
|
break;
|
|
case 4:
|
|
endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue);
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid attrSize");
|
|
}
|
|
}
|
|
}
|
|
++buf; // index entry sentinel
|
|
}
|
|
}
|
|
assert(uint64_t(buf - beginBuf) == size);
|
|
}
|
|
|
|
GdbIndexSection::GdbIndexSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".gdb_index", SHT_PROGBITS, 0, 1) {}
|
|
|
|
// Returns the desired size of an on-disk hash table for a .gdb_index section.
|
|
// There's a tradeoff between size and collision rate. We aim 75% utilization.
|
|
size_t GdbIndexSection::computeSymtabSize() const {
|
|
return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
|
|
}
|
|
|
|
static SmallVector<GdbIndexSection::CuEntry, 0>
|
|
readCuList(DWARFContext &dwarf) {
|
|
SmallVector<GdbIndexSection::CuEntry, 0> ret;
|
|
for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
|
|
ret.push_back({cu->getOffset(), cu->getLength() + 4});
|
|
return ret;
|
|
}
|
|
|
|
static SmallVector<GdbIndexSection::AddressEntry, 0>
|
|
readAddressAreas(Ctx &ctx, DWARFContext &dwarf, InputSection *sec) {
|
|
SmallVector<GdbIndexSection::AddressEntry, 0> ret;
|
|
|
|
uint32_t cuIdx = 0;
|
|
for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
|
|
if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
|
|
Warn(ctx) << sec << ": " << std::move(e);
|
|
return {};
|
|
}
|
|
Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
|
|
if (!ranges) {
|
|
Warn(ctx) << sec << ": " << ranges.takeError();
|
|
return {};
|
|
}
|
|
|
|
ArrayRef<InputSectionBase *> sections = sec->file->getSections();
|
|
for (DWARFAddressRange &r : *ranges) {
|
|
if (r.SectionIndex == -1ULL)
|
|
continue;
|
|
// Range list with zero size has no effect.
|
|
InputSectionBase *s = sections[r.SectionIndex];
|
|
if (s && s != &InputSection::discarded && s->isLive())
|
|
if (r.LowPC != r.HighPC)
|
|
ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
|
|
}
|
|
++cuIdx;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static SmallVector<GdbIndexSection::NameAttrEntry, 0>
|
|
readPubNamesAndTypes(Ctx &ctx, const LLDDwarfObj<ELFT> &obj,
|
|
const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
|
|
const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
|
|
const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
|
|
|
|
SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
|
|
for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
|
|
DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little,
|
|
ELFT::Is64Bits ? 8 : 4);
|
|
DWARFDebugPubTable table;
|
|
table.extract(data, /*GnuStyle=*/true, [&](Error e) {
|
|
Warn(ctx) << pub->sec << ": " << std::move(e);
|
|
});
|
|
for (const DWARFDebugPubTable::Set &set : table.getData()) {
|
|
// The value written into the constant pool is kind << 24 | cuIndex. As we
|
|
// don't know how many compilation units precede this object to compute
|
|
// cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
|
|
// the number of preceding compilation units later.
|
|
uint32_t i = llvm::partition_point(cus,
|
|
[&](GdbIndexSection::CuEntry cu) {
|
|
return cu.cuOffset < set.Offset;
|
|
}) -
|
|
cus.begin();
|
|
for (const DWARFDebugPubTable::Entry &ent : set.Entries)
|
|
ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
|
|
(ent.Descriptor.toBits() << 24) | i});
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Create a list of symbols from a given list of symbol names and types
|
|
// by uniquifying them by name.
|
|
static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
|
|
createSymbols(
|
|
Ctx &ctx,
|
|
ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
|
|
const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
|
|
using GdbSymbol = GdbIndexSection::GdbSymbol;
|
|
using NameAttrEntry = GdbIndexSection::NameAttrEntry;
|
|
|
|
// For each chunk, compute the number of compilation units preceding it.
|
|
uint32_t cuIdx = 0;
|
|
std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
|
|
for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
|
|
cuIdxs[i] = cuIdx;
|
|
cuIdx += chunks[i].compilationUnits.size();
|
|
}
|
|
|
|
// Collect the compilation unitss for each unique name. Speed it up using
|
|
// multi-threading as the number of symbols can be in the order of millions.
|
|
// Shard GdbSymbols by hash's high bits.
|
|
constexpr size_t numShards = 32;
|
|
const size_t concurrency =
|
|
llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards));
|
|
const size_t shift = 32 - llvm::countr_zero(numShards);
|
|
auto map =
|
|
std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
|
|
auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
|
|
parallelFor(0, concurrency, [&](size_t threadId) {
|
|
uint32_t i = 0;
|
|
for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
|
|
for (const NameAttrEntry &ent : entries) {
|
|
size_t shardId = ent.name.hash() >> shift;
|
|
if ((shardId & (concurrency - 1)) != threadId)
|
|
continue;
|
|
|
|
uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
|
|
auto [it, inserted] =
|
|
map[shardId].try_emplace(ent.name, symbols[shardId].size());
|
|
if (inserted)
|
|
symbols[shardId].push_back({ent.name, {v}, 0, 0});
|
|
else
|
|
symbols[shardId][it->second].cuVector.push_back(v);
|
|
}
|
|
++i;
|
|
}
|
|
});
|
|
|
|
size_t numSymbols = 0;
|
|
for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
|
|
numSymbols += v.size();
|
|
|
|
// The return type is a flattened vector, so we'll copy each vector
|
|
// contents to Ret.
|
|
SmallVector<GdbSymbol, 0> ret;
|
|
ret.reserve(numSymbols);
|
|
for (SmallVector<GdbSymbol, 0> &vec :
|
|
MutableArrayRef(symbols.get(), numShards))
|
|
for (GdbSymbol &sym : vec)
|
|
ret.push_back(std::move(sym));
|
|
|
|
// CU vectors and symbol names are adjacent in the output file.
|
|
// We can compute their offsets in the output file now.
|
|
size_t off = 0;
|
|
for (GdbSymbol &sym : ret) {
|
|
sym.cuVectorOff = off;
|
|
off += (sym.cuVector.size() + 1) * 4;
|
|
}
|
|
for (GdbSymbol &sym : ret) {
|
|
sym.nameOff = off;
|
|
off += sym.name.size() + 1;
|
|
}
|
|
// If off overflows, the last symbol's nameOff likely overflows.
|
|
if (!isUInt<32>(off))
|
|
Err(ctx) << "--gdb-index: constant pool size (" << off
|
|
<< ") exceeds UINT32_MAX";
|
|
|
|
return {ret, off};
|
|
}
|
|
|
|
// Returns a newly-created .gdb_index section.
|
|
template <class ELFT>
|
|
std::unique_ptr<GdbIndexSection> GdbIndexSection::create(Ctx &ctx) {
|
|
llvm::TimeTraceScope timeScope("Create gdb index");
|
|
|
|
// Collect InputFiles with .debug_info. See the comment in
|
|
// LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
|
|
// note that isec->data() may uncompress the full content, which should be
|
|
// parallelized.
|
|
SetVector<InputFile *> files;
|
|
for (InputSectionBase *s : ctx.inputSections) {
|
|
InputSection *isec = dyn_cast<InputSection>(s);
|
|
if (!isec)
|
|
continue;
|
|
// .debug_gnu_pub{names,types} are useless in executables.
|
|
// They are present in input object files solely for creating
|
|
// a .gdb_index. So we can remove them from the output.
|
|
if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
|
|
s->markDead();
|
|
else if (isec->name == ".debug_info")
|
|
files.insert(isec->file);
|
|
}
|
|
// Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
|
|
llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
|
|
if (auto *isec = dyn_cast<InputSection>(s))
|
|
if (InputSectionBase *rel = isec->getRelocatedSection())
|
|
return !rel->isLive();
|
|
return !s->isLive();
|
|
});
|
|
|
|
SmallVector<GdbChunk, 0> chunks(files.size());
|
|
SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
|
|
|
|
parallelFor(0, files.size(), [&](size_t i) {
|
|
// To keep memory usage low, we don't want to keep cached DWARFContext, so
|
|
// avoid getDwarf() here.
|
|
ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
|
|
DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
|
|
auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
|
|
|
|
// If the are multiple compile units .debug_info (very rare ld -r --unique),
|
|
// this only picks the last one. Other address ranges are lost.
|
|
chunks[i].sec = dobj.getInfoSection();
|
|
chunks[i].compilationUnits = readCuList(dwarf);
|
|
chunks[i].addressAreas = readAddressAreas(ctx, dwarf, chunks[i].sec);
|
|
nameAttrs[i] =
|
|
readPubNamesAndTypes<ELFT>(ctx, dobj, chunks[i].compilationUnits);
|
|
});
|
|
|
|
auto ret = std::make_unique<GdbIndexSection>(ctx);
|
|
ret->chunks = std::move(chunks);
|
|
std::tie(ret->symbols, ret->size) =
|
|
createSymbols(ctx, nameAttrs, ret->chunks);
|
|
|
|
// Count the areas other than the constant pool.
|
|
ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
|
|
for (GdbChunk &chunk : ret->chunks)
|
|
ret->size +=
|
|
chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void GdbIndexSection::writeTo(uint8_t *buf) {
|
|
// Write the header.
|
|
auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
|
|
uint8_t *start = buf;
|
|
hdr->version = 7;
|
|
buf += sizeof(*hdr);
|
|
|
|
// Write the CU list.
|
|
hdr->cuListOff = buf - start;
|
|
for (GdbChunk &chunk : chunks) {
|
|
for (CuEntry &cu : chunk.compilationUnits) {
|
|
write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
|
|
write64le(buf + 8, cu.cuLength);
|
|
buf += 16;
|
|
}
|
|
}
|
|
|
|
// Write the address area.
|
|
hdr->cuTypesOff = buf - start;
|
|
hdr->addressAreaOff = buf - start;
|
|
uint32_t cuOff = 0;
|
|
for (GdbChunk &chunk : chunks) {
|
|
for (AddressEntry &e : chunk.addressAreas) {
|
|
// In the case of ICF there may be duplicate address range entries.
|
|
const uint64_t baseAddr = e.section->repl->getVA(0);
|
|
write64le(buf, baseAddr + e.lowAddress);
|
|
write64le(buf + 8, baseAddr + e.highAddress);
|
|
write32le(buf + 16, e.cuIndex + cuOff);
|
|
buf += 20;
|
|
}
|
|
cuOff += chunk.compilationUnits.size();
|
|
}
|
|
|
|
// Write the on-disk open-addressing hash table containing symbols.
|
|
hdr->symtabOff = buf - start;
|
|
size_t symtabSize = computeSymtabSize();
|
|
uint32_t mask = symtabSize - 1;
|
|
|
|
for (GdbSymbol &sym : symbols) {
|
|
uint32_t h = sym.name.hash();
|
|
uint32_t i = h & mask;
|
|
uint32_t step = ((h * 17) & mask) | 1;
|
|
|
|
while (read32le(buf + i * 8))
|
|
i = (i + step) & mask;
|
|
|
|
write32le(buf + i * 8, sym.nameOff);
|
|
write32le(buf + i * 8 + 4, sym.cuVectorOff);
|
|
}
|
|
|
|
buf += symtabSize * 8;
|
|
|
|
// Write the string pool.
|
|
hdr->constantPoolOff = buf - start;
|
|
parallelForEach(symbols, [&](GdbSymbol &sym) {
|
|
memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
|
|
});
|
|
|
|
// Write the CU vectors.
|
|
for (GdbSymbol &sym : symbols) {
|
|
write32le(buf, sym.cuVector.size());
|
|
buf += 4;
|
|
for (uint32_t val : sym.cuVector) {
|
|
write32le(buf, val);
|
|
buf += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
|
|
|
|
EhFrameHeader::EhFrameHeader(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, 4) {}
|
|
|
|
void EhFrameHeader::writeTo(uint8_t *buf) {
|
|
// Unlike most sections, the EhFrameHeader section is written while writing
|
|
// another section, namely EhFrameSection, which calls the write() function
|
|
// below from its writeTo() function. This is necessary because the contents
|
|
// of EhFrameHeader depend on the relocated contents of EhFrameSection and we
|
|
// don't know which order the sections will be written in.
|
|
}
|
|
|
|
// .eh_frame_hdr contains a binary search table of pointers to FDEs.
|
|
// Each entry of the search table consists of two values,
|
|
// the starting PC from where FDEs covers, and the FDE's address.
|
|
// It is sorted by PC.
|
|
void EhFrameHeader::write() {
|
|
uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff;
|
|
using FdeData = EhFrameSection::FdeData;
|
|
SmallVector<FdeData, 0> fdes = getPartition(ctx).ehFrame->getFdeData();
|
|
|
|
buf[0] = 1;
|
|
buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
|
|
buf[2] = DW_EH_PE_udata4;
|
|
buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
|
|
write32(ctx, buf + 4,
|
|
getPartition(ctx).ehFrame->getParent()->addr - this->getVA() - 4);
|
|
write32(ctx, buf + 8, fdes.size());
|
|
buf += 12;
|
|
|
|
for (FdeData &fde : fdes) {
|
|
write32(ctx, buf, fde.pcRel);
|
|
write32(ctx, buf + 4, fde.fdeVARel);
|
|
buf += 8;
|
|
}
|
|
}
|
|
|
|
size_t EhFrameHeader::getSize() const {
|
|
// .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
|
|
return 12 + getPartition(ctx).ehFrame->numFdes * 8;
|
|
}
|
|
|
|
bool EhFrameHeader::isNeeded() const {
|
|
return isLive() && getPartition(ctx).ehFrame->isNeeded();
|
|
}
|
|
|
|
VersionDefinitionSection::VersionDefinitionSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC,
|
|
sizeof(uint32_t)) {}
|
|
|
|
StringRef VersionDefinitionSection::getFileDefName() {
|
|
if (!getPartition(ctx).name.empty())
|
|
return getPartition(ctx).name;
|
|
if (!ctx.arg.soName.empty())
|
|
return ctx.arg.soName;
|
|
return ctx.arg.outputFile;
|
|
}
|
|
|
|
void VersionDefinitionSection::finalizeContents() {
|
|
fileDefNameOff = getPartition(ctx).dynStrTab->addString(getFileDefName());
|
|
for (const VersionDefinition &v : namedVersionDefs(ctx))
|
|
verDefNameOffs.push_back(getPartition(ctx).dynStrTab->addString(v.name));
|
|
|
|
if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
|
|
getParent()->link = sec->sectionIndex;
|
|
|
|
// sh_info should be set to the number of definitions. This fact is missed in
|
|
// documentation, but confirmed by binutils community:
|
|
// https://sourceware.org/ml/binutils/2014-11/msg00355.html
|
|
getParent()->info = getVerDefNum(ctx);
|
|
}
|
|
|
|
void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
|
|
StringRef name, size_t nameOff) {
|
|
uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
|
|
|
|
// Write a verdef.
|
|
write16(ctx, buf, 1); // vd_version
|
|
write16(ctx, buf + 2, flags); // vd_flags
|
|
write16(ctx, buf + 4, index); // vd_ndx
|
|
write16(ctx, buf + 6, 1); // vd_cnt
|
|
write32(ctx, buf + 8, hashSysV(name)); // vd_hash
|
|
write32(ctx, buf + 12, 20); // vd_aux
|
|
write32(ctx, buf + 16, 28); // vd_next
|
|
|
|
// Write a veraux.
|
|
write32(ctx, buf + 20, nameOff); // vda_name
|
|
write32(ctx, buf + 24, 0); // vda_next
|
|
}
|
|
|
|
void VersionDefinitionSection::writeTo(uint8_t *buf) {
|
|
writeOne(buf, 1, getFileDefName(), fileDefNameOff);
|
|
|
|
auto nameOffIt = verDefNameOffs.begin();
|
|
for (const VersionDefinition &v : namedVersionDefs(ctx)) {
|
|
buf += EntrySize;
|
|
writeOne(buf, v.id, v.name, *nameOffIt++);
|
|
}
|
|
|
|
// Need to terminate the last version definition.
|
|
write32(ctx, buf + 16, 0); // vd_next
|
|
}
|
|
|
|
size_t VersionDefinitionSection::getSize() const {
|
|
return EntrySize * getVerDefNum(ctx);
|
|
}
|
|
|
|
// .gnu.version is a table where each entry is 2 byte long.
|
|
VersionTableSection::VersionTableSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".gnu.version", SHT_GNU_versym, SHF_ALLOC,
|
|
sizeof(uint16_t)) {
|
|
this->entsize = 2;
|
|
}
|
|
|
|
void VersionTableSection::finalizeContents() {
|
|
if (OutputSection *osec = getPartition(ctx).dynSymTab->getParent())
|
|
getParent()->link = osec->sectionIndex;
|
|
}
|
|
|
|
size_t VersionTableSection::getSize() const {
|
|
return (getPartition(ctx).dynSymTab->getSymbols().size() + 1) * 2;
|
|
}
|
|
|
|
void VersionTableSection::writeTo(uint8_t *buf) {
|
|
buf += 2;
|
|
for (const SymbolTableEntry &s : getPartition(ctx).dynSymTab->getSymbols()) {
|
|
// For an unextracted lazy symbol (undefined weak), it must have been
|
|
// converted to Undefined and have VER_NDX_GLOBAL version here.
|
|
assert(!s.sym->isLazy());
|
|
write16(ctx, buf, s.sym->versionId);
|
|
buf += 2;
|
|
}
|
|
}
|
|
|
|
bool VersionTableSection::isNeeded() const {
|
|
return isLive() &&
|
|
(getPartition(ctx).verDef || getPartition(ctx).verNeed->isNeeded());
|
|
}
|
|
|
|
void elf::addVerneed(Ctx &ctx, Symbol &ss) {
|
|
auto &file = cast<SharedFile>(*ss.file);
|
|
if (ss.versionId == VER_NDX_GLOBAL)
|
|
return;
|
|
|
|
if (file.vernauxs.empty())
|
|
file.vernauxs.resize(file.verdefs.size());
|
|
|
|
// Select a version identifier for the vernaux data structure, if we haven't
|
|
// already allocated one. The verdef identifiers cover the range
|
|
// [1..getVerDefNum(ctx)]; this causes the vernaux identifiers to start from
|
|
// getVerDefNum(ctx)+1.
|
|
if (file.vernauxs[ss.versionId] == 0)
|
|
file.vernauxs[ss.versionId] = ++ctx.vernauxNum + getVerDefNum(ctx);
|
|
|
|
ss.versionId = file.vernauxs[ss.versionId];
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionNeedSection<ELFT>::VersionNeedSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC,
|
|
sizeof(uint32_t)) {}
|
|
|
|
template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
|
|
for (SharedFile *f : ctx.sharedFiles) {
|
|
if (f->vernauxs.empty())
|
|
continue;
|
|
verneeds.emplace_back();
|
|
Verneed &vn = verneeds.back();
|
|
vn.nameStrTab = getPartition(ctx).dynStrTab->addString(f->soName);
|
|
bool isLibc = ctx.arg.relrGlibc && f->soName.starts_with("libc.so.");
|
|
bool isGlibc2 = false;
|
|
for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
|
|
if (f->vernauxs[i] == 0)
|
|
continue;
|
|
auto *verdef =
|
|
reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
|
|
StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
|
|
if (isLibc && ver.starts_with("GLIBC_2."))
|
|
isGlibc2 = true;
|
|
vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
|
|
getPartition(ctx).dynStrTab->addString(ver)});
|
|
}
|
|
if (isGlibc2) {
|
|
const char *ver = "GLIBC_ABI_DT_RELR";
|
|
vn.vernauxs.push_back({hashSysV(ver),
|
|
++ctx.vernauxNum + getVerDefNum(ctx),
|
|
getPartition(ctx).dynStrTab->addString(ver)});
|
|
}
|
|
}
|
|
|
|
if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
|
|
getParent()->link = sec->sectionIndex;
|
|
getParent()->info = verneeds.size();
|
|
}
|
|
|
|
template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
|
|
// The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
|
|
auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
|
|
auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
|
|
|
|
for (auto &vn : verneeds) {
|
|
// Create an Elf_Verneed for this DSO.
|
|
verneed->vn_version = 1;
|
|
verneed->vn_cnt = vn.vernauxs.size();
|
|
verneed->vn_file = vn.nameStrTab;
|
|
verneed->vn_aux =
|
|
reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
|
|
verneed->vn_next = sizeof(Elf_Verneed);
|
|
++verneed;
|
|
|
|
// Create the Elf_Vernauxs for this Elf_Verneed.
|
|
for (auto &vna : vn.vernauxs) {
|
|
vernaux->vna_hash = vna.hash;
|
|
vernaux->vna_flags = 0;
|
|
vernaux->vna_other = vna.verneedIndex;
|
|
vernaux->vna_name = vna.nameStrTab;
|
|
vernaux->vna_next = sizeof(Elf_Vernaux);
|
|
++vernaux;
|
|
}
|
|
|
|
vernaux[-1].vna_next = 0;
|
|
}
|
|
verneed[-1].vn_next = 0;
|
|
}
|
|
|
|
template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
|
|
return verneeds.size() * sizeof(Elf_Verneed) +
|
|
ctx.vernauxNum * sizeof(Elf_Vernaux);
|
|
}
|
|
|
|
template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
|
|
return isLive() && ctx.vernauxNum != 0;
|
|
}
|
|
|
|
void MergeSyntheticSection::addSection(MergeInputSection *ms) {
|
|
ms->parent = this;
|
|
sections.push_back(ms);
|
|
assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
|
|
addralign = std::max(addralign, ms->addralign);
|
|
}
|
|
|
|
MergeTailSection::MergeTailSection(Ctx &ctx, StringRef name, uint32_t type,
|
|
uint64_t flags, uint32_t alignment)
|
|
: MergeSyntheticSection(ctx, name, type, flags, alignment),
|
|
builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
|
|
|
|
size_t MergeTailSection::getSize() const { return builder.getSize(); }
|
|
|
|
void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
|
|
|
|
void MergeTailSection::finalizeContents() {
|
|
// Add all string pieces to the string table builder to create section
|
|
// contents.
|
|
for (MergeInputSection *sec : sections)
|
|
for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
|
|
if (sec->pieces[i].live)
|
|
builder.add(sec->getData(i));
|
|
|
|
// Fix the string table content. After this, the contents will never change.
|
|
builder.finalize();
|
|
|
|
// finalize() fixed tail-optimized strings, so we can now get
|
|
// offsets of strings. Get an offset for each string and save it
|
|
// to a corresponding SectionPiece for easy access.
|
|
for (MergeInputSection *sec : sections)
|
|
for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
|
|
if (sec->pieces[i].live)
|
|
sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
|
|
}
|
|
|
|
void MergeNoTailSection::writeTo(uint8_t *buf) {
|
|
parallelFor(0, numShards,
|
|
[&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
|
|
}
|
|
|
|
// This function is very hot (i.e. it can take several seconds to finish)
|
|
// because sometimes the number of inputs is in an order of magnitude of
|
|
// millions. So, we use multi-threading.
|
|
//
|
|
// For any strings S and T, we know S is not mergeable with T if S's hash
|
|
// value is different from T's. If that's the case, we can safely put S and
|
|
// T into different string builders without worrying about merge misses.
|
|
// We do it in parallel.
|
|
void MergeNoTailSection::finalizeContents() {
|
|
// Initializes string table builders.
|
|
for (size_t i = 0; i < numShards; ++i)
|
|
shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
|
|
|
|
// Concurrency level. Must be a power of 2 to avoid expensive modulo
|
|
// operations in the following tight loop.
|
|
const size_t concurrency =
|
|
llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards));
|
|
|
|
// Add section pieces to the builders.
|
|
parallelFor(0, concurrency, [&](size_t threadId) {
|
|
for (MergeInputSection *sec : sections) {
|
|
for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
|
|
if (!sec->pieces[i].live)
|
|
continue;
|
|
size_t shardId = getShardId(sec->pieces[i].hash);
|
|
if ((shardId & (concurrency - 1)) == threadId)
|
|
sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
|
|
}
|
|
}
|
|
});
|
|
|
|
// Compute an in-section offset for each shard.
|
|
size_t off = 0;
|
|
for (size_t i = 0; i < numShards; ++i) {
|
|
shards[i].finalizeInOrder();
|
|
if (shards[i].getSize() > 0)
|
|
off = alignToPowerOf2(off, addralign);
|
|
shardOffsets[i] = off;
|
|
off += shards[i].getSize();
|
|
}
|
|
size = off;
|
|
|
|
// So far, section pieces have offsets from beginning of shards, but
|
|
// we want offsets from beginning of the whole section. Fix them.
|
|
parallelForEach(sections, [&](MergeInputSection *sec) {
|
|
for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
|
|
if (sec->pieces[i].live)
|
|
sec->pieces[i].outputOff +=
|
|
shardOffsets[getShardId(sec->pieces[i].hash)];
|
|
});
|
|
}
|
|
|
|
template <class ELFT> void elf::splitSections(Ctx &ctx) {
|
|
llvm::TimeTraceScope timeScope("Split sections");
|
|
// splitIntoPieces needs to be called on each MergeInputSection
|
|
// before calling finalizeContents().
|
|
parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
|
|
for (InputSectionBase *sec : file->getSections()) {
|
|
if (!sec)
|
|
continue;
|
|
if (auto *s = dyn_cast<MergeInputSection>(sec))
|
|
s->splitIntoPieces();
|
|
else if (auto *eh = dyn_cast<EhInputSection>(sec))
|
|
eh->split<ELFT>();
|
|
}
|
|
});
|
|
}
|
|
|
|
void elf::combineEhSections(Ctx &ctx) {
|
|
llvm::TimeTraceScope timeScope("Combine EH sections");
|
|
for (EhInputSection *sec : ctx.ehInputSections) {
|
|
EhFrameSection &eh = *sec->getPartition(ctx).ehFrame;
|
|
sec->parent = &eh;
|
|
eh.addralign = std::max(eh.addralign, sec->addralign);
|
|
eh.sections.push_back(sec);
|
|
llvm::append_range(eh.dependentSections, sec->dependentSections);
|
|
}
|
|
|
|
if (!ctx.mainPart->armExidx)
|
|
return;
|
|
llvm::erase_if(ctx.inputSections, [&](InputSectionBase *s) {
|
|
// Ignore dead sections and the partition end marker (.part.end),
|
|
// whose partition number is out of bounds.
|
|
if (!s->isLive() || s->partition == 255)
|
|
return false;
|
|
Partition &part = s->getPartition(ctx);
|
|
return s->kind() == SectionBase::Regular && part.armExidx &&
|
|
part.armExidx->addSection(cast<InputSection>(s));
|
|
});
|
|
}
|
|
|
|
MipsRldMapSection::MipsRldMapSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
|
|
ctx.arg.wordsize) {}
|
|
|
|
ARMExidxSyntheticSection::ARMExidxSyntheticSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".ARM.exidx", SHT_ARM_EXIDX,
|
|
SHF_ALLOC | SHF_LINK_ORDER, ctx.arg.wordsize) {}
|
|
|
|
static InputSection *findExidxSection(InputSection *isec) {
|
|
for (InputSection *d : isec->dependentSections)
|
|
if (d->type == SHT_ARM_EXIDX && d->isLive())
|
|
return d;
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isValidExidxSectionDep(InputSection *isec) {
|
|
return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
|
|
isec->getSize() > 0;
|
|
}
|
|
|
|
bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
|
|
if (isec->type == SHT_ARM_EXIDX) {
|
|
if (InputSection *dep = isec->getLinkOrderDep())
|
|
if (isValidExidxSectionDep(dep)) {
|
|
exidxSections.push_back(isec);
|
|
// Every exidxSection is 8 bytes, we need an estimate of
|
|
// size before assignAddresses can be called. Final size
|
|
// will only be known after finalize is called.
|
|
size += 8;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (isValidExidxSectionDep(isec)) {
|
|
executableSections.push_back(isec);
|
|
return false;
|
|
}
|
|
|
|
// FIXME: we do not output a relocation section when --emit-relocs is used
|
|
// as we do not have relocation sections for linker generated table entries
|
|
// and we would have to erase at a late stage relocations from merged entries.
|
|
// Given that exception tables are already position independent and a binary
|
|
// analyzer could derive the relocations we choose to erase the relocations.
|
|
if (ctx.arg.emitRelocs && isec->type == SHT_REL)
|
|
if (InputSectionBase *ex = isec->getRelocatedSection())
|
|
if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// References to .ARM.Extab Sections have bit 31 clear and are not the
|
|
// special EXIDX_CANTUNWIND bit-pattern.
|
|
static bool isExtabRef(uint32_t unwind) {
|
|
return (unwind & 0x80000000) == 0 && unwind != 0x1;
|
|
}
|
|
|
|
// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
|
|
// section Prev, where Cur follows Prev in the table. This can be done if the
|
|
// unwinding instructions in Cur are identical to Prev. Linker generated
|
|
// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
|
|
// InputSection.
|
|
static bool isDuplicateArmExidxSec(Ctx &ctx, InputSection *prev,
|
|
InputSection *cur) {
|
|
// Get the last table Entry from the previous .ARM.exidx section. If Prev is
|
|
// nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
|
|
uint32_t prevUnwind = 1;
|
|
if (prev)
|
|
prevUnwind =
|
|
read32(ctx, prev->content().data() + prev->content().size() - 4);
|
|
if (isExtabRef(prevUnwind))
|
|
return false;
|
|
|
|
// We consider the unwind instructions of an .ARM.exidx table entry
|
|
// a duplicate if the previous unwind instructions if:
|
|
// - Both are the special EXIDX_CANTUNWIND.
|
|
// - Both are the same inline unwind instructions.
|
|
// We do not attempt to follow and check links into .ARM.extab tables as
|
|
// consecutive identical entries are rare and the effort to check that they
|
|
// are identical is high.
|
|
|
|
// If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
|
|
if (cur == nullptr)
|
|
return prevUnwind == 1;
|
|
|
|
for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) {
|
|
uint32_t curUnwind = read32(ctx, cur->content().data() + offset);
|
|
if (isExtabRef(curUnwind) || curUnwind != prevUnwind)
|
|
return false;
|
|
}
|
|
// All table entries in this .ARM.exidx Section can be merged into the
|
|
// previous Section.
|
|
return true;
|
|
}
|
|
|
|
// The .ARM.exidx table must be sorted in ascending order of the address of the
|
|
// functions the table describes. std::optionally duplicate adjacent table
|
|
// entries can be removed. At the end of the function the executableSections
|
|
// must be sorted in ascending order of address, Sentinel is set to the
|
|
// InputSection with the highest address and any InputSections that have
|
|
// mergeable .ARM.exidx table entries are removed from it.
|
|
void ARMExidxSyntheticSection::finalizeContents() {
|
|
// Ensure that any fixed-point iterations after the first see the original set
|
|
// of sections.
|
|
if (!originalExecutableSections.empty())
|
|
executableSections = originalExecutableSections;
|
|
else if (ctx.arg.enableNonContiguousRegions)
|
|
originalExecutableSections = executableSections;
|
|
|
|
// The executableSections and exidxSections that we use to derive the final
|
|
// contents of this SyntheticSection are populated before
|
|
// processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
|
|
// ICF may remove executable InputSections and their dependent .ARM.exidx
|
|
// section that we recorded earlier.
|
|
auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
|
|
llvm::erase_if(exidxSections, isDiscarded);
|
|
// We need to remove discarded InputSections and InputSections without
|
|
// .ARM.exidx sections that if we generated the .ARM.exidx it would be out
|
|
// of range.
|
|
auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
|
|
if (!isec->isLive())
|
|
return true;
|
|
if (findExidxSection(isec))
|
|
return false;
|
|
int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
|
|
return off != llvm::SignExtend64(off, 31);
|
|
};
|
|
llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
|
|
|
|
// Sort the executable sections that may or may not have associated
|
|
// .ARM.exidx sections by order of ascending address. This requires the
|
|
// relative positions of InputSections and OutputSections to be known.
|
|
auto compareByFilePosition = [](const InputSection *a,
|
|
const InputSection *b) {
|
|
OutputSection *aOut = a->getParent();
|
|
OutputSection *bOut = b->getParent();
|
|
|
|
if (aOut != bOut)
|
|
return aOut->addr < bOut->addr;
|
|
return a->outSecOff < b->outSecOff;
|
|
};
|
|
llvm::stable_sort(executableSections, compareByFilePosition);
|
|
sentinel = executableSections.back();
|
|
// std::optionally merge adjacent duplicate entries.
|
|
if (ctx.arg.mergeArmExidx) {
|
|
SmallVector<InputSection *, 0> selectedSections;
|
|
selectedSections.reserve(executableSections.size());
|
|
selectedSections.push_back(executableSections[0]);
|
|
size_t prev = 0;
|
|
for (size_t i = 1; i < executableSections.size(); ++i) {
|
|
InputSection *ex1 = findExidxSection(executableSections[prev]);
|
|
InputSection *ex2 = findExidxSection(executableSections[i]);
|
|
if (!isDuplicateArmExidxSec(ctx, ex1, ex2)) {
|
|
selectedSections.push_back(executableSections[i]);
|
|
prev = i;
|
|
}
|
|
}
|
|
executableSections = std::move(selectedSections);
|
|
}
|
|
// offset is within the SyntheticSection.
|
|
size_t offset = 0;
|
|
size = 0;
|
|
for (InputSection *isec : executableSections) {
|
|
if (InputSection *d = findExidxSection(isec)) {
|
|
d->outSecOff = offset;
|
|
d->parent = getParent();
|
|
offset += d->getSize();
|
|
} else {
|
|
offset += 8;
|
|
}
|
|
}
|
|
// Size includes Sentinel.
|
|
size = offset + 8;
|
|
}
|
|
|
|
InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
|
|
return executableSections.front();
|
|
}
|
|
|
|
// To write the .ARM.exidx table from the ExecutableSections we have three cases
|
|
// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
|
|
// We write the .ARM.exidx section contents and apply its relocations.
|
|
// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
|
|
// must write the contents of an EXIDX_CANTUNWIND directly. We use the
|
|
// start of the InputSection as the purpose of the linker generated
|
|
// section is to terminate the address range of the previous entry.
|
|
// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
|
|
// the table to terminate the address range of the final entry.
|
|
void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
|
|
|
|
// A linker generated CANTUNWIND entry is made up of two words:
|
|
// 0x0 with R_ARM_PREL31 relocation to target.
|
|
// 0x1 with EXIDX_CANTUNWIND.
|
|
uint64_t offset = 0;
|
|
for (InputSection *isec : executableSections) {
|
|
assert(isec->getParent() != nullptr);
|
|
if (InputSection *d = findExidxSection(isec)) {
|
|
for (int dataOffset = 0; dataOffset != (int)d->content().size();
|
|
dataOffset += 4)
|
|
write32(ctx, buf + offset + dataOffset,
|
|
read32(ctx, d->content().data() + dataOffset));
|
|
// Recalculate outSecOff as finalizeAddressDependentContent()
|
|
// may have altered syntheticSection outSecOff.
|
|
d->outSecOff = offset + outSecOff;
|
|
ctx.target->relocateAlloc(*d, buf + offset);
|
|
offset += d->getSize();
|
|
} else {
|
|
// A Linker generated CANTUNWIND section.
|
|
write32(ctx, buf + offset + 0, 0x0);
|
|
write32(ctx, buf + offset + 4, 0x1);
|
|
uint64_t s = isec->getVA();
|
|
uint64_t p = getVA() + offset;
|
|
ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
|
|
offset += 8;
|
|
}
|
|
}
|
|
// Write Sentinel CANTUNWIND entry.
|
|
write32(ctx, buf + offset + 0, 0x0);
|
|
write32(ctx, buf + offset + 4, 0x1);
|
|
uint64_t s = sentinel->getVA(sentinel->getSize());
|
|
uint64_t p = getVA() + offset;
|
|
ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
|
|
assert(size == offset + 8);
|
|
}
|
|
|
|
bool ARMExidxSyntheticSection::isNeeded() const {
|
|
return llvm::any_of(exidxSections,
|
|
[](InputSection *isec) { return isec->isLive(); });
|
|
}
|
|
|
|
ThunkSection::ThunkSection(Ctx &ctx, OutputSection *os, uint64_t off)
|
|
: SyntheticSection(ctx, ".text.thunk", SHT_PROGBITS,
|
|
SHF_ALLOC | SHF_EXECINSTR,
|
|
ctx.arg.emachine == EM_PPC64 ? 16 : 4) {
|
|
this->parent = os;
|
|
this->outSecOff = off;
|
|
}
|
|
|
|
size_t ThunkSection::getSize() const {
|
|
if (roundUpSizeForErrata)
|
|
return alignTo(size, 4096);
|
|
return size;
|
|
}
|
|
|
|
void ThunkSection::addThunk(Thunk *t) {
|
|
thunks.push_back(t);
|
|
t->addSymbols(*this);
|
|
}
|
|
|
|
void ThunkSection::writeTo(uint8_t *buf) {
|
|
for (Thunk *t : thunks)
|
|
t->writeTo(buf + t->offset);
|
|
}
|
|
|
|
InputSection *ThunkSection::getTargetInputSection() const {
|
|
if (thunks.empty())
|
|
return nullptr;
|
|
const Thunk *t = thunks.front();
|
|
return t->getTargetInputSection();
|
|
}
|
|
|
|
bool ThunkSection::assignOffsets() {
|
|
uint64_t off = 0;
|
|
for (Thunk *t : thunks) {
|
|
off = alignToPowerOf2(off, t->alignment);
|
|
t->setOffset(off);
|
|
uint32_t size = t->size();
|
|
t->getThunkTargetSym()->size = size;
|
|
off += size;
|
|
}
|
|
bool changed = off != size;
|
|
size = off;
|
|
return changed;
|
|
}
|
|
|
|
PPC32Got2Section::PPC32Got2Section(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".got2", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 4) {}
|
|
|
|
bool PPC32Got2Section::isNeeded() const {
|
|
// See the comment below. This is not needed if there is no other
|
|
// InputSection.
|
|
for (SectionCommand *cmd : getParent()->commands)
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
|
|
for (InputSection *isec : isd->sections)
|
|
if (isec != this)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void PPC32Got2Section::finalizeContents() {
|
|
// PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
|
|
// .got2 . This function computes outSecOff of each .got2 to be used in
|
|
// PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
|
|
// to collect input sections named ".got2".
|
|
for (SectionCommand *cmd : getParent()->commands)
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
|
|
for (InputSection *isec : isd->sections) {
|
|
// isec->file may be nullptr for MergeSyntheticSection.
|
|
if (isec != this && isec->file)
|
|
isec->file->ppc32Got2 = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If linking position-dependent code then the table will store the addresses
|
|
// directly in the binary so the section has type SHT_PROGBITS. If linking
|
|
// position-independent code the section has type SHT_NOBITS since it will be
|
|
// allocated and filled in by the dynamic linker.
|
|
PPC64LongBranchTargetSection::PPC64LongBranchTargetSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".branch_lt",
|
|
ctx.arg.isPic ? SHT_NOBITS : SHT_PROGBITS,
|
|
SHF_ALLOC | SHF_WRITE, 8) {}
|
|
|
|
uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
|
|
int64_t addend) {
|
|
return getVA() + entry_index.find({sym, addend})->second * 8;
|
|
}
|
|
|
|
std::optional<uint32_t>
|
|
PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
|
|
auto res =
|
|
entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
|
|
if (!res.second)
|
|
return std::nullopt;
|
|
entries.emplace_back(sym, addend);
|
|
return res.first->second;
|
|
}
|
|
|
|
size_t PPC64LongBranchTargetSection::getSize() const {
|
|
return entries.size() * 8;
|
|
}
|
|
|
|
void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
|
|
// If linking non-pic we have the final addresses of the targets and they get
|
|
// written to the table directly. For pic the dynamic linker will allocate
|
|
// the section and fill it.
|
|
if (ctx.arg.isPic)
|
|
return;
|
|
|
|
for (auto entry : entries) {
|
|
const Symbol *sym = entry.first;
|
|
int64_t addend = entry.second;
|
|
assert(sym->getVA(ctx));
|
|
// Need calls to branch to the local entry-point since a long-branch
|
|
// must be a local-call.
|
|
write64(ctx, buf,
|
|
sym->getVA(ctx, addend) +
|
|
getPPC64GlobalEntryToLocalEntryOffset(ctx, sym->stOther));
|
|
buf += 8;
|
|
}
|
|
}
|
|
|
|
bool PPC64LongBranchTargetSection::isNeeded() const {
|
|
// `removeUnusedSyntheticSections()` is called before thunk allocation which
|
|
// is too early to determine if this section will be empty or not. We need
|
|
// Finalized to keep the section alive until after thunk creation. Finalized
|
|
// only gets set to true once `finalizeSections()` is called after thunk
|
|
// creation. Because of this, if we don't create any long-branch thunks we end
|
|
// up with an empty .branch_lt section in the binary.
|
|
return !finalized || !entries.empty();
|
|
}
|
|
|
|
static uint8_t getAbiVersion(Ctx &ctx) {
|
|
// MIPS non-PIC executable gets ABI version 1.
|
|
if (ctx.arg.emachine == EM_MIPS) {
|
|
if (!ctx.arg.isPic && !ctx.arg.relocatable &&
|
|
(ctx.arg.eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
|
|
uint8_t ver = ctx.objectFiles[0]->abiVersion;
|
|
for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
|
|
if (file->abiVersion != ver)
|
|
Err(ctx) << "incompatible ABI version: " << file;
|
|
return ver;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void elf::writeEhdr(Ctx &ctx, uint8_t *buf, Partition &part) {
|
|
memcpy(buf, "\177ELF", 4);
|
|
|
|
auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
|
|
eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
|
|
eHdr->e_ident[EI_DATA] =
|
|
ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB;
|
|
eHdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
eHdr->e_ident[EI_OSABI] = ctx.arg.osabi;
|
|
eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(ctx);
|
|
eHdr->e_machine = ctx.arg.emachine;
|
|
eHdr->e_version = EV_CURRENT;
|
|
eHdr->e_flags = ctx.arg.eflags;
|
|
eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
|
|
eHdr->e_phnum = part.phdrs.size();
|
|
eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
|
|
|
|
if (!ctx.arg.relocatable) {
|
|
eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
|
|
eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
|
|
}
|
|
}
|
|
|
|
template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
|
|
// Write the program header table.
|
|
auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
|
|
for (std::unique_ptr<PhdrEntry> &p : part.phdrs) {
|
|
hBuf->p_type = p->p_type;
|
|
hBuf->p_flags = p->p_flags;
|
|
hBuf->p_offset = p->p_offset;
|
|
hBuf->p_vaddr = p->p_vaddr;
|
|
hBuf->p_paddr = p->p_paddr;
|
|
hBuf->p_filesz = p->p_filesz;
|
|
hBuf->p_memsz = p->p_memsz;
|
|
hBuf->p_align = p->p_align;
|
|
++hBuf;
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, "", SHT_LLVM_PART_EHDR, SHF_ALLOC, 1) {}
|
|
|
|
template <typename ELFT>
|
|
size_t PartitionElfHeaderSection<ELFT>::getSize() const {
|
|
return sizeof(typename ELFT::Ehdr);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
|
|
writeEhdr<ELFT>(ctx, buf, getPartition(ctx));
|
|
|
|
// Loadable partitions are always ET_DYN.
|
|
auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
|
|
eHdr->e_type = ET_DYN;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".phdrs", SHT_LLVM_PART_PHDR, SHF_ALLOC, 1) {}
|
|
|
|
template <typename ELFT>
|
|
size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
|
|
return sizeof(typename ELFT::Phdr) * getPartition(ctx).phdrs.size();
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
|
|
writePhdrs<ELFT>(buf, getPartition(ctx));
|
|
}
|
|
|
|
PartitionIndexSection::PartitionIndexSection(Ctx &ctx)
|
|
: SyntheticSection(ctx, ".rodata", SHT_PROGBITS, SHF_ALLOC, 4) {}
|
|
|
|
size_t PartitionIndexSection::getSize() const {
|
|
return 12 * (ctx.partitions.size() - 1);
|
|
}
|
|
|
|
void PartitionIndexSection::finalizeContents() {
|
|
for (size_t i = 1; i != ctx.partitions.size(); ++i)
|
|
ctx.partitions[i].nameStrTab =
|
|
ctx.mainPart->dynStrTab->addString(ctx.partitions[i].name);
|
|
}
|
|
|
|
void PartitionIndexSection::writeTo(uint8_t *buf) {
|
|
uint64_t va = getVA();
|
|
for (size_t i = 1; i != ctx.partitions.size(); ++i) {
|
|
write32(ctx, buf,
|
|
ctx.mainPart->dynStrTab->getVA() + ctx.partitions[i].nameStrTab -
|
|
va);
|
|
write32(ctx, buf + 4, ctx.partitions[i].elfHeader->getVA() - (va + 4));
|
|
|
|
SyntheticSection *next = i == ctx.partitions.size() - 1
|
|
? ctx.in.partEnd.get()
|
|
: ctx.partitions[i + 1].elfHeader.get();
|
|
write32(ctx, buf + 8, next->getVA() - ctx.partitions[i].elfHeader->getVA());
|
|
|
|
va += 12;
|
|
buf += 12;
|
|
}
|
|
}
|
|
|
|
static bool needsInterpSection(Ctx &ctx) {
|
|
return !ctx.arg.relocatable && !ctx.arg.shared &&
|
|
!ctx.arg.dynamicLinker.empty() && ctx.script->needsInterpSection();
|
|
}
|
|
|
|
bool elf::hasMemtag(Ctx &ctx) {
|
|
return ctx.arg.emachine == EM_AARCH64 &&
|
|
ctx.arg.androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE;
|
|
}
|
|
|
|
// Fully static executables don't support MTE globals at this point in time, as
|
|
// we currently rely on:
|
|
// - A dynamic loader to process relocations, and
|
|
// - Dynamic entries.
|
|
// This restriction could be removed in future by re-using some of the ideas
|
|
// that ifuncs use in fully static executables.
|
|
bool elf::canHaveMemtagGlobals(Ctx &ctx) {
|
|
return hasMemtag(ctx) &&
|
|
(ctx.arg.relocatable || ctx.arg.shared || needsInterpSection(ctx));
|
|
}
|
|
|
|
constexpr char kMemtagAndroidNoteName[] = "Android";
|
|
void MemtagAndroidNote::writeTo(uint8_t *buf) {
|
|
static_assert(
|
|
sizeof(kMemtagAndroidNoteName) == 8,
|
|
"Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it "
|
|
"that way for backwards compatibility.");
|
|
|
|
write32(ctx, buf, sizeof(kMemtagAndroidNoteName));
|
|
write32(ctx, buf + 4, sizeof(uint32_t));
|
|
write32(ctx, buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
|
|
memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
|
|
buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4);
|
|
|
|
uint32_t value = 0;
|
|
value |= ctx.arg.androidMemtagMode;
|
|
if (ctx.arg.androidMemtagHeap)
|
|
value |= ELF::NT_MEMTAG_HEAP;
|
|
// Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
|
|
// binary on Android 11 or 12 will result in a checkfail in the loader.
|
|
if (ctx.arg.androidMemtagStack)
|
|
value |= ELF::NT_MEMTAG_STACK;
|
|
write32(ctx, buf, value); // note value
|
|
}
|
|
|
|
size_t MemtagAndroidNote::getSize() const {
|
|
return sizeof(llvm::ELF::Elf64_Nhdr) +
|
|
/*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) +
|
|
/*descsz=*/sizeof(uint32_t);
|
|
}
|
|
|
|
void PackageMetadataNote::writeTo(uint8_t *buf) {
|
|
write32(ctx, buf, 4);
|
|
write32(ctx, buf + 4, ctx.arg.packageMetadata.size() + 1);
|
|
write32(ctx, buf + 8, FDO_PACKAGING_METADATA);
|
|
memcpy(buf + 12, "FDO", 4);
|
|
memcpy(buf + 16, ctx.arg.packageMetadata.data(),
|
|
ctx.arg.packageMetadata.size());
|
|
}
|
|
|
|
size_t PackageMetadataNote::getSize() const {
|
|
return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
|
|
alignTo(ctx.arg.packageMetadata.size() + 1, 4);
|
|
}
|
|
|
|
// Helper function, return the size of the ULEB128 for 'v', optionally writing
|
|
// it to `*(buf + offset)` if `buf` is non-null.
|
|
static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) {
|
|
if (buf)
|
|
return encodeULEB128(v, buf + offset);
|
|
return getULEB128Size(v);
|
|
}
|
|
|
|
// https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
|
|
constexpr uint64_t kMemtagStepSizeBits = 3;
|
|
constexpr uint64_t kMemtagGranuleSize = 16;
|
|
static size_t
|
|
createMemtagGlobalDescriptors(Ctx &ctx,
|
|
const SmallVector<const Symbol *, 0> &symbols,
|
|
uint8_t *buf = nullptr) {
|
|
size_t sectionSize = 0;
|
|
uint64_t lastGlobalEnd = 0;
|
|
|
|
for (const Symbol *sym : symbols) {
|
|
if (!includeInSymtab(ctx, *sym))
|
|
continue;
|
|
const uint64_t addr = sym->getVA(ctx);
|
|
const uint64_t size = sym->getSize();
|
|
|
|
if (addr <= kMemtagGranuleSize && buf != nullptr)
|
|
Err(ctx) << "address of the tagged symbol \"" << sym->getName()
|
|
<< "\" falls in the ELF header. This is indicative of a "
|
|
"compiler/linker bug";
|
|
if (addr % kMemtagGranuleSize != 0)
|
|
Err(ctx) << "address of the tagged symbol \"" << sym->getName()
|
|
<< "\" at 0x" << Twine::utohexstr(addr)
|
|
<< "\" is not granule (16-byte) aligned";
|
|
if (size == 0)
|
|
Err(ctx) << "size of the tagged symbol \"" << sym->getName()
|
|
<< "\" is not allowed to be zero";
|
|
if (size % kMemtagGranuleSize != 0)
|
|
Err(ctx) << "size of the tagged symbol \"" << sym->getName()
|
|
<< "\" (size 0x" << Twine::utohexstr(size)
|
|
<< ") is not granule (16-byte) aligned";
|
|
|
|
const uint64_t sizeToEncode = size / kMemtagGranuleSize;
|
|
const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize)
|
|
<< kMemtagStepSizeBits;
|
|
if (sizeToEncode < (1 << kMemtagStepSizeBits)) {
|
|
sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize);
|
|
} else {
|
|
sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize);
|
|
sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize);
|
|
}
|
|
lastGlobalEnd = addr + size;
|
|
}
|
|
|
|
return sectionSize;
|
|
}
|
|
|
|
bool MemtagGlobalDescriptors::updateAllocSize(Ctx &ctx) {
|
|
size_t oldSize = getSize();
|
|
std::stable_sort(symbols.begin(), symbols.end(),
|
|
[&ctx = ctx](const Symbol *s1, const Symbol *s2) {
|
|
return s1->getVA(ctx) < s2->getVA(ctx);
|
|
});
|
|
return oldSize != getSize();
|
|
}
|
|
|
|
void MemtagGlobalDescriptors::writeTo(uint8_t *buf) {
|
|
createMemtagGlobalDescriptors(ctx, symbols, buf);
|
|
}
|
|
|
|
size_t MemtagGlobalDescriptors::getSize() const {
|
|
return createMemtagGlobalDescriptors(ctx, symbols);
|
|
}
|
|
|
|
static OutputSection *findSection(Ctx &ctx, StringRef name) {
|
|
for (SectionCommand *cmd : ctx.script->sectionCommands)
|
|
if (auto *osd = dyn_cast<OutputDesc>(cmd))
|
|
if (osd->osec.name == name)
|
|
return &osd->osec;
|
|
return nullptr;
|
|
}
|
|
|
|
static Defined *addOptionalRegular(Ctx &ctx, StringRef name, SectionBase *sec,
|
|
uint64_t val, uint8_t stOther = STV_HIDDEN) {
|
|
Symbol *s = ctx.symtab->find(name);
|
|
if (!s || s->isDefined() || s->isCommon())
|
|
return nullptr;
|
|
|
|
s->resolve(ctx, Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL,
|
|
stOther, STT_NOTYPE, val,
|
|
/*size=*/0, sec});
|
|
s->isUsedInRegularObj = true;
|
|
return cast<Defined>(s);
|
|
}
|
|
|
|
template <class ELFT> void elf::createSyntheticSections(Ctx &ctx) {
|
|
// Add the .interp section first because it is not a SyntheticSection.
|
|
// The removeUnusedSyntheticSections() function relies on the
|
|
// SyntheticSections coming last.
|
|
if (needsInterpSection(ctx)) {
|
|
for (size_t i = 1; i <= ctx.partitions.size(); ++i) {
|
|
InputSection *sec = createInterpSection(ctx);
|
|
sec->partition = i;
|
|
ctx.inputSections.push_back(sec);
|
|
}
|
|
}
|
|
|
|
auto add = [&](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
|
|
|
|
if (ctx.arg.zSectionHeader)
|
|
ctx.in.shStrTab =
|
|
std::make_unique<StringTableSection>(ctx, ".shstrtab", false);
|
|
|
|
ctx.out.programHeaders =
|
|
std::make_unique<OutputSection>(ctx, "", 0, SHF_ALLOC);
|
|
ctx.out.programHeaders->addralign = ctx.arg.wordsize;
|
|
|
|
if (ctx.arg.strip != StripPolicy::All) {
|
|
ctx.in.strTab = std::make_unique<StringTableSection>(ctx, ".strtab", false);
|
|
ctx.in.symTab =
|
|
std::make_unique<SymbolTableSection<ELFT>>(ctx, *ctx.in.strTab);
|
|
ctx.in.symTabShndx = std::make_unique<SymtabShndxSection>(ctx);
|
|
}
|
|
|
|
ctx.in.bss = std::make_unique<BssSection>(ctx, ".bss", 0, 1);
|
|
add(*ctx.in.bss);
|
|
|
|
// If there is a SECTIONS command and a .data.rel.ro section name use name
|
|
// .data.rel.ro.bss so that we match in the .data.rel.ro output section.
|
|
// This makes sure our relro is contiguous.
|
|
bool hasDataRelRo =
|
|
ctx.script->hasSectionsCommand && findSection(ctx, ".data.rel.ro");
|
|
ctx.in.bssRelRo = std::make_unique<BssSection>(
|
|
ctx, hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
|
|
add(*ctx.in.bssRelRo);
|
|
|
|
// Add MIPS-specific sections.
|
|
if (ctx.arg.emachine == EM_MIPS) {
|
|
if (!ctx.arg.shared && ctx.hasDynsym) {
|
|
ctx.in.mipsRldMap = std::make_unique<MipsRldMapSection>(ctx);
|
|
add(*ctx.in.mipsRldMap);
|
|
}
|
|
if ((ctx.in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create(ctx)))
|
|
add(*ctx.in.mipsAbiFlags);
|
|
if ((ctx.in.mipsOptions = MipsOptionsSection<ELFT>::create(ctx)))
|
|
add(*ctx.in.mipsOptions);
|
|
if ((ctx.in.mipsReginfo = MipsReginfoSection<ELFT>::create(ctx)))
|
|
add(*ctx.in.mipsReginfo);
|
|
}
|
|
|
|
StringRef relaDynName = ctx.arg.isRela ? ".rela.dyn" : ".rel.dyn";
|
|
|
|
const unsigned threadCount = ctx.arg.threadCount;
|
|
for (Partition &part : ctx.partitions) {
|
|
auto add = [&](SyntheticSection &sec) {
|
|
sec.partition = part.getNumber(ctx);
|
|
ctx.inputSections.push_back(&sec);
|
|
};
|
|
|
|
if (!part.name.empty()) {
|
|
part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(ctx);
|
|
part.elfHeader->name = part.name;
|
|
add(*part.elfHeader);
|
|
|
|
part.programHeaders =
|
|
std::make_unique<PartitionProgramHeadersSection<ELFT>>(ctx);
|
|
add(*part.programHeaders);
|
|
}
|
|
|
|
if (ctx.arg.buildId != BuildIdKind::None) {
|
|
part.buildId = std::make_unique<BuildIdSection>(ctx);
|
|
add(*part.buildId);
|
|
}
|
|
|
|
// dynSymTab is always present to simplify several finalizeSections
|
|
// functions.
|
|
part.dynStrTab = std::make_unique<StringTableSection>(ctx, ".dynstr", true);
|
|
part.dynSymTab =
|
|
std::make_unique<SymbolTableSection<ELFT>>(ctx, *part.dynStrTab);
|
|
|
|
if (ctx.arg.relocatable)
|
|
continue;
|
|
part.dynamic = std::make_unique<DynamicSection<ELFT>>(ctx);
|
|
|
|
if (hasMemtag(ctx)) {
|
|
part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(ctx);
|
|
add(*part.memtagAndroidNote);
|
|
if (canHaveMemtagGlobals(ctx)) {
|
|
part.memtagGlobalDescriptors =
|
|
std::make_unique<MemtagGlobalDescriptors>(ctx);
|
|
add(*part.memtagGlobalDescriptors);
|
|
}
|
|
}
|
|
|
|
if (ctx.arg.androidPackDynRelocs)
|
|
part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
|
|
ctx, relaDynName, threadCount);
|
|
else
|
|
part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
|
|
ctx, relaDynName, ctx.arg.zCombreloc, threadCount);
|
|
|
|
if (ctx.hasDynsym) {
|
|
add(*part.dynSymTab);
|
|
|
|
part.verSym = std::make_unique<VersionTableSection>(ctx);
|
|
add(*part.verSym);
|
|
|
|
if (!namedVersionDefs(ctx).empty()) {
|
|
part.verDef = std::make_unique<VersionDefinitionSection>(ctx);
|
|
add(*part.verDef);
|
|
}
|
|
|
|
part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(ctx);
|
|
add(*part.verNeed);
|
|
|
|
if (ctx.arg.gnuHash) {
|
|
part.gnuHashTab = std::make_unique<GnuHashTableSection>(ctx);
|
|
add(*part.gnuHashTab);
|
|
}
|
|
|
|
if (ctx.arg.sysvHash) {
|
|
part.hashTab = std::make_unique<HashTableSection>(ctx);
|
|
add(*part.hashTab);
|
|
}
|
|
|
|
add(*part.dynamic);
|
|
add(*part.dynStrTab);
|
|
}
|
|
add(*part.relaDyn);
|
|
|
|
if (ctx.arg.relrPackDynRelocs) {
|
|
part.relrDyn = std::make_unique<RelrSection<ELFT>>(ctx, threadCount);
|
|
add(*part.relrDyn);
|
|
part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>(
|
|
ctx, threadCount, /*isAArch64Auth=*/true);
|
|
add(*part.relrAuthDyn);
|
|
}
|
|
|
|
if (ctx.arg.ehFrameHdr) {
|
|
part.ehFrameHdr = std::make_unique<EhFrameHeader>(ctx);
|
|
add(*part.ehFrameHdr);
|
|
}
|
|
part.ehFrame = std::make_unique<EhFrameSection>(ctx);
|
|
add(*part.ehFrame);
|
|
|
|
if (ctx.arg.emachine == EM_ARM) {
|
|
// This section replaces all the individual .ARM.exidx InputSections.
|
|
part.armExidx = std::make_unique<ARMExidxSyntheticSection>(ctx);
|
|
add(*part.armExidx);
|
|
}
|
|
|
|
if (!ctx.arg.packageMetadata.empty()) {
|
|
part.packageMetadataNote = std::make_unique<PackageMetadataNote>(ctx);
|
|
add(*part.packageMetadataNote);
|
|
}
|
|
}
|
|
|
|
if (ctx.partitions.size() != 1) {
|
|
// Create the partition end marker. This needs to be in partition number 255
|
|
// so that it is sorted after all other partitions. It also has other
|
|
// special handling (see createPhdrs() and combineEhSections()).
|
|
ctx.in.partEnd =
|
|
std::make_unique<BssSection>(ctx, ".part.end", ctx.arg.maxPageSize, 1);
|
|
ctx.in.partEnd->partition = 255;
|
|
add(*ctx.in.partEnd);
|
|
|
|
ctx.in.partIndex = std::make_unique<PartitionIndexSection>(ctx);
|
|
addOptionalRegular(ctx, "__part_index_begin", ctx.in.partIndex.get(), 0);
|
|
addOptionalRegular(ctx, "__part_index_end", ctx.in.partIndex.get(),
|
|
ctx.in.partIndex->getSize());
|
|
add(*ctx.in.partIndex);
|
|
}
|
|
|
|
// Add .got. MIPS' .got is so different from the other archs,
|
|
// it has its own class.
|
|
if (ctx.arg.emachine == EM_MIPS) {
|
|
ctx.in.mipsGot = std::make_unique<MipsGotSection>(ctx);
|
|
add(*ctx.in.mipsGot);
|
|
} else {
|
|
ctx.in.got = std::make_unique<GotSection>(ctx);
|
|
add(*ctx.in.got);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_PPC) {
|
|
ctx.in.ppc32Got2 = std::make_unique<PPC32Got2Section>(ctx);
|
|
add(*ctx.in.ppc32Got2);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_PPC64) {
|
|
ctx.in.ppc64LongBranchTarget =
|
|
std::make_unique<PPC64LongBranchTargetSection>(ctx);
|
|
add(*ctx.in.ppc64LongBranchTarget);
|
|
}
|
|
|
|
ctx.in.gotPlt = std::make_unique<GotPltSection>(ctx);
|
|
add(*ctx.in.gotPlt);
|
|
ctx.in.igotPlt = std::make_unique<IgotPltSection>(ctx);
|
|
add(*ctx.in.igotPlt);
|
|
// Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the
|
|
// section in the absence of PHDRS/SECTIONS commands.
|
|
if (ctx.arg.zRelro &&
|
|
((ctx.script->phdrsCommands.empty() && !ctx.script->hasSectionsCommand) ||
|
|
ctx.script->seenRelroEnd)) {
|
|
ctx.in.relroPadding = std::make_unique<RelroPaddingSection>(ctx);
|
|
add(*ctx.in.relroPadding);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_ARM) {
|
|
ctx.in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(ctx);
|
|
add(*ctx.in.armCmseSGSection);
|
|
}
|
|
|
|
// _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
|
|
// it as a relocation and ensure the referenced section is created.
|
|
if (ctx.sym.globalOffsetTable && ctx.arg.emachine != EM_MIPS) {
|
|
if (ctx.target->gotBaseSymInGotPlt)
|
|
ctx.in.gotPlt->hasGotPltOffRel = true;
|
|
else
|
|
ctx.in.got->hasGotOffRel = true;
|
|
}
|
|
|
|
// We always need to add rel[a].plt to output if it has entries.
|
|
// Even for static linking it can contain R_[*]_IRELATIVE relocations.
|
|
ctx.in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
|
|
ctx, ctx.arg.isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
|
|
/*threadCount=*/1);
|
|
add(*ctx.in.relaPlt);
|
|
|
|
if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) &&
|
|
(ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
|
|
ctx.in.ibtPlt = std::make_unique<IBTPltSection>(ctx);
|
|
add(*ctx.in.ibtPlt);
|
|
}
|
|
|
|
if (ctx.arg.emachine == EM_PPC)
|
|
ctx.in.plt = std::make_unique<PPC32GlinkSection>(ctx);
|
|
else
|
|
ctx.in.plt = std::make_unique<PltSection>(ctx);
|
|
add(*ctx.in.plt);
|
|
ctx.in.iplt = std::make_unique<IpltSection>(ctx);
|
|
add(*ctx.in.iplt);
|
|
|
|
if (ctx.arg.andFeatures || !ctx.aarch64PauthAbiCoreInfo.empty()) {
|
|
ctx.in.gnuProperty = std::make_unique<GnuPropertySection>(ctx);
|
|
add(*ctx.in.gnuProperty);
|
|
}
|
|
|
|
if (ctx.arg.debugNames) {
|
|
ctx.in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(ctx);
|
|
add(*ctx.in.debugNames);
|
|
}
|
|
|
|
if (ctx.arg.gdbIndex) {
|
|
ctx.in.gdbIndex = GdbIndexSection::create<ELFT>(ctx);
|
|
add(*ctx.in.gdbIndex);
|
|
}
|
|
|
|
// .note.GNU-stack is always added when we are creating a re-linkable
|
|
// object file. Other linkers are using the presence of this marker
|
|
// section to control the executable-ness of the stack area, but that
|
|
// is irrelevant these days. Stack area should always be non-executable
|
|
// by default. So we emit this section unconditionally.
|
|
if (ctx.arg.relocatable) {
|
|
ctx.in.gnuStack = std::make_unique<GnuStackSection>(ctx);
|
|
add(*ctx.in.gnuStack);
|
|
}
|
|
|
|
if (ctx.in.symTab)
|
|
add(*ctx.in.symTab);
|
|
if (ctx.in.symTabShndx)
|
|
add(*ctx.in.symTabShndx);
|
|
if (ctx.in.shStrTab)
|
|
add(*ctx.in.shStrTab);
|
|
if (ctx.in.strTab)
|
|
add(*ctx.in.strTab);
|
|
}
|
|
|
|
template void elf::splitSections<ELF32LE>(Ctx &);
|
|
template void elf::splitSections<ELF32BE>(Ctx &);
|
|
template void elf::splitSections<ELF64LE>(Ctx &);
|
|
template void elf::splitSections<ELF64BE>(Ctx &);
|
|
|
|
template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
|
|
function_ref<void(InputSection &)>);
|
|
template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
|
|
function_ref<void(InputSection &)>);
|
|
template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
|
|
function_ref<void(InputSection &)>);
|
|
template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
|
|
function_ref<void(InputSection &)>);
|
|
|
|
template class elf::SymbolTableSection<ELF32LE>;
|
|
template class elf::SymbolTableSection<ELF32BE>;
|
|
template class elf::SymbolTableSection<ELF64LE>;
|
|
template class elf::SymbolTableSection<ELF64BE>;
|
|
|
|
template void elf::writeEhdr<ELF32LE>(Ctx &, uint8_t *Buf, Partition &Part);
|
|
template void elf::writeEhdr<ELF32BE>(Ctx &, uint8_t *Buf, Partition &Part);
|
|
template void elf::writeEhdr<ELF64LE>(Ctx &, uint8_t *Buf, Partition &Part);
|
|
template void elf::writeEhdr<ELF64BE>(Ctx &, uint8_t *Buf, Partition &Part);
|
|
|
|
template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
|
|
template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
|
|
template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
|
|
template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
|
|
|
|
template void elf::createSyntheticSections<ELF32LE>(Ctx &);
|
|
template void elf::createSyntheticSections<ELF32BE>(Ctx &);
|
|
template void elf::createSyntheticSections<ELF64LE>(Ctx &);
|
|
template void elf::createSyntheticSections<ELF64BE>(Ctx &);
|