Jacek Caban 3a51466caf
[LLD][COFF] Add support for delay-load imports on ARM64X (#124600)
For each imported module, emit null-terminated native import entries,
followed by null-terminated EC entries. If a view lacks imports for a
given module, only terminators are emitted. Use ARM64X relocations to
skip native entries in the EC view.

Move `delayLoadHelper` and `tailMergeUnwindInfoChunk` to `SymbolTable`
since they are different for each symbol table.
2025-01-28 13:06:01 +01:00

1116 lines
38 KiB
C++

//===- DLL.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various types of chunks for the DLL import or export
// descriptor tables. They are inherently Windows-specific.
// You need to read Microsoft PE/COFF spec to understand details
// about the data structures.
//
// If you are not particularly interested in linking against Windows
// DLL, you can skip this file, and you should still be able to
// understand the rest of the linker.
//
//===----------------------------------------------------------------------===//
#include "DLL.h"
#include "COFFLinkerContext.h"
#include "Chunks.h"
#include "SymbolTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Path.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::COFF;
namespace lld::coff {
namespace {
// Import table
// A chunk for the import descriptor table.
class HintNameChunk : public NonSectionChunk {
public:
HintNameChunk(StringRef n, uint16_t h) : name(n), hint(h) {}
size_t getSize() const override {
// Starts with 2 byte Hint field, followed by a null-terminated string,
// ends with 0 or 1 byte padding.
return alignTo(name.size() + 3, 2);
}
void writeTo(uint8_t *buf) const override {
memset(buf, 0, getSize());
write16le(buf, hint);
memcpy(buf + 2, name.data(), name.size());
}
private:
StringRef name;
uint16_t hint;
};
// A chunk for the import descriptor table.
class LookupChunk : public NonSectionChunk {
public:
explicit LookupChunk(COFFLinkerContext &ctx, Chunk *c)
: hintName(c), ctx(ctx) {
setAlignment(ctx.config.wordsize);
}
size_t getSize() const override { return ctx.config.wordsize; }
void writeTo(uint8_t *buf) const override {
if (ctx.config.is64())
write64le(buf, hintName->getRVA());
else
write32le(buf, hintName->getRVA());
}
Chunk *hintName;
private:
COFFLinkerContext &ctx;
};
// A chunk for the import descriptor table.
// This chunk represent import-by-ordinal symbols.
// See Microsoft PE/COFF spec 7.1. Import Header for details.
class OrdinalOnlyChunk : public NonSectionChunk {
public:
explicit OrdinalOnlyChunk(COFFLinkerContext &c, uint16_t v)
: ordinal(v), ctx(c) {
setAlignment(ctx.config.wordsize);
}
size_t getSize() const override { return ctx.config.wordsize; }
void writeTo(uint8_t *buf) const override {
// An import-by-ordinal slot has MSB 1 to indicate that
// this is import-by-ordinal (and not import-by-name).
if (ctx.config.is64()) {
write64le(buf, (1ULL << 63) | ordinal);
} else {
write32le(buf, (1ULL << 31) | ordinal);
}
}
uint16_t ordinal;
private:
COFFLinkerContext &ctx;
};
// A chunk for the import descriptor table.
class ImportDirectoryChunk : public NonSectionChunk {
public:
explicit ImportDirectoryChunk(Chunk *n) : dllName(n) { setAlignment(4); }
size_t getSize() const override { return sizeof(ImportDirectoryTableEntry); }
void writeTo(uint8_t *buf) const override {
memset(buf, 0, getSize());
auto *e = (coff_import_directory_table_entry *)(buf);
e->ImportLookupTableRVA = lookupTab->getRVA();
e->NameRVA = dllName->getRVA();
e->ImportAddressTableRVA = addressTab->getRVA();
}
Chunk *dllName;
Chunk *lookupTab;
Chunk *addressTab;
};
// A chunk representing null terminator in the import table.
// Contents of this chunk is always null bytes.
class NullChunk : public NonSectionChunk {
public:
explicit NullChunk(size_t n, uint32_t align) : size(n) {
setAlignment(align);
}
explicit NullChunk(COFFLinkerContext &ctx)
: NullChunk(ctx.config.wordsize, ctx.config.wordsize) {}
explicit NullChunk(COFFLinkerContext &ctx, size_t n)
: NullChunk(n, ctx.config.wordsize) {}
size_t getSize() const override { return size; }
void writeTo(uint8_t *buf) const override {
memset(buf, 0, size);
}
private:
size_t size;
};
// A chunk for ARM64EC auxiliary IAT.
class AuxImportChunk : public NonSectionChunk {
public:
explicit AuxImportChunk(ImportFile *file) : file(file) {
setAlignment(sizeof(uint64_t));
}
size_t getSize() const override { return sizeof(uint64_t); }
void writeTo(uint8_t *buf) const override {
uint64_t impchkVA = 0;
if (file->impchkThunk)
impchkVA =
file->impchkThunk->getRVA() + file->symtab.ctx.config.imageBase;
write64le(buf, impchkVA);
}
void getBaserels(std::vector<Baserel> *res) override {
if (file->impchkThunk)
res->emplace_back(rva, file->symtab.machine);
}
private:
ImportFile *file;
};
static std::vector<std::vector<DefinedImportData *>>
binImports(COFFLinkerContext &ctx,
const std::vector<DefinedImportData *> &imports) {
// Group DLL-imported symbols by DLL name because that's how
// symbols are laid out in the import descriptor table.
auto less = [&ctx](const std::string &a, const std::string &b) {
return ctx.config.dllOrder[a] < ctx.config.dllOrder[b];
};
std::map<std::string, std::vector<DefinedImportData *>, decltype(less)> m(
less);
for (DefinedImportData *sym : imports)
m[sym->getDLLName().lower()].push_back(sym);
std::vector<std::vector<DefinedImportData *>> v;
for (auto &kv : m) {
// Sort symbols by name for each group.
std::vector<DefinedImportData *> &syms = kv.second;
llvm::sort(syms, [](DefinedImportData *a, DefinedImportData *b) {
auto getBaseName = [](DefinedImportData *sym) {
StringRef name = sym->getName();
name.consume_front("__imp_");
// Skip aux_ part of ARM64EC function symbol name.
if (sym->file->impchkThunk)
name.consume_front("aux_");
return name;
};
return getBaseName(a) < getBaseName(b);
});
v.push_back(std::move(syms));
}
return v;
}
// See Microsoft PE/COFF spec 4.3 for details.
// A chunk for the delay import descriptor table etnry.
class DelayDirectoryChunk : public NonSectionChunk {
public:
explicit DelayDirectoryChunk(Chunk *n) : dllName(n) { setAlignment(4); }
size_t getSize() const override {
return sizeof(delay_import_directory_table_entry);
}
void writeTo(uint8_t *buf) const override {
memset(buf, 0, getSize());
auto *e = (delay_import_directory_table_entry *)(buf);
e->Attributes = 1;
e->Name = dllName->getRVA();
e->ModuleHandle = moduleHandle->getRVA();
e->DelayImportAddressTable = addressTab->getRVA();
e->DelayImportNameTable = nameTab->getRVA();
}
Chunk *dllName;
Chunk *moduleHandle;
Chunk *addressTab;
Chunk *nameTab;
};
// Initial contents for delay-loaded functions.
// This code calls __delayLoadHelper2 function to resolve a symbol
// which then overwrites its jump table slot with the result
// for subsequent function calls.
static const uint8_t thunkX64[] = {
0x48, 0x8D, 0x05, 0, 0, 0, 0, // lea rax, [__imp_<FUNCNAME>]
0xE9, 0, 0, 0, 0, // jmp __tailMerge_<lib>
};
static const uint8_t tailMergeX64[] = {
0x51, // push rcx
0x52, // push rdx
0x41, 0x50, // push r8
0x41, 0x51, // push r9
0x48, 0x83, 0xEC, 0x48, // sub rsp, 48h
0x66, 0x0F, 0x7F, 0x04, 0x24, // movdqa xmmword ptr [rsp], xmm0
0x66, 0x0F, 0x7F, 0x4C, 0x24, 0x10, // movdqa xmmword ptr [rsp+10h], xmm1
0x66, 0x0F, 0x7F, 0x54, 0x24, 0x20, // movdqa xmmword ptr [rsp+20h], xmm2
0x66, 0x0F, 0x7F, 0x5C, 0x24, 0x30, // movdqa xmmword ptr [rsp+30h], xmm3
0x48, 0x8B, 0xD0, // mov rdx, rax
0x48, 0x8D, 0x0D, 0, 0, 0, 0, // lea rcx, [___DELAY_IMPORT_...]
0xE8, 0, 0, 0, 0, // call __delayLoadHelper2
0x66, 0x0F, 0x6F, 0x04, 0x24, // movdqa xmm0, xmmword ptr [rsp]
0x66, 0x0F, 0x6F, 0x4C, 0x24, 0x10, // movdqa xmm1, xmmword ptr [rsp+10h]
0x66, 0x0F, 0x6F, 0x54, 0x24, 0x20, // movdqa xmm2, xmmword ptr [rsp+20h]
0x66, 0x0F, 0x6F, 0x5C, 0x24, 0x30, // movdqa xmm3, xmmword ptr [rsp+30h]
0x48, 0x83, 0xC4, 0x48, // add rsp, 48h
0x41, 0x59, // pop r9
0x41, 0x58, // pop r8
0x5A, // pop rdx
0x59, // pop rcx
0xFF, 0xE0, // jmp rax
};
static const uint8_t tailMergeUnwindInfoX64[] = {
0x01, // Version=1, Flags=UNW_FLAG_NHANDLER
0x0a, // Size of prolog
0x05, // Count of unwind codes
0x00, // No frame register
0x0a, 0x82, // Offset 0xa: UWOP_ALLOC_SMALL(0x48)
0x06, 0x02, // Offset 6: UWOP_ALLOC_SMALL(8)
0x04, 0x02, // Offset 4: UWOP_ALLOC_SMALL(8)
0x02, 0x02, // Offset 2: UWOP_ALLOC_SMALL(8)
0x01, 0x02, // Offset 1: UWOP_ALLOC_SMALL(8)
0x00, 0x00 // Padding to align on 32-bits
};
static const uint8_t thunkX86[] = {
0xB8, 0, 0, 0, 0, // mov eax, offset ___imp__<FUNCNAME>
0xE9, 0, 0, 0, 0, // jmp __tailMerge_<lib>
};
static const uint8_t tailMergeX86[] = {
0x51, // push ecx
0x52, // push edx
0x50, // push eax
0x68, 0, 0, 0, 0, // push offset ___DELAY_IMPORT_DESCRIPTOR_<DLLNAME>_dll
0xE8, 0, 0, 0, 0, // call ___delayLoadHelper2@8
0x5A, // pop edx
0x59, // pop ecx
0xFF, 0xE0, // jmp eax
};
static const uint8_t thunkARM[] = {
0x40, 0xf2, 0x00, 0x0c, // mov.w ip, #0 __imp_<FUNCNAME>
0xc0, 0xf2, 0x00, 0x0c, // mov.t ip, #0 __imp_<FUNCNAME>
0x00, 0xf0, 0x00, 0xb8, // b.w __tailMerge_<lib>
};
static const uint8_t tailMergeARM[] = {
0x2d, 0xe9, 0x0f, 0x48, // push.w {r0, r1, r2, r3, r11, lr}
0x0d, 0xf2, 0x10, 0x0b, // addw r11, sp, #16
0x2d, 0xed, 0x10, 0x0b, // vpush {d0, d1, d2, d3, d4, d5, d6, d7}
0x61, 0x46, // mov r1, ip
0x40, 0xf2, 0x00, 0x00, // mov.w r0, #0 DELAY_IMPORT_DESCRIPTOR
0xc0, 0xf2, 0x00, 0x00, // mov.t r0, #0 DELAY_IMPORT_DESCRIPTOR
0x00, 0xf0, 0x00, 0xd0, // bl #0 __delayLoadHelper2
0x84, 0x46, // mov ip, r0
0xbd, 0xec, 0x10, 0x0b, // vpop {d0, d1, d2, d3, d4, d5, d6, d7}
0xbd, 0xe8, 0x0f, 0x48, // pop.w {r0, r1, r2, r3, r11, lr}
0x60, 0x47, // bx ip
};
static const uint8_t thunkARM64[] = {
0x11, 0x00, 0x00, 0x90, // adrp x17, #0 __imp_<FUNCNAME>
0x31, 0x02, 0x00, 0x91, // add x17, x17, #0 :lo12:__imp_<FUNCNAME>
0x00, 0x00, 0x00, 0x14, // b __tailMerge_<lib>
};
static const uint8_t tailMergeARM64[] = {
0xfd, 0x7b, 0xb3, 0xa9, // stp x29, x30, [sp, #-208]!
0xfd, 0x03, 0x00, 0x91, // mov x29, sp
0xe0, 0x07, 0x01, 0xa9, // stp x0, x1, [sp, #16]
0xe2, 0x0f, 0x02, 0xa9, // stp x2, x3, [sp, #32]
0xe4, 0x17, 0x03, 0xa9, // stp x4, x5, [sp, #48]
0xe6, 0x1f, 0x04, 0xa9, // stp x6, x7, [sp, #64]
0xe0, 0x87, 0x02, 0xad, // stp q0, q1, [sp, #80]
0xe2, 0x8f, 0x03, 0xad, // stp q2, q3, [sp, #112]
0xe4, 0x97, 0x04, 0xad, // stp q4, q5, [sp, #144]
0xe6, 0x9f, 0x05, 0xad, // stp q6, q7, [sp, #176]
0xe1, 0x03, 0x11, 0xaa, // mov x1, x17
0x00, 0x00, 0x00, 0x90, // adrp x0, #0 DELAY_IMPORT_DESCRIPTOR
0x00, 0x00, 0x00, 0x91, // add x0, x0, #0 :lo12:DELAY_IMPORT_DESCRIPTOR
0x00, 0x00, 0x00, 0x94, // bl #0 __delayLoadHelper2
0xf0, 0x03, 0x00, 0xaa, // mov x16, x0
0xe6, 0x9f, 0x45, 0xad, // ldp q6, q7, [sp, #176]
0xe4, 0x97, 0x44, 0xad, // ldp q4, q5, [sp, #144]
0xe2, 0x8f, 0x43, 0xad, // ldp q2, q3, [sp, #112]
0xe0, 0x87, 0x42, 0xad, // ldp q0, q1, [sp, #80]
0xe6, 0x1f, 0x44, 0xa9, // ldp x6, x7, [sp, #64]
0xe4, 0x17, 0x43, 0xa9, // ldp x4, x5, [sp, #48]
0xe2, 0x0f, 0x42, 0xa9, // ldp x2, x3, [sp, #32]
0xe0, 0x07, 0x41, 0xa9, // ldp x0, x1, [sp, #16]
0xfd, 0x7b, 0xcd, 0xa8, // ldp x29, x30, [sp], #208
0x00, 0x02, 0x1f, 0xd6, // br x16
};
// A chunk for the delay import thunk.
class ThunkChunkX64 : public NonSectionCodeChunk {
public:
ThunkChunkX64(Defined *i, Chunk *tm) : imp(i), tailMerge(tm) {}
size_t getSize() const override { return sizeof(thunkX64); }
MachineTypes getMachine() const override { return AMD64; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, thunkX64, sizeof(thunkX64));
write32le(buf + 3, imp->getRVA() - rva - 7);
write32le(buf + 8, tailMerge->getRVA() - rva - 12);
}
Defined *imp = nullptr;
Chunk *tailMerge = nullptr;
};
class TailMergeChunkX64 : public NonSectionCodeChunk {
public:
TailMergeChunkX64(Chunk *d, Defined *h) : desc(d), helper(h) {}
size_t getSize() const override { return sizeof(tailMergeX64); }
MachineTypes getMachine() const override { return AMD64; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, tailMergeX64, sizeof(tailMergeX64));
write32le(buf + 39, desc->getRVA() - rva - 43);
write32le(buf + 44, helper->getRVA() - rva - 48);
}
Chunk *desc = nullptr;
Defined *helper = nullptr;
};
class TailMergePDataChunkX64 : public NonSectionChunk {
public:
TailMergePDataChunkX64(Chunk *tm, Chunk *unwind) : tm(tm), unwind(unwind) {
// See
// https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64#struct-runtime_function
setAlignment(4);
}
size_t getSize() const override { return 3 * sizeof(uint32_t); }
MachineTypes getMachine() const override { return AMD64; }
void writeTo(uint8_t *buf) const override {
write32le(buf + 0, tm->getRVA()); // TailMergeChunk start RVA
write32le(buf + 4, tm->getRVA() + tm->getSize()); // TailMergeChunk stop RVA
write32le(buf + 8, unwind->getRVA()); // UnwindInfo RVA
}
Chunk *tm = nullptr;
Chunk *unwind = nullptr;
};
class TailMergeUnwindInfoX64 : public NonSectionChunk {
public:
TailMergeUnwindInfoX64() {
// See
// https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64#struct-unwind_info
setAlignment(4);
}
size_t getSize() const override { return sizeof(tailMergeUnwindInfoX64); }
MachineTypes getMachine() const override { return AMD64; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, tailMergeUnwindInfoX64, sizeof(tailMergeUnwindInfoX64));
}
};
class ThunkChunkX86 : public NonSectionCodeChunk {
public:
ThunkChunkX86(COFFLinkerContext &ctx, Defined *i, Chunk *tm)
: imp(i), tailMerge(tm), ctx(ctx) {}
size_t getSize() const override { return sizeof(thunkX86); }
MachineTypes getMachine() const override { return I386; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, thunkX86, sizeof(thunkX86));
write32le(buf + 1, imp->getRVA() + ctx.config.imageBase);
write32le(buf + 6, tailMerge->getRVA() - rva - 10);
}
void getBaserels(std::vector<Baserel> *res) override {
res->emplace_back(rva + 1, ctx.config.machine);
}
Defined *imp = nullptr;
Chunk *tailMerge = nullptr;
private:
const COFFLinkerContext &ctx;
};
class TailMergeChunkX86 : public NonSectionCodeChunk {
public:
TailMergeChunkX86(COFFLinkerContext &ctx, Chunk *d, Defined *h)
: desc(d), helper(h), ctx(ctx) {}
size_t getSize() const override { return sizeof(tailMergeX86); }
MachineTypes getMachine() const override { return I386; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, tailMergeX86, sizeof(tailMergeX86));
write32le(buf + 4, desc->getRVA() + ctx.config.imageBase);
write32le(buf + 9, helper->getRVA() - rva - 13);
}
void getBaserels(std::vector<Baserel> *res) override {
res->emplace_back(rva + 4, ctx.config.machine);
}
Chunk *desc = nullptr;
Defined *helper = nullptr;
private:
const COFFLinkerContext &ctx;
};
class ThunkChunkARM : public NonSectionCodeChunk {
public:
ThunkChunkARM(COFFLinkerContext &ctx, Defined *i, Chunk *tm)
: imp(i), tailMerge(tm), ctx(ctx) {
setAlignment(2);
}
size_t getSize() const override { return sizeof(thunkARM); }
MachineTypes getMachine() const override { return ARMNT; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, thunkARM, sizeof(thunkARM));
applyMOV32T(buf + 0, imp->getRVA() + ctx.config.imageBase);
applyBranch24T(buf + 8, tailMerge->getRVA() - rva - 12);
}
void getBaserels(std::vector<Baserel> *res) override {
res->emplace_back(rva + 0, IMAGE_REL_BASED_ARM_MOV32T);
}
Defined *imp = nullptr;
Chunk *tailMerge = nullptr;
private:
const COFFLinkerContext &ctx;
};
class TailMergeChunkARM : public NonSectionCodeChunk {
public:
TailMergeChunkARM(COFFLinkerContext &ctx, Chunk *d, Defined *h)
: desc(d), helper(h), ctx(ctx) {
setAlignment(2);
}
size_t getSize() const override { return sizeof(tailMergeARM); }
MachineTypes getMachine() const override { return ARMNT; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, tailMergeARM, sizeof(tailMergeARM));
applyMOV32T(buf + 14, desc->getRVA() + ctx.config.imageBase);
applyBranch24T(buf + 22, helper->getRVA() - rva - 26);
}
void getBaserels(std::vector<Baserel> *res) override {
res->emplace_back(rva + 14, IMAGE_REL_BASED_ARM_MOV32T);
}
Chunk *desc = nullptr;
Defined *helper = nullptr;
private:
const COFFLinkerContext &ctx;
};
class ThunkChunkARM64 : public NonSectionCodeChunk {
public:
ThunkChunkARM64(Defined *i, Chunk *tm) : imp(i), tailMerge(tm) {
setAlignment(4);
}
size_t getSize() const override { return sizeof(thunkARM64); }
MachineTypes getMachine() const override { return ARM64; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, thunkARM64, sizeof(thunkARM64));
applyArm64Addr(buf + 0, imp->getRVA(), rva + 0, 12);
applyArm64Imm(buf + 4, imp->getRVA() & 0xfff, 0);
applyArm64Branch26(buf + 8, tailMerge->getRVA() - rva - 8);
}
Defined *imp = nullptr;
Chunk *tailMerge = nullptr;
};
class TailMergeChunkARM64 : public NonSectionCodeChunk {
public:
TailMergeChunkARM64(Chunk *d, Defined *h) : desc(d), helper(h) {
setAlignment(4);
}
size_t getSize() const override { return sizeof(tailMergeARM64); }
MachineTypes getMachine() const override { return ARM64; }
void writeTo(uint8_t *buf) const override {
memcpy(buf, tailMergeARM64, sizeof(tailMergeARM64));
applyArm64Addr(buf + 44, desc->getRVA(), rva + 44, 12);
applyArm64Imm(buf + 48, desc->getRVA() & 0xfff, 0);
applyArm64Branch26(buf + 52, helper->getRVA() - rva - 52);
}
Chunk *desc = nullptr;
Defined *helper = nullptr;
};
// A chunk for the import descriptor table.
class DelayAddressChunk : public NonSectionChunk {
public:
explicit DelayAddressChunk(COFFLinkerContext &ctx, Chunk *c)
: thunk(c), ctx(ctx) {
setAlignment(ctx.config.wordsize);
}
size_t getSize() const override { return ctx.config.wordsize; }
void writeTo(uint8_t *buf) const override {
if (ctx.config.is64()) {
write64le(buf, thunk->getRVA() + ctx.config.imageBase);
} else {
uint32_t bit = 0;
// Pointer to thumb code must have the LSB set, so adjust it.
if (ctx.config.machine == ARMNT)
bit = 1;
write32le(buf, (thunk->getRVA() + ctx.config.imageBase) | bit);
}
}
void getBaserels(std::vector<Baserel> *res) override {
res->emplace_back(rva, ctx.config.machine);
}
Chunk *thunk;
private:
const COFFLinkerContext &ctx;
};
// Export table
// Read Microsoft PE/COFF spec 5.3 for details.
// A chunk for the export descriptor table.
class ExportDirectoryChunk : public NonSectionChunk {
public:
ExportDirectoryChunk(int baseOrdinal, int maxOrdinal, int nameTabSize,
Chunk *d, Chunk *a, Chunk *n, Chunk *o)
: baseOrdinal(baseOrdinal), maxOrdinal(maxOrdinal),
nameTabSize(nameTabSize), dllName(d), addressTab(a), nameTab(n),
ordinalTab(o) {}
size_t getSize() const override {
return sizeof(export_directory_table_entry);
}
void writeTo(uint8_t *buf) const override {
memset(buf, 0, getSize());
auto *e = (export_directory_table_entry *)(buf);
e->NameRVA = dllName->getRVA();
e->OrdinalBase = baseOrdinal;
e->AddressTableEntries = (maxOrdinal - baseOrdinal) + 1;
e->NumberOfNamePointers = nameTabSize;
e->ExportAddressTableRVA = addressTab->getRVA();
e->NamePointerRVA = nameTab->getRVA();
e->OrdinalTableRVA = ordinalTab->getRVA();
}
uint16_t baseOrdinal;
uint16_t maxOrdinal;
uint16_t nameTabSize;
Chunk *dllName;
Chunk *addressTab;
Chunk *nameTab;
Chunk *ordinalTab;
};
class AddressTableChunk : public NonSectionChunk {
public:
explicit AddressTableChunk(SymbolTable &symtab, size_t baseOrdinal,
size_t maxOrdinal)
: baseOrdinal(baseOrdinal), size((maxOrdinal - baseOrdinal) + 1),
symtab(symtab) {}
size_t getSize() const override { return size * 4; }
void writeTo(uint8_t *buf) const override {
memset(buf, 0, getSize());
for (const Export &e : symtab.exports) {
assert(e.ordinal >= baseOrdinal && "Export symbol has invalid ordinal");
// Subtract the OrdinalBase to get the index.
uint8_t *p = buf + (e.ordinal - baseOrdinal) * 4;
uint32_t bit = 0;
// Pointer to thumb code must have the LSB set, so adjust it.
if (symtab.machine == ARMNT && !e.data)
bit = 1;
if (e.forwardChunk) {
write32le(p, e.forwardChunk->getRVA() | bit);
} else {
assert(cast<Defined>(e.sym)->getRVA() != 0 &&
"Exported symbol unmapped");
write32le(p, cast<Defined>(e.sym)->getRVA() | bit);
}
}
}
private:
size_t baseOrdinal;
size_t size;
const SymbolTable &symtab;
};
class NamePointersChunk : public NonSectionChunk {
public:
explicit NamePointersChunk(std::vector<Chunk *> &v) : chunks(v) {}
size_t getSize() const override { return chunks.size() * 4; }
void writeTo(uint8_t *buf) const override {
for (Chunk *c : chunks) {
write32le(buf, c->getRVA());
buf += 4;
}
}
private:
std::vector<Chunk *> chunks;
};
class ExportOrdinalChunk : public NonSectionChunk {
public:
explicit ExportOrdinalChunk(const SymbolTable &symtab, size_t baseOrdinal,
size_t tableSize)
: baseOrdinal(baseOrdinal), size(tableSize), symtab(symtab) {}
size_t getSize() const override { return size * 2; }
void writeTo(uint8_t *buf) const override {
for (const Export &e : symtab.exports) {
if (e.noname)
continue;
assert(e.ordinal >= baseOrdinal && "Export symbol has invalid ordinal");
// This table stores unbiased indices, so subtract OrdinalBase.
write16le(buf, e.ordinal - baseOrdinal);
buf += 2;
}
}
private:
size_t baseOrdinal;
size_t size;
const SymbolTable &symtab;
};
} // anonymous namespace
void IdataContents::create(COFFLinkerContext &ctx) {
std::vector<std::vector<DefinedImportData *>> v = binImports(ctx, imports);
// In hybrid images, EC and native code are usually very similar,
// resulting in a highly similar set of imported symbols. Consequently,
// their import tables can be shared, with ARM64X relocations handling any
// differences. Identify matching import files used by EC and native code, and
// merge them into a single hybrid import entry.
if (ctx.hybridSymtab) {
for (std::vector<DefinedImportData *> &syms : v) {
std::vector<DefinedImportData *> hybridSyms;
ImportFile *prev = nullptr;
for (DefinedImportData *sym : syms) {
ImportFile *file = sym->file;
// At this stage, symbols are sorted by base name, ensuring that
// compatible import files, if present, are adjacent. Check if the
// current symbol's file imports the same symbol as the previously added
// one (if any and if it was not already merged). Additionally, verify
// that one of them is native while the other is EC. In rare cases,
// separate matching import entries may exist within the same namespace,
// which cannot be merged.
if (!prev || file->isEC() == prev->isEC() ||
!file->isSameImport(prev)) {
// We can't merge the import file, just add it to hybridSyms
// and set prev to its file so that we can try to match the next
// symbol.
hybridSyms.push_back(sym);
prev = file;
continue;
}
// A matching symbol may appear in syms in any order. The native variant
// exposes a subset of EC symbols and chunks, so always use the EC
// variant as the hybrid import file. If the native file was already
// added, replace it with the EC symbol in hybridSyms. Otherwise, the EC
// variant is already pushed, so we can simply merge it.
if (file->isEC()) {
hybridSyms.pop_back();
hybridSyms.push_back(sym);
}
// Merge import files by storing their hybrid form in the corresponding
// file class.
prev->hybridFile = file;
file->hybridFile = prev;
prev = nullptr; // A hybrid import file cannot be merged again.
}
// Sort symbols by type: native-only files first, followed by merged
// hybrid files, and then EC-only files.
llvm::stable_sort(hybridSyms,
[](DefinedImportData *a, DefinedImportData *b) {
if (a->file->hybridFile)
return !b->file->hybridFile && b->file->isEC();
return !a->file->isEC() && b->file->isEC();
});
syms = std::move(hybridSyms);
}
}
// Create .idata contents for each DLL.
for (std::vector<DefinedImportData *> &syms : v) {
// Create lookup and address tables. If they have external names,
// we need to create hintName chunks to store the names.
// If they don't (if they are import-by-ordinals), we store only
// ordinal values to the table.
size_t base = lookups.size();
Chunk *lookupsTerminator = nullptr, *addressesTerminator = nullptr;
for (DefinedImportData *s : syms) {
uint16_t ord = s->getOrdinal();
HintNameChunk *hintChunk = nullptr;
Chunk *lookupsChunk, *addressesChunk;
if (s->getExternalName().empty()) {
lookupsChunk = make<OrdinalOnlyChunk>(ctx, ord);
addressesChunk = make<OrdinalOnlyChunk>(ctx, ord);
} else {
hintChunk = make<HintNameChunk>(s->getExternalName(), ord);
lookupsChunk = make<LookupChunk>(ctx, hintChunk);
addressesChunk = make<LookupChunk>(ctx, hintChunk);
hints.push_back(hintChunk);
}
// Detect the first EC-only import in the hybrid IAT. Emit null chunk
// as a terminator for the native view, and add an ARM64X relocation to
// replace it with the correct import for the EC view.
//
// Additionally, for MSVC compatibility, store the lookup and address
// chunks and append them at the end of EC-only imports, where a null
// terminator chunk would typically be placed. Since they appear after
// the native terminator, they will be ignored in the native view.
// In the EC view, they should act as terminators, so emit ZEROFILL
// relocations overriding them.
if (ctx.hybridSymtab && !lookupsTerminator && s->file->isEC() &&
!s->file->hybridFile) {
lookupsTerminator = lookupsChunk;
addressesTerminator = addressesChunk;
lookupsChunk = make<NullChunk>(ctx);
addressesChunk = make<NullChunk>(ctx);
Arm64XRelocVal relocVal = hintChunk;
if (!hintChunk)
relocVal = (1ULL << 63) | ord;
ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE,
sizeof(uint64_t), lookupsChunk, relocVal);
ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE,
sizeof(uint64_t), addressesChunk, relocVal);
ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL,
sizeof(uint64_t), lookupsTerminator);
ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL,
sizeof(uint64_t), addressesTerminator);
}
lookups.push_back(lookupsChunk);
addresses.push_back(addressesChunk);
if (s->file->isEC()) {
auto chunk = make<AuxImportChunk>(s->file);
auxIat.push_back(chunk);
s->file->impECSym->setLocation(chunk);
chunk = make<AuxImportChunk>(s->file);
auxIatCopy.push_back(chunk);
s->file->auxImpCopySym->setLocation(chunk);
} else if (ctx.hybridSymtab) {
// Fill the auxiliary IAT with null chunks for native-only imports.
auxIat.push_back(make<NullChunk>(ctx));
auxIatCopy.push_back(make<NullChunk>(ctx));
}
}
// Terminate with null values.
lookups.push_back(lookupsTerminator ? lookupsTerminator
: make<NullChunk>(ctx));
addresses.push_back(addressesTerminator ? addressesTerminator
: make<NullChunk>(ctx));
if (ctx.symtabEC) {
auxIat.push_back(make<NullChunk>(ctx));
auxIatCopy.push_back(make<NullChunk>(ctx));
}
for (int i = 0, e = syms.size(); i < e; ++i) {
syms[i]->setLocation(addresses[base + i]);
if (syms[i]->file->hybridFile)
syms[i]->file->hybridFile->impSym->setLocation(addresses[base + i]);
}
// Create the import table header.
dllNames.push_back(make<StringChunk>(syms[0]->getDLLName()));
auto *dir = make<ImportDirectoryChunk>(dllNames.back());
dir->lookupTab = lookups[base];
dir->addressTab = addresses[base];
dirs.push_back(dir);
if (ctx.hybridSymtab) {
// If native-only imports exist, they will appear as a prefix to all
// imports. Emit ARM64X relocations to skip them in the EC view.
uint32_t nativeOnly =
llvm::find_if(syms,
[](DefinedImportData *s) { return s->file->isEC(); }) -
syms.begin();
if (nativeOnly) {
ctx.dynamicRelocs->add(
IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0,
Arm64XRelocVal(
dir, offsetof(ImportDirectoryTableEntry, ImportLookupTableRVA)),
nativeOnly * sizeof(uint64_t));
ctx.dynamicRelocs->add(
IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0,
Arm64XRelocVal(dir, offsetof(ImportDirectoryTableEntry,
ImportAddressTableRVA)),
nativeOnly * sizeof(uint64_t));
}
}
}
// Add null terminator.
dirs.push_back(make<NullChunk>(sizeof(ImportDirectoryTableEntry), 4));
}
std::vector<Chunk *> DelayLoadContents::getChunks() {
std::vector<Chunk *> v;
v.insert(v.end(), dirs.begin(), dirs.end());
v.insert(v.end(), names.begin(), names.end());
v.insert(v.end(), hintNames.begin(), hintNames.end());
v.insert(v.end(), dllNames.begin(), dllNames.end());
return v;
}
std::vector<Chunk *> DelayLoadContents::getDataChunks() {
std::vector<Chunk *> v;
v.insert(v.end(), moduleHandles.begin(), moduleHandles.end());
v.insert(v.end(), addresses.begin(), addresses.end());
return v;
}
uint64_t DelayLoadContents::getDirSize() {
return dirs.size() * sizeof(delay_import_directory_table_entry);
}
void DelayLoadContents::create() {
std::vector<std::vector<DefinedImportData *>> v = binImports(ctx, imports);
// Create .didat contents for each DLL.
for (std::vector<DefinedImportData *> &syms : v) {
// Create the delay import table header.
dllNames.push_back(make<StringChunk>(syms[0]->getDLLName()));
auto *dir = make<DelayDirectoryChunk>(dllNames.back());
size_t base = addresses.size();
ctx.forEachSymtab([&](SymbolTable &symtab) {
if (ctx.hybridSymtab && symtab.isEC()) {
// For hybrid images, emit null-terminated native import entries
// followed by null-terminated EC entries. If a view is missing imports
// for a given module, only terminators are emitted. Emit ARM64X
// relocations to skip native entries in the EC view.
ctx.dynamicRelocs->add(
IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0,
Arm64XRelocVal(dir, offsetof(delay_import_directory_table_entry,
DelayImportAddressTable)),
(addresses.size() - base) * sizeof(uint64_t));
ctx.dynamicRelocs->add(
IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0,
Arm64XRelocVal(dir, offsetof(delay_import_directory_table_entry,
DelayImportNameTable)),
(addresses.size() - base) * sizeof(uint64_t));
}
Chunk *tm = nullptr;
for (DefinedImportData *s : syms) {
// Process only the symbols belonging to the current symtab.
if (symtab.isEC() != s->file->isEC())
continue;
if (!tm) {
tm = newTailMergeChunk(symtab, dir);
Chunk *pdataChunk = newTailMergePDataChunk(symtab, tm);
if (pdataChunk)
pdata.push_back(pdataChunk);
}
Chunk *t = newThunkChunk(s, tm);
auto *a = make<DelayAddressChunk>(ctx, t);
addresses.push_back(a);
s->setLocation(a);
thunks.push_back(t);
StringRef extName = s->getExternalName();
if (extName.empty()) {
names.push_back(make<OrdinalOnlyChunk>(ctx, s->getOrdinal()));
} else {
auto *c = make<HintNameChunk>(extName, 0);
names.push_back(make<LookupChunk>(ctx, c));
hintNames.push_back(c);
// Add a synthetic symbol for this load thunk, using the
// "__imp___load" prefix, in case this thunk needs to be added to the
// list of valid call targets for Control Flow Guard.
StringRef symName = saver().save("__imp___load_" + extName);
s->loadThunkSym =
cast<DefinedSynthetic>(symtab.addSynthetic(symName, t));
}
if (symtab.isEC()) {
auto chunk = make<AuxImportChunk>(s->file);
auxIat.push_back(chunk);
s->file->impECSym->setLocation(chunk);
chunk = make<AuxImportChunk>(s->file);
auxIatCopy.push_back(chunk);
s->file->auxImpCopySym->setLocation(chunk);
} else if (ctx.hybridSymtab) {
// Fill the auxiliary IAT with null chunks for native imports.
auxIat.push_back(make<NullChunk>(ctx));
auxIatCopy.push_back(make<NullChunk>(ctx));
}
}
if (tm) {
thunks.push_back(tm);
StringRef tmName =
saver().save("__tailMerge_" + syms[0]->getDLLName().lower());
symtab.addSynthetic(tmName, tm);
}
// Terminate with null values.
addresses.push_back(make<NullChunk>(ctx, 8));
names.push_back(make<NullChunk>(ctx, 8));
if (ctx.symtabEC) {
auxIat.push_back(make<NullChunk>(ctx, 8));
auxIatCopy.push_back(make<NullChunk>(ctx, 8));
}
});
auto *mh = make<NullChunk>(8, 8);
moduleHandles.push_back(mh);
// Fill the delay import table header fields.
dir->moduleHandle = mh;
dir->addressTab = addresses[base];
dir->nameTab = names[base];
dirs.push_back(dir);
}
ctx.forEachSymtab([&](SymbolTable &symtab) {
if (symtab.tailMergeUnwindInfoChunk)
unwindinfo.push_back(symtab.tailMergeUnwindInfoChunk);
});
// Add null terminator.
dirs.push_back(
make<NullChunk>(sizeof(delay_import_directory_table_entry), 4));
}
Chunk *DelayLoadContents::newTailMergeChunk(SymbolTable &symtab, Chunk *dir) {
auto helper = cast<Defined>(symtab.delayLoadHelper);
switch (symtab.machine) {
case AMD64:
case ARM64EC:
return make<TailMergeChunkX64>(dir, helper);
case I386:
return make<TailMergeChunkX86>(ctx, dir, helper);
case ARMNT:
return make<TailMergeChunkARM>(ctx, dir, helper);
case ARM64:
return make<TailMergeChunkARM64>(dir, helper);
default:
llvm_unreachable("unsupported machine type");
}
}
Chunk *DelayLoadContents::newTailMergePDataChunk(SymbolTable &symtab,
Chunk *tm) {
switch (symtab.machine) {
case AMD64:
case ARM64EC:
if (!symtab.tailMergeUnwindInfoChunk)
symtab.tailMergeUnwindInfoChunk = make<TailMergeUnwindInfoX64>();
return make<TailMergePDataChunkX64>(tm, symtab.tailMergeUnwindInfoChunk);
// FIXME: Add support for other architectures.
default:
return nullptr; // Just don't generate unwind info.
}
}
Chunk *DelayLoadContents::newThunkChunk(DefinedImportData *s,
Chunk *tailMerge) {
switch (s->file->getMachineType()) {
case AMD64:
case ARM64EC:
return make<ThunkChunkX64>(s, tailMerge);
case I386:
return make<ThunkChunkX86>(ctx, s, tailMerge);
case ARMNT:
return make<ThunkChunkARM>(ctx, s, tailMerge);
case ARM64:
return make<ThunkChunkARM64>(s, tailMerge);
default:
llvm_unreachable("unsupported machine type");
}
}
void createEdataChunks(SymbolTable &symtab, std::vector<Chunk *> &chunks) {
unsigned baseOrdinal = 1 << 16, maxOrdinal = 0;
for (Export &e : symtab.exports) {
baseOrdinal = std::min(baseOrdinal, (unsigned)e.ordinal);
maxOrdinal = std::max(maxOrdinal, (unsigned)e.ordinal);
}
// Ordinals must start at 1 as suggested in:
// https://learn.microsoft.com/en-us/cpp/build/reference/export-exports-a-function?view=msvc-170
assert(baseOrdinal >= 1);
auto *dllName =
make<StringChunk>(sys::path::filename(symtab.ctx.config.outputFile));
auto *addressTab = make<AddressTableChunk>(symtab, baseOrdinal, maxOrdinal);
std::vector<Chunk *> names;
for (Export &e : symtab.exports)
if (!e.noname)
names.push_back(make<StringChunk>(e.exportName));
std::vector<Chunk *> forwards;
for (Export &e : symtab.exports) {
if (e.forwardTo.empty())
continue;
e.forwardChunk = make<StringChunk>(e.forwardTo);
forwards.push_back(e.forwardChunk);
}
auto *nameTab = make<NamePointersChunk>(names);
auto *ordinalTab =
make<ExportOrdinalChunk>(symtab, baseOrdinal, names.size());
auto *dir =
make<ExportDirectoryChunk>(baseOrdinal, maxOrdinal, names.size(), dllName,
addressTab, nameTab, ordinalTab);
chunks.push_back(dir);
chunks.push_back(dllName);
chunks.push_back(addressTab);
chunks.push_back(nameTab);
chunks.push_back(ordinalTab);
chunks.insert(chunks.end(), names.begin(), names.end());
chunks.insert(chunks.end(), forwards.begin(), forwards.end());
}
} // namespace lld::coff