mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 08:26:08 +00:00

Without this patch, clang will not wrap in an ElaboratedType node types written without a keyword and nested name qualifier, which goes against the intent that we should produce an AST which retains enough details to recover how things are written. The lack of this sugar is incompatible with the intent of the type printer default policy, which is to print types as written, but to fall back and print them fully qualified when they are desugared. An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still requires pointer alignment due to pre-existing bug in the TypeLoc buffer handling. --- Troubleshooting list to deal with any breakage seen with this patch: 1) The most likely effect one would see by this patch is a change in how a type is printed. The type printer will, by design and default, print types as written. There are customization options there, but not that many, and they mainly apply to how to print a type that we somehow failed to track how it was written. This patch fixes a problem where we failed to distinguish between a type that was written without any elaborated-type qualifiers, such as a 'struct'/'class' tags and name spacifiers such as 'std::', and one that has been stripped of any 'metadata' that identifies such, the so called canonical types. Example: ``` namespace foo { struct A {}; A a; }; ``` If one were to print the type of `foo::a`, prior to this patch, this would result in `foo::A`. This is how the type printer would have, by default, printed the canonical type of A as well. As soon as you add any name qualifiers to A, the type printer would suddenly start accurately printing the type as written. This patch will make it print it accurately even when written without qualifiers, so we will just print `A` for the initial example, as the user did not really write that `foo::` namespace qualifier. 2) This patch could expose a bug in some AST matcher. Matching types is harder to get right when there is sugar involved. For example, if you want to match a type against being a pointer to some type A, then you have to account for getting a type that is sugar for a pointer to A, or being a pointer to sugar to A, or both! Usually you would get the second part wrong, and this would work for a very simple test where you don't use any name qualifiers, but you would discover is broken when you do. The usual fix is to either use the matcher which strips sugar, which is annoying to use as for example if you match an N level pointer, you have to put N+1 such matchers in there, beginning to end and between all those levels. But in a lot of cases, if the property you want to match is present in the canonical type, it's easier and faster to just match on that... This goes with what is said in 1), if you want to match against the name of a type, and you want the name string to be something stable, perhaps matching on the name of the canonical type is the better choice. 3) This patch could expose a bug in how you get the source range of some TypeLoc. For some reason, a lot of code is using getLocalSourceRange(), which only looks at the given TypeLoc node. This patch introduces a new, and more common TypeLoc node which contains no source locations on itself. This is not an inovation here, and some other, more rare TypeLoc nodes could also have this property, but if you use getLocalSourceRange on them, it's not going to return any valid locations, because it doesn't have any. The right fix here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive into the inner TypeLoc to get the source range if it doesn't find it on the top level one. You can use getLocalSourceRange if you are really into micro-optimizations and you have some outside knowledge that the TypeLocs you are dealing with will always include some source location. 4) Exposed a bug somewhere in the use of the normal clang type class API, where you have some type, you want to see if that type is some particular kind, you try a `dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match. Again, like 2), this would usually have been tested poorly with some simple tests with no qualifications, and would have been broken had there been any other kind of type sugar, be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType. The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper into the type. Or use `getAsAdjusted` when dealing with TypeLocs. For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast. 5) It could be a bug in this patch perhaps. Let me know if you need any help! Signed-off-by: Matheus Izvekov <mizvekov@gmail.com> Differential Revision: https://reviews.llvm.org/D112374
691 lines
18 KiB
C++
691 lines
18 KiB
C++
// RUN: %clang_cc1 -triple %itanium_abi_triple -pedantic -verify %s
|
|
// RUN: %clang_cc1 -triple %itanium_abi_triple -pedantic -verify -std=c++98 %s
|
|
// RUN: %clang_cc1 -triple %itanium_abi_triple -pedantic -verify -std=c++11 %s
|
|
|
|
int* f(int) { return 0; }
|
|
float* f(float) { return 0; }
|
|
void f();
|
|
|
|
void test_f(int iv, float fv) {
|
|
float* fp = f(fv);
|
|
int* ip = f(iv);
|
|
}
|
|
|
|
int* g(int, float, int); // expected-note {{candidate function}}
|
|
float* g(int, int, int);
|
|
double* g(int, float, float); // expected-note {{candidate function}}
|
|
char* g(int, float, ...);
|
|
void g();
|
|
|
|
void test_g(int iv, float fv) {
|
|
int* ip1 = g(iv, fv, 0);
|
|
float* fp1 = g(iv, iv, 0);
|
|
double* dp1 = g(iv, fv, fv);
|
|
char* cp1 = g(0, 0);
|
|
char* cp2 = g(0, 0, 0, iv, fv);
|
|
|
|
double* dp2 = g(0, fv, 1.5); // expected-error {{call to 'g' is ambiguous}}
|
|
}
|
|
|
|
double* h(double f);
|
|
int* h(int);
|
|
|
|
void test_h(float fv, unsigned char cv) {
|
|
double* dp = h(fv);
|
|
int* ip = h(cv);
|
|
}
|
|
|
|
int* i(int);
|
|
double* i(long);
|
|
|
|
void test_i(short sv, int iv, long lv, unsigned char ucv) {
|
|
int* ip1 = i(sv);
|
|
int* ip2 = i(iv);
|
|
int* ip3 = i(ucv);
|
|
double* dp1 = i(lv);
|
|
}
|
|
|
|
int* j(void*);
|
|
double* j(bool);
|
|
|
|
void test_j(int* ip) {
|
|
int* ip1 = j(ip);
|
|
}
|
|
|
|
int* k(char*);
|
|
double* k(bool);
|
|
|
|
void test_k() {
|
|
int* ip1 = k("foo");
|
|
#if __cplusplus <= 199711L
|
|
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
|
|
#else
|
|
// expected-error@-4 {{cannot initialize a variable of type 'int *' with an rvalue of type 'double *'}}
|
|
#endif
|
|
|
|
int* ip2 = k(("foo"));
|
|
#if __cplusplus <= 199711L
|
|
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
|
|
#else
|
|
// expected-error@-4 {{cannot initialize a variable of type 'int *' with an rvalue of type 'double *'}}
|
|
#endif
|
|
double* dp1 = k(L"foo");
|
|
}
|
|
|
|
int* l(wchar_t*);
|
|
double* l(bool);
|
|
|
|
void test_l() {
|
|
int* ip1 = l(L"foo");
|
|
#if __cplusplus <= 199711L
|
|
// expected-warning@-2 {{conversion from string literal to 'wchar_t *' is deprecated}}
|
|
#else
|
|
// expected-error@-4 {{cannot initialize a variable of type 'int *' with an rvalue of type 'double *'}}
|
|
#endif
|
|
double* dp1 = l("foo");
|
|
}
|
|
|
|
int* m(const char*);
|
|
double* m(char*);
|
|
|
|
void test_m() {
|
|
int* ip = m("foo");
|
|
}
|
|
|
|
int* n(char*);
|
|
double* n(void*);
|
|
class E;
|
|
|
|
void test_n(E* e) {
|
|
char ca[7];
|
|
int* ip1 = n(ca);
|
|
int* ip2 = n("foo");
|
|
#if __cplusplus <= 199711L
|
|
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
|
|
#else
|
|
// expected-warning@-4 {{ISO C++11 does not allow conversion from string literal to 'char *'}}
|
|
#endif
|
|
float fa[7];
|
|
double* dp1 = n(fa);
|
|
|
|
double* dp2 = n(e);
|
|
}
|
|
|
|
enum PromotesToInt {
|
|
PromotesToIntValue = -1
|
|
};
|
|
|
|
enum PromotesToUnsignedInt {
|
|
PromotesToUnsignedIntValue = __INT_MAX__ * 2U
|
|
};
|
|
|
|
int* o(int);
|
|
double* o(unsigned int);
|
|
float* o(long);
|
|
|
|
void test_o() {
|
|
int* ip1 = o(PromotesToIntValue);
|
|
double* dp1 = o(PromotesToUnsignedIntValue);
|
|
}
|
|
|
|
int* p(int);
|
|
double* p(double);
|
|
|
|
void test_p() {
|
|
int* ip = p((short)1);
|
|
double* dp = p(1.0f);
|
|
}
|
|
|
|
struct Bits {
|
|
signed short int_bitfield : 5;
|
|
unsigned int uint_bitfield : 8;
|
|
};
|
|
|
|
int* bitfields(int, int);
|
|
float* bitfields(unsigned int, int);
|
|
|
|
void test_bitfield(Bits bits, int x) {
|
|
int* ip = bitfields(bits.int_bitfield, 0);
|
|
float* fp = bitfields(bits.uint_bitfield, 0u);
|
|
}
|
|
|
|
int* multiparm(long, int, long); // expected-note {{candidate function}}
|
|
float* multiparm(int, int, int); // expected-note {{candidate function}}
|
|
double* multiparm(int, int, short); // expected-note {{candidate function}}
|
|
|
|
void test_multiparm(long lv, short sv, int iv) {
|
|
int* ip1 = multiparm(lv, iv, lv);
|
|
int* ip2 = multiparm(lv, sv, lv);
|
|
float* fp1 = multiparm(iv, iv, iv);
|
|
float* fp2 = multiparm(sv, iv, iv);
|
|
double* dp1 = multiparm(sv, sv, sv);
|
|
double* dp2 = multiparm(iv, sv, sv);
|
|
multiparm(sv, sv, lv); // expected-error {{call to 'multiparm' is ambiguous}}
|
|
}
|
|
|
|
// Test overloading based on qualification vs. no qualification
|
|
// conversion.
|
|
int* quals1(int const * p);
|
|
char* quals1(int * p);
|
|
|
|
int* quals2(int const * const * pp);
|
|
char* quals2(int * * pp);
|
|
|
|
int* quals3(int const * * const * ppp);
|
|
char* quals3(int *** ppp);
|
|
|
|
void test_quals(int * p, int * * pp, int * * * ppp) {
|
|
char* q1 = quals1(p);
|
|
char* q2 = quals2(pp);
|
|
char* q3 = quals3(ppp);
|
|
}
|
|
|
|
// Test overloading based on qualification ranking (C++ 13.3.2)p3.
|
|
int* quals_rank1(int const * p);
|
|
float* quals_rank1(int const volatile *p);
|
|
char* quals_rank1(char*);
|
|
double* quals_rank1(const char*);
|
|
|
|
int* quals_rank2(int const * const * pp);
|
|
float* quals_rank2(int * const * pp);
|
|
|
|
void quals_rank3(int const * const * const volatile * p); // expected-note{{candidate function}}
|
|
void quals_rank3(int const * const volatile * const * p); // expected-note{{candidate function}}
|
|
|
|
void quals_rank3(int const *); // expected-note{{candidate function}}
|
|
void quals_rank3(int volatile *); // expected-note{{candidate function}}
|
|
|
|
void test_quals_ranking(int * p, int volatile *pq, int * * pp, int * * * ppp) {
|
|
int* q1 = quals_rank1(p);
|
|
float* q2 = quals_rank1(pq);
|
|
double* q3 = quals_rank1("string literal");
|
|
char a[17];
|
|
const char* ap = a;
|
|
char* q4 = quals_rank1(a);
|
|
double* q5 = quals_rank1(ap);
|
|
|
|
float* q6 = quals_rank2(pp);
|
|
|
|
quals_rank3(ppp); // expected-error {{call to 'quals_rank3' is ambiguous}}
|
|
|
|
quals_rank3(p); // expected-error {{call to 'quals_rank3' is ambiguous}}
|
|
quals_rank3(pq);
|
|
}
|
|
|
|
// Test overloading based on derived-to-base conversions
|
|
class A { };
|
|
class B : public A { };
|
|
class C : public B { };
|
|
class D : public C { };
|
|
|
|
int* derived1(A*);
|
|
char* derived1(const A*);
|
|
float* derived1(void*);
|
|
|
|
int* derived2(A*);
|
|
float* derived2(B*);
|
|
|
|
int* derived3(A*);
|
|
float* derived3(const B*);
|
|
char* derived3(C*);
|
|
|
|
void test_derived(B* b, B const* bc, C* c, const C* cc, void* v, D* d) {
|
|
int* d1 = derived1(b);
|
|
char* d2 = derived1(bc);
|
|
int* d3 = derived1(c);
|
|
char* d4 = derived1(cc);
|
|
float* d5 = derived1(v);
|
|
|
|
float* d6 = derived2(b);
|
|
float* d7 = derived2(c);
|
|
|
|
char* d8 = derived3(d);
|
|
}
|
|
|
|
void derived4(C*); // expected-note{{candidate function not viable: cannot convert from base class pointer 'A *' to derived class pointer 'C *' for 1st argument}}
|
|
|
|
void test_base(A* a) {
|
|
derived4(a); // expected-error{{no matching function for call to 'derived4}}
|
|
}
|
|
|
|
// Test overloading of references.
|
|
// (FIXME: tests binding to determine candidate sets, not overload
|
|
// resolution per se).
|
|
int* intref(int&);
|
|
float* intref(const int&);
|
|
|
|
void intref_test() {
|
|
float* ir1 = intref(5);
|
|
float* ir2 = intref(5.5); // expected-warning{{implicit conversion from 'double' to 'int' changes value from 5.5 to 5}}
|
|
}
|
|
|
|
void derived5(C&); // expected-note{{candidate function not viable: cannot bind base class object of type 'A' to derived class reference 'C &' for 1st argument}}
|
|
|
|
void test_base(A& a) {
|
|
derived5(a); // expected-error{{no matching function for call to 'derived5}}
|
|
}
|
|
|
|
// Test reference binding vs. standard conversions.
|
|
int& bind_vs_conv(const double&);
|
|
float& bind_vs_conv(int);
|
|
|
|
void bind_vs_conv_test()
|
|
{
|
|
int& i1 = bind_vs_conv(1.0f);
|
|
float& f1 = bind_vs_conv((short)1);
|
|
}
|
|
|
|
// Test that cv-qualifiers get subsumed in the reference binding.
|
|
struct X { };
|
|
struct Y { };
|
|
struct Z : X, Y { };
|
|
|
|
int& cvqual_subsume(X&); // expected-note{{candidate function}}
|
|
float& cvqual_subsume(const Y&); // expected-note{{candidate function}}
|
|
|
|
int& cvqual_subsume2(X&); // expected-note{{candidate function}}
|
|
float& cvqual_subsume2(volatile Y&); // expected-note{{candidate function}}
|
|
|
|
void cvqual_subsume_test(Z z) {
|
|
cvqual_subsume(z); // expected-error{{call to 'cvqual_subsume' is ambiguous}}
|
|
cvqual_subsume2(z); // expected-error{{call to 'cvqual_subsume2' is ambiguous}}
|
|
}
|
|
|
|
// Test overloading with cv-qualification differences in reference
|
|
// binding.
|
|
int& cvqual_diff(X&);
|
|
float& cvqual_diff(const X&);
|
|
|
|
void cvqual_diff_test(X x, Z z) {
|
|
int& i1 = cvqual_diff(x);
|
|
int& i2 = cvqual_diff(z);
|
|
}
|
|
|
|
// Test overloading with derived-to-base differences in reference
|
|
// binding.
|
|
struct Z2 : Z { };
|
|
|
|
int& db_rebind(X&);
|
|
long& db_rebind(Y&);
|
|
float& db_rebind(Z&);
|
|
|
|
void db_rebind_test(Z2 z2) {
|
|
float& f1 = db_rebind(z2);
|
|
}
|
|
|
|
class string { };
|
|
class opt : public string { };
|
|
|
|
struct SR {
|
|
SR(const string&);
|
|
};
|
|
|
|
void f(SR) { }
|
|
|
|
void g(opt o) {
|
|
f(o);
|
|
}
|
|
|
|
|
|
namespace PR5756 {
|
|
int &a(void*, int);
|
|
float &a(void*, float);
|
|
void b() {
|
|
int &ir = a(0,0);
|
|
(void)ir;
|
|
}
|
|
}
|
|
|
|
// Tests the exact text used to note the candidates
|
|
namespace test1 {
|
|
template <class T>
|
|
void foo(T t, unsigned N); // expected-note {{candidate function template not viable: no known conversion from 'const char[6]' to 'unsigned int' for 2nd argument}}
|
|
void foo(int n, char N); // expected-note {{candidate function not viable: no known conversion from 'const char[6]' to 'char' for 2nd argument}}
|
|
void foo(int n, const char *s, int t); // expected-note {{candidate function not viable: requires 3 arguments, but 2 were provided}}
|
|
void foo(int n, const char *s, int t, ...); // expected-note {{candidate function not viable: requires at least 3 arguments, but 2 were provided}}
|
|
void foo(int n, const char *s, int t, int u = 0); // expected-note {{candidate function not viable: requires at least 3 arguments, but 2 were provided}}
|
|
|
|
// PR 11857
|
|
void foo(int n); // expected-note {{candidate function not viable: requires single argument 'n', but 2 arguments were provided}}
|
|
void foo(unsigned n = 10); // expected-note {{candidate function not viable: allows at most single argument 'n', but 2 arguments were provided}}
|
|
void bar(int n, int u = 0); // expected-note {{candidate function not viable: requires at least argument 'n', but no arguments were provided}}
|
|
void baz(int n = 0, int u = 0); // expected-note {{candidate function not viable: requires at most 2 arguments, but 3 were provided}}
|
|
|
|
void test() {
|
|
foo(4, "hello"); //expected-error {{no matching function for call to 'foo'}}
|
|
bar(); //expected-error {{no matching function for call to 'bar'}}
|
|
baz(3, 4, 5); // expected-error {{no matching function for call to 'baz'}}
|
|
}
|
|
}
|
|
|
|
// PR 6014
|
|
namespace test2 {
|
|
struct QFixed {
|
|
QFixed(int i);
|
|
QFixed(long i);
|
|
};
|
|
|
|
bool operator==(const QFixed &f, int i);
|
|
|
|
class qrgb666 {
|
|
inline operator unsigned int () const;
|
|
|
|
inline bool operator==(const qrgb666 &v) const;
|
|
inline bool operator!=(const qrgb666 &v) const { return !(*this == v); }
|
|
};
|
|
}
|
|
|
|
// PR 6117
|
|
namespace IncompleteConversion {
|
|
struct Complete {};
|
|
struct Incomplete;
|
|
|
|
void completeFunction(Complete *); // expected-note 2 {{cannot convert argument of incomplete type}}
|
|
void completeFunction(Complete &); // expected-note 2 {{cannot convert argument of incomplete type}}
|
|
|
|
void testTypeConversion(Incomplete *P) {
|
|
completeFunction(P); // expected-error {{no matching function for call to 'completeFunction'}}
|
|
completeFunction(*P); // expected-error {{no matching function for call to 'completeFunction'}}
|
|
}
|
|
|
|
void incompletePointerFunction(Incomplete *); // expected-note {{candidate function not viable: cannot convert argument of incomplete type 'Incomplete' to 'Incomplete *' for 1st argument; take the address of the argument with &}}
|
|
void incompleteReferenceFunction(Incomplete &); // expected-note {{candidate function not viable: cannot convert argument of incomplete type 'Incomplete *' to 'Incomplete &' for 1st argument; dereference the argument with *}}
|
|
|
|
void testPointerReferenceConversion(Incomplete &reference, Incomplete *pointer) {
|
|
incompletePointerFunction(reference); // expected-error {{no matching function for call to 'incompletePointerFunction'}}
|
|
incompleteReferenceFunction(pointer); // expected-error {{no matching function for call to 'incompleteReferenceFunction'}}
|
|
}
|
|
}
|
|
|
|
namespace DerivedToBaseVsVoid {
|
|
struct A { };
|
|
struct B : A { };
|
|
|
|
float &f(void *);
|
|
int &f(const A*);
|
|
|
|
void g(B *b) {
|
|
int &ir = f(b);
|
|
}
|
|
}
|
|
|
|
// PR 6398 + PR 6421
|
|
namespace test4 {
|
|
class A;
|
|
class B {
|
|
static void foo(); // expected-note {{not viable}}
|
|
static void foo(int*); // expected-note {{not viable}}
|
|
static void foo(long*); // expected-note {{not viable}}
|
|
|
|
void bar(A *a) {
|
|
foo(a); // expected-error {{no matching function for call}}
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace DerivedToBase {
|
|
struct A { };
|
|
struct B : A { };
|
|
struct C : B { };
|
|
|
|
int &f0(const A&);
|
|
float &f0(B);
|
|
|
|
void g() {
|
|
float &fr = f0(C());
|
|
}
|
|
}
|
|
|
|
namespace PR6483 {
|
|
struct X0 {
|
|
operator const unsigned int & () const;
|
|
};
|
|
|
|
struct X1 {
|
|
operator unsigned int & () const;
|
|
};
|
|
|
|
void f0(const bool &);
|
|
void f1(bool &); // expected-note 2{{not viable}}
|
|
|
|
void g(X0 x0, X1 x1) {
|
|
f0(x0);
|
|
f1(x0); // expected-error{{no matching function for call}}
|
|
f0(x1);
|
|
f1(x1); // expected-error{{no matching function for call}}
|
|
}
|
|
}
|
|
|
|
namespace PR6078 {
|
|
struct A {
|
|
A(short); // expected-note{{candidate constructor}}
|
|
A(long); // expected-note{{candidate constructor}}
|
|
};
|
|
struct S {
|
|
typedef void ft(A);
|
|
operator ft*();
|
|
};
|
|
|
|
void f() {
|
|
S()(0); // expected-error{{conversion from 'int' to 'A' is ambiguous}}
|
|
}
|
|
}
|
|
|
|
namespace PR6177 {
|
|
struct String { String(char const*); };
|
|
|
|
void f(bool const volatile&);
|
|
int &f(String);
|
|
|
|
void g() { int &r = f(""); }
|
|
}
|
|
|
|
namespace PR7095 {
|
|
struct X { };
|
|
|
|
struct Y {
|
|
operator const X*();
|
|
|
|
private:
|
|
operator X*();
|
|
};
|
|
|
|
void f(const X *);
|
|
void g(Y y) { f(y); }
|
|
}
|
|
|
|
namespace PR7224 {
|
|
class A {};
|
|
class B : public A {};
|
|
|
|
int &foo(A *const d);
|
|
float &foo(const A *const d);
|
|
|
|
void bar()
|
|
{
|
|
B *const d = 0;
|
|
B const *const d2 = 0;
|
|
int &ir = foo(d);
|
|
float &fr = foo(d2);
|
|
}
|
|
}
|
|
|
|
namespace NontrivialSubsequence {
|
|
struct X0;
|
|
|
|
class A {
|
|
operator X0 *();
|
|
public:
|
|
operator const X0 *();
|
|
};
|
|
|
|
A a;
|
|
void foo( void const * );
|
|
|
|
void g() {
|
|
foo(a);
|
|
}
|
|
}
|
|
|
|
// rdar://rdar8499524
|
|
namespace rdar8499524 {
|
|
struct W {};
|
|
struct S {
|
|
S(...);
|
|
};
|
|
|
|
void g(const S&);
|
|
void f() {
|
|
g(W());
|
|
}
|
|
}
|
|
|
|
namespace rdar9173984 {
|
|
template <typename T, unsigned long N> int &f(const T (&)[N]);
|
|
template <typename T> float &f(const T *);
|
|
|
|
void test() {
|
|
int arr[2] = {0, 0};
|
|
int *arrp = arr;
|
|
int &ir = f(arr);
|
|
float &fr = f(arrp);
|
|
}
|
|
}
|
|
|
|
namespace PR9507 {
|
|
void f(int * const&); // expected-note{{candidate function}}
|
|
void f(int const(&)[1]); // expected-note{{candidate function}}
|
|
|
|
int main() {
|
|
int n[1];
|
|
f(n); // expected-error{{call to 'f' is ambiguous}}
|
|
}
|
|
}
|
|
|
|
namespace rdar9803316 {
|
|
void foo(float);
|
|
int &foo(int);
|
|
|
|
void bar() {
|
|
int &ir = (&foo)(0);
|
|
}
|
|
}
|
|
|
|
namespace IncompleteArg {
|
|
// Ensure that overload resolution attempts to complete argument types when
|
|
// performing ADL.
|
|
template<typename T> struct S {
|
|
friend int f(const S&);
|
|
};
|
|
extern S<int> s;
|
|
int k = f(s);
|
|
|
|
template<typename T> struct Op {
|
|
friend bool operator==(const Op &, const Op &);
|
|
};
|
|
extern Op<char> op;
|
|
bool b = op == op;
|
|
|
|
// ... and not in other cases! Nothing here requires U<int()> to be complete.
|
|
// (Note that instantiating U<int()> will fail.)
|
|
template<typename T> struct U {
|
|
T t;
|
|
};
|
|
struct Consumer {
|
|
template<typename T>
|
|
int operator()(const U<T> &);
|
|
};
|
|
template<typename T> U<T> &make();
|
|
Consumer c;
|
|
int n = sizeof(c(make<int()>()));
|
|
}
|
|
|
|
namespace PR12142 {
|
|
void fun(int (*x)[10]); // expected-note{{candidate function not viable: 1st argument ('const int (*)[10]') would lose const qualifier}}
|
|
void g() { fun((const int(*)[10])0); } // expected-error{{no matching function for call to 'fun'}}
|
|
}
|
|
|
|
// DR1152: Take 'volatile' into account when handling reference bindings in
|
|
// overload resolution.
|
|
namespace PR12931 {
|
|
void f(const int &, ...);
|
|
void f(const volatile int &, int);
|
|
void g() { f(0, 0); }
|
|
}
|
|
|
|
void test5() {
|
|
struct {
|
|
typedef void F1(int);
|
|
typedef void F2(double);
|
|
operator F1*(); // expected-note{{conversion candidate}}
|
|
operator F2*(); // expected-note{{conversion candidate}}
|
|
} callable;
|
|
callable(); // expected-error{{no matching function for call}}
|
|
}
|
|
|
|
namespace PR20218 {
|
|
void f(void (*const &)()); // expected-note 2{{candidate}}
|
|
void f(void (&&)()) = delete; // expected-note 2{{candidate}}
|
|
#if __cplusplus <= 199711L
|
|
// expected-warning@-2 {{rvalue references are a C++11 extension}}
|
|
// expected-warning@-3 {{deleted function definitions are a C++11 extension}}
|
|
#endif
|
|
void g(void (&&)()) = delete; // expected-note 2{{candidate}}
|
|
#if __cplusplus <= 199711L
|
|
// expected-warning@-2 {{rvalue references are a C++11 extension}}
|
|
// expected-warning@-3 {{deleted function definitions are a C++11 extension}}
|
|
#endif
|
|
void g(void (*const &)()); // expected-note 2{{candidate}}
|
|
|
|
void x();
|
|
typedef void (&fr)();
|
|
struct Y { operator fr(); } y;
|
|
|
|
void h() {
|
|
f(x); // expected-error {{ambiguous}}
|
|
g(x); // expected-error {{ambiguous}}
|
|
f(y); // expected-error {{ambiguous}}
|
|
g(y); // expected-error {{ambiguous}}
|
|
}
|
|
}
|
|
|
|
namespace StringLiteralToCharAmbiguity {
|
|
void f(char *, int);
|
|
void f(const char *, unsigned);
|
|
void g() { f("foo", 0); }
|
|
#if __cplusplus <= 199711L
|
|
// expected-error@-2 {{call to 'f' is ambiguous}}
|
|
// expected-note@-5 {{candidate function}}
|
|
// expected-note@-5 {{candidate function}}
|
|
#endif
|
|
}
|
|
|
|
namespace ProduceNotesAfterSFINAEFailure {
|
|
struct A {
|
|
template<typename T, typename U = typename T::x> A(T); // expected-warning 0-1{{extension}}
|
|
};
|
|
void f(void*, A); // expected-note {{candidate function not viable}}
|
|
void g() { f(1, 2); } // expected-error {{no matching function}}
|
|
}
|
|
|
|
namespace PR19808 {
|
|
struct B {
|
|
int i;
|
|
void bar();
|
|
};
|
|
struct D : public B{};
|
|
|
|
void f(bool);
|
|
void f(int D::*);
|
|
void f(void (D::*)());
|
|
|
|
void Usage() {
|
|
int B::*pmem;
|
|
void (B::*pmf)();
|
|
|
|
// These should not be ambiguous.
|
|
f(pmem);
|
|
f(pmf);
|
|
}
|
|
}
|