Sanjay Patel 0279b5b0b8 [TargetLowering] try harder to determine undef elements of vector binops
This might be the start of tracking all vector element constants generally if we take it to its 
logical conclusion, but let's stop here and make sure this is correct/beneficial so far.

The affected tests require a convoluted path before they get simplified currently because we 
don't call SimplifyDemandedVectorElts() from binops directly and don't modify the binop operands 
directly in SimplifyDemandedVectorElts().

That's why the tests all have a trailing shuffle to induce a chain reaction of transforms. So 
something like this is happening:

1. Improve the knowledge of undefs in the binop via a SimplifyDemandedVectorElts() call that 
   originates from a shuffle.
2. Transfer that undef knowledge back to the shuffle mask user as more undef lanes.
3. Combine the modified shuffle by calling SimplifyDemandedVectorElts() again.
4. Translate the improved shuffle mask as undemanded lanes of build vector constants causing 
   those to become full undef constants.
5. Simplify the binop now that it has a full undef operand.

As we can see from the unchanged 'and' and 'or' tests, tracking undefs alone isn't a full solution. 
We would need to track zero and all-ones constants to improve those opcodes. We'd probably need to 
track NaN for FP ops too (assuming we don't have fast-math-flags set).

Differential Revision: https://reviews.llvm.org/D57066

llvm-svn: 352880
2019-02-01 15:35:12 +00:00

5464 lines
214 KiB
C++

//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include <cctype>
using namespace llvm;
/// NOTE: The TargetMachine owns TLOF.
TargetLowering::TargetLowering(const TargetMachine &tm)
: TargetLoweringBase(tm) {}
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
return nullptr;
}
bool TargetLowering::isPositionIndependent() const {
return getTargetMachine().isPositionIndependent();
}
/// Check whether a given call node is in tail position within its function. If
/// so, it sets Chain to the input chain of the tail call.
bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
SDValue &Chain) const {
const Function &F = DAG.getMachineFunction().getFunction();
// Conservatively require the attributes of the call to match those of
// the return. Ignore NoAlias and NonNull because they don't affect the
// call sequence.
AttributeList CallerAttrs = F.getAttributes();
if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
.removeAttribute(Attribute::NoAlias)
.removeAttribute(Attribute::NonNull)
.hasAttributes())
return false;
// It's not safe to eliminate the sign / zero extension of the return value.
if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
return false;
// Check if the only use is a function return node.
return isUsedByReturnOnly(Node, Chain);
}
bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
const uint32_t *CallerPreservedMask,
const SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<SDValue> &OutVals) const {
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
const CCValAssign &ArgLoc = ArgLocs[I];
if (!ArgLoc.isRegLoc())
continue;
unsigned Reg = ArgLoc.getLocReg();
// Only look at callee saved registers.
if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
continue;
// Check that we pass the value used for the caller.
// (We look for a CopyFromReg reading a virtual register that is used
// for the function live-in value of register Reg)
SDValue Value = OutVals[I];
if (Value->getOpcode() != ISD::CopyFromReg)
return false;
unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
if (MRI.getLiveInPhysReg(ArgReg) != Reg)
return false;
}
return true;
}
/// Set CallLoweringInfo attribute flags based on a call instruction
/// and called function attributes.
void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
unsigned ArgIdx) {
IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
Alignment = CS->getParamAlignment(ArgIdx);
}
/// Generate a libcall taking the given operands as arguments and returning a
/// result of type RetVT.
std::pair<SDValue, SDValue>
TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
ArrayRef<SDValue> Ops, bool isSigned,
const SDLoc &dl, bool doesNotReturn,
bool isReturnValueUsed) const {
TargetLowering::ArgListTy Args;
Args.reserve(Ops.size());
TargetLowering::ArgListEntry Entry;
for (SDValue Op : Ops) {
Entry.Node = Op;
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
Args.push_back(Entry);
}
if (LC == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported library call operation!");
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::CallLoweringInfo CLI(DAG);
bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
.setNoReturn(doesNotReturn)
.setDiscardResult(!isReturnValueUsed)
.setSExtResult(signExtend)
.setZExtResult(!signExtend);
return LowerCallTo(CLI);
}
/// Soften the operands of a comparison. This code is shared among BR_CC,
/// SELECT_CC, and SETCC handlers.
void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode,
const SDLoc &dl) const {
assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
&& "Unsupported setcc type!");
// Expand into one or more soft-fp libcall(s).
RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
bool ShouldInvertCC = false;
switch (CCCode) {
case ISD::SETEQ:
case ISD::SETOEQ:
LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
(VT == MVT::f64) ? RTLIB::OEQ_F64 :
(VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
break;
case ISD::SETNE:
case ISD::SETUNE:
LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
(VT == MVT::f64) ? RTLIB::UNE_F64 :
(VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
break;
case ISD::SETGE:
case ISD::SETOGE:
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
(VT == MVT::f64) ? RTLIB::OGE_F64 :
(VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
break;
case ISD::SETLT:
case ISD::SETOLT:
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
(VT == MVT::f64) ? RTLIB::OLT_F64 :
(VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
break;
case ISD::SETLE:
case ISD::SETOLE:
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
(VT == MVT::f64) ? RTLIB::OLE_F64 :
(VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
break;
case ISD::SETGT:
case ISD::SETOGT:
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
(VT == MVT::f64) ? RTLIB::OGT_F64 :
(VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
break;
case ISD::SETUO:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
(VT == MVT::f64) ? RTLIB::UO_F64 :
(VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
break;
case ISD::SETO:
LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
(VT == MVT::f64) ? RTLIB::O_F64 :
(VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
break;
case ISD::SETONE:
// SETONE = SETOLT | SETOGT
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
(VT == MVT::f64) ? RTLIB::OLT_F64 :
(VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
(VT == MVT::f64) ? RTLIB::OGT_F64 :
(VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
break;
case ISD::SETUEQ:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
(VT == MVT::f64) ? RTLIB::UO_F64 :
(VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
(VT == MVT::f64) ? RTLIB::OEQ_F64 :
(VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
break;
default:
// Invert CC for unordered comparisons
ShouldInvertCC = true;
switch (CCCode) {
case ISD::SETULT:
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
(VT == MVT::f64) ? RTLIB::OGE_F64 :
(VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
break;
case ISD::SETULE:
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
(VT == MVT::f64) ? RTLIB::OGT_F64 :
(VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
break;
case ISD::SETUGT:
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
(VT == MVT::f64) ? RTLIB::OLE_F64 :
(VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
break;
case ISD::SETUGE:
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
(VT == MVT::f64) ? RTLIB::OLT_F64 :
(VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
break;
default: llvm_unreachable("Do not know how to soften this setcc!");
}
}
// Use the target specific return value for comparions lib calls.
EVT RetVT = getCmpLibcallReturnType();
SDValue Ops[2] = {NewLHS, NewRHS};
NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
dl).first;
NewRHS = DAG.getConstant(0, dl, RetVT);
CCCode = getCmpLibcallCC(LC1);
if (ShouldInvertCC)
CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
SDValue Tmp = DAG.getNode(
ISD::SETCC, dl,
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
NewLHS, NewRHS, DAG.getCondCode(CCCode));
NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
dl).first;
NewLHS = DAG.getNode(
ISD::SETCC, dl,
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
NewRHS = SDValue();
}
}
/// Return the entry encoding for a jump table in the current function. The
/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
unsigned TargetLowering::getJumpTableEncoding() const {
// In non-pic modes, just use the address of a block.
if (!isPositionIndependent())
return MachineJumpTableInfo::EK_BlockAddress;
// In PIC mode, if the target supports a GPRel32 directive, use it.
if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
return MachineJumpTableInfo::EK_GPRel32BlockAddress;
// Otherwise, use a label difference.
return MachineJumpTableInfo::EK_LabelDifference32;
}
SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
// If our PIC model is GP relative, use the global offset table as the base.
unsigned JTEncoding = getJumpTableEncoding();
if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
(JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
return Table;
}
/// This returns the relocation base for the given PIC jumptable, the same as
/// getPICJumpTableRelocBase, but as an MCExpr.
const MCExpr *
TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI,MCContext &Ctx) const{
// The normal PIC reloc base is the label at the start of the jump table.
return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
}
bool
TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
const TargetMachine &TM = getTargetMachine();
const GlobalValue *GV = GA->getGlobal();
// If the address is not even local to this DSO we will have to load it from
// a got and then add the offset.
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
return false;
// If the code is position independent we will have to add a base register.
if (isPositionIndependent())
return false;
// Otherwise we can do it.
return true;
}
//===----------------------------------------------------------------------===//
// Optimization Methods
//===----------------------------------------------------------------------===//
/// If the specified instruction has a constant integer operand and there are
/// bits set in that constant that are not demanded, then clear those bits and
/// return true.
bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
TargetLoweringOpt &TLO) const {
SelectionDAG &DAG = TLO.DAG;
SDLoc DL(Op);
unsigned Opcode = Op.getOpcode();
// Do target-specific constant optimization.
if (targetShrinkDemandedConstant(Op, Demanded, TLO))
return TLO.New.getNode();
// FIXME: ISD::SELECT, ISD::SELECT_CC
switch (Opcode) {
default:
break;
case ISD::XOR:
case ISD::AND:
case ISD::OR: {
auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Op1C)
return false;
// If this is a 'not' op, don't touch it because that's a canonical form.
const APInt &C = Op1C->getAPIntValue();
if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
return false;
if (!C.isSubsetOf(Demanded)) {
EVT VT = Op.getValueType();
SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
return TLO.CombineTo(Op, NewOp);
}
break;
}
}
return false;
}
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
/// generalized for targets with other types of implicit widening casts.
bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
const APInt &Demanded,
TargetLoweringOpt &TLO) const {
assert(Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!");
assert(Op.getNode()->getNumValues() == 1 &&
"ShrinkDemandedOp only supports nodes with one result!");
SelectionDAG &DAG = TLO.DAG;
SDLoc dl(Op);
// Early return, as this function cannot handle vector types.
if (Op.getValueType().isVector())
return false;
// Don't do this if the node has another user, which may require the
// full value.
if (!Op.getNode()->hasOneUse())
return false;
// Search for the smallest integer type with free casts to and from
// Op's type. For expedience, just check power-of-2 integer types.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned DemandedSize = Demanded.getActiveBits();
unsigned SmallVTBits = DemandedSize;
if (!isPowerOf2_32(SmallVTBits))
SmallVTBits = NextPowerOf2(SmallVTBits);
for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
TLI.isZExtFree(SmallVT, Op.getValueType())) {
// We found a type with free casts.
SDValue X = DAG.getNode(
Op.getOpcode(), dl, SmallVT,
DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
return TLO.CombineTo(Op, Z);
}
}
return false;
}
bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
KnownBits Known;
bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
if (Simplified) {
DCI.AddToWorklist(Op.getNode());
DCI.CommitTargetLoweringOpt(TLO);
}
return Simplified;
}
bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth,
bool AssumeSingleUse) const {
EVT VT = Op.getValueType();
APInt DemandedElts = VT.isVector()
? APInt::getAllOnesValue(VT.getVectorNumElements())
: APInt(1, 1);
return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
AssumeSingleUse);
}
/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
/// result of Op are ever used downstream. If we can use this information to
/// simplify Op, create a new simplified DAG node and return true, returning the
/// original and new nodes in Old and New. Otherwise, analyze the expression and
/// return a mask of Known bits for the expression (used to simplify the
/// caller). The Known bits may only be accurate for those bits in the
/// OriginalDemandedBits and OriginalDemandedElts.
bool TargetLowering::SimplifyDemandedBits(
SDValue Op, const APInt &OriginalDemandedBits,
const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
unsigned Depth, bool AssumeSingleUse) const {
unsigned BitWidth = OriginalDemandedBits.getBitWidth();
assert(Op.getScalarValueSizeInBits() == BitWidth &&
"Mask size mismatches value type size!");
unsigned NumElts = OriginalDemandedElts.getBitWidth();
assert((!Op.getValueType().isVector() ||
NumElts == Op.getValueType().getVectorNumElements()) &&
"Unexpected vector size");
APInt DemandedBits = OriginalDemandedBits;
APInt DemandedElts = OriginalDemandedElts;
SDLoc dl(Op);
auto &DL = TLO.DAG.getDataLayout();
// Don't know anything.
Known = KnownBits(BitWidth);
if (Op.getOpcode() == ISD::Constant) {
// We know all of the bits for a constant!
Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
Known.Zero = ~Known.One;
return false;
}
// Other users may use these bits.
EVT VT = Op.getValueType();
if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
if (Depth != 0) {
// If not at the root, Just compute the Known bits to
// simplify things downstream.
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
return false;
}
// If this is the root being simplified, allow it to have multiple uses,
// just set the DemandedBits/Elts to all bits.
DemandedBits = APInt::getAllOnesValue(BitWidth);
DemandedElts = APInt::getAllOnesValue(NumElts);
} else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
// Not demanding any bits/elts from Op.
if (!Op.isUndef())
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
return false;
} else if (Depth == 6) { // Limit search depth.
return false;
}
KnownBits Known2, KnownOut;
switch (Op.getOpcode()) {
case ISD::BUILD_VECTOR:
// Collect the known bits that are shared by every constant vector element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (SDValue SrcOp : Op->ops()) {
if (!isa<ConstantSDNode>(SrcOp)) {
// We can only handle all constant values - bail out with no known bits.
Known = KnownBits(BitWidth);
return false;
}
Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
Known2.Zero = ~Known2.One;
// BUILD_VECTOR can implicitly truncate sources, we must handle this.
if (Known2.One.getBitWidth() != BitWidth) {
assert(Known2.getBitWidth() > BitWidth &&
"Expected BUILD_VECTOR implicit truncation");
Known2 = Known2.trunc(BitWidth);
}
// Known bits are the values that are shared by every element.
// TODO: support per-element known bits.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
return false; // Don't fall through, will infinitely loop.
case ISD::CONCAT_VECTORS: {
Known.Zero.setAllBits();
Known.One.setAllBits();
EVT SubVT = Op.getOperand(0).getValueType();
unsigned NumSubVecs = Op.getNumOperands();
unsigned NumSubElts = SubVT.getVectorNumElements();
for (unsigned i = 0; i != NumSubVecs; ++i) {
APInt DemandedSubElts =
DemandedElts.extractBits(NumSubElts, i * NumSubElts);
if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
Known2, TLO, Depth + 1))
return true;
// Known bits are shared by every demanded subvector element.
if (!!DemandedSubElts) {
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
}
break;
}
case ISD::VECTOR_SHUFFLE: {
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
// Collect demanded elements from shuffle operands..
APInt DemandedLHS(NumElts, 0);
APInt DemandedRHS(NumElts, 0);
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
int M = ShuffleMask[i];
if (M < 0) {
// For UNDEF elements, we don't know anything about the common state of
// the shuffle result.
DemandedLHS.clearAllBits();
DemandedRHS.clearAllBits();
break;
}
assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
if (M < (int)NumElts)
DemandedLHS.setBit(M);
else
DemandedRHS.setBit(M - NumElts);
}
if (!!DemandedLHS || !!DemandedRHS) {
Known.Zero.setAllBits();
Known.One.setAllBits();
if (!!DemandedLHS) {
if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
Known2, TLO, Depth + 1))
return true;
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
if (!!DemandedRHS) {
if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
Known2, TLO, Depth + 1))
return true;
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
}
break;
}
case ISD::AND: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// If the RHS is a constant, check to see if the LHS would be zero without
// using the bits from the RHS. Below, we use knowledge about the RHS to
// simplify the LHS, here we're using information from the LHS to simplify
// the RHS.
if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
// Do not increment Depth here; that can cause an infinite loop.
KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
// If the LHS already has zeros where RHSC does, this 'and' is dead.
if ((LHSKnown.Zero & DemandedBits) ==
(~RHSC->getAPIntValue() & DemandedBits))
return TLO.CombineTo(Op, Op0);
// If any of the set bits in the RHS are known zero on the LHS, shrink
// the constant.
if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
return true;
// Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
// constant, but if this 'and' is only clearing bits that were just set by
// the xor, then this 'and' can be eliminated by shrinking the mask of
// the xor. For example, for a 32-bit X:
// and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
LHSKnown.One == ~RHSC->getAPIntValue()) {
SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
return TLO.CombineTo(Op, Xor);
}
}
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
Depth + 1))
return true;
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
// If all of the demanded bits are known one on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
return TLO.CombineTo(Op, Op0);
if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
return TLO.CombineTo(Op, Op1);
// If all of the demanded bits in the inputs are known zeros, return zero.
if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
return true;
// If the operation can be done in a smaller type, do so.
if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
return true;
// Output known-1 bits are only known if set in both the LHS & RHS.
Known.One &= Known2.One;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
Known.Zero |= Known2.Zero;
break;
}
case ISD::OR: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
Depth + 1))
return true;
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
return TLO.CombineTo(Op, Op0);
if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
return TLO.CombineTo(Op, Op1);
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
return true;
// If the operation can be done in a smaller type, do so.
if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
return true;
// Output known-0 bits are only known if clear in both the LHS & RHS.
Known.Zero &= Known2.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
Known.One |= Known2.One;
break;
}
case ISD::XOR: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
return true;
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if (DemandedBits.isSubsetOf(Known.Zero))
return TLO.CombineTo(Op, Op0);
if (DemandedBits.isSubsetOf(Known2.Zero))
return TLO.CombineTo(Op, Op1);
// If the operation can be done in a smaller type, do so.
if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
return true;
// If all of the unknown bits are known to be zero on one side or the other
// (but not both) turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
// Output known-0 bits are known if clear or set in both the LHS & RHS.
KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
// If one side is a constant, and all of the known set bits on the other
// side are also set in the constant, turn this into an AND, as we know
// the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
// NB: it is okay if more bits are known than are requested
if (C->getAPIntValue() == Known2.One) {
SDValue ANDC =
TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
}
// If the RHS is a constant, see if we can change it. Don't alter a -1
// constant because that's a 'not' op, and that is better for combining
// and codegen.
if (!C->isAllOnesValue()) {
if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
// We're flipping all demanded bits. Flip the undemanded bits too.
SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
return TLO.CombineTo(Op, New);
}
// If we can't turn this into a 'not', try to shrink the constant.
if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
return true;
}
}
Known = std::move(KnownOut);
break;
}
case ISD::SELECT:
if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
Depth + 1))
return true;
if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
return true;
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
case ISD::SELECT_CC:
if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
Depth + 1))
return true;
if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
return true;
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
case ISD::SETCC: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// If (1) we only need the sign-bit, (2) the setcc operands are the same
// width as the setcc result, and (3) the result of a setcc conforms to 0 or
// -1, we may be able to bypass the setcc.
if (DemandedBits.isSignMask() &&
Op0.getScalarValueSizeInBits() == BitWidth &&
getBooleanContents(VT) ==
BooleanContent::ZeroOrNegativeOneBooleanContent) {
// If we're testing X < 0, then this compare isn't needed - just use X!
// FIXME: We're limiting to integer types here, but this should also work
// if we don't care about FP signed-zero. The use of SETLT with FP means
// that we don't care about NaNs.
if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
(isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
return TLO.CombineTo(Op, Op0);
// TODO: Should we check for other forms of sign-bit comparisons?
// Examples: X <= -1, X >= 0
}
if (getBooleanContents(Op0.getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
case ISD::SHL: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
// If the shift count is an invalid immediate, don't do anything.
if (SA->getAPIntValue().uge(BitWidth))
break;
unsigned ShAmt = SA->getZExtValue();
// If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
// single shift. We can do this if the bottom bits (which are shifted
// out) are never demanded.
if (Op0.getOpcode() == ISD::SRL) {
if (ShAmt &&
(DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
if (SA2->getAPIntValue().ult(BitWidth)) {
unsigned C1 = SA2->getZExtValue();
unsigned Opc = ISD::SHL;
int Diff = ShAmt - C1;
if (Diff < 0) {
Diff = -Diff;
Opc = ISD::SRL;
}
SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
return TLO.CombineTo(
Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
}
}
}
}
if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
Depth + 1))
return true;
// Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
// are not demanded. This will likely allow the anyext to be folded away.
if (Op0.getOpcode() == ISD::ANY_EXTEND) {
SDValue InnerOp = Op0.getOperand(0);
EVT InnerVT = InnerOp.getValueType();
unsigned InnerBits = InnerVT.getScalarSizeInBits();
if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
isTypeDesirableForOp(ISD::SHL, InnerVT)) {
EVT ShTy = getShiftAmountTy(InnerVT, DL);
if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
ShTy = InnerVT;
SDValue NarrowShl =
TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
TLO.DAG.getConstant(ShAmt, dl, ShTy));
return TLO.CombineTo(
Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
}
// Repeat the SHL optimization above in cases where an extension
// intervenes: (shl (anyext (shr x, c1)), c2) to
// (shl (anyext x), c2-c1). This requires that the bottom c1 bits
// aren't demanded (as above) and that the shifted upper c1 bits of
// x aren't demanded.
if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
InnerOp.hasOneUse()) {
if (ConstantSDNode *SA2 =
isConstOrConstSplat(InnerOp.getOperand(1))) {
unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
DemandedBits.getActiveBits() <=
(InnerBits - InnerShAmt + ShAmt) &&
DemandedBits.countTrailingZeros() >= ShAmt) {
SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
Op1.getValueType());
SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
InnerOp.getOperand(0));
return TLO.CombineTo(
Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
}
}
}
}
Known.Zero <<= ShAmt;
Known.One <<= ShAmt;
// low bits known zero.
Known.Zero.setLowBits(ShAmt);
}
break;
}
case ISD::SRL: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
// If the shift count is an invalid immediate, don't do anything.
if (SA->getAPIntValue().uge(BitWidth))
break;
unsigned ShAmt = SA->getZExtValue();
APInt InDemandedMask = (DemandedBits << ShAmt);
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (Op->getFlags().hasExact())
InDemandedMask.setLowBits(ShAmt);
// If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
// single shift. We can do this if the top bits (which are shifted out)
// are never demanded.
if (Op0.getOpcode() == ISD::SHL) {
if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
if (ShAmt &&
(DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
if (SA2->getAPIntValue().ult(BitWidth)) {
unsigned C1 = SA2->getZExtValue();
unsigned Opc = ISD::SRL;
int Diff = ShAmt - C1;
if (Diff < 0) {
Diff = -Diff;
Opc = ISD::SHL;
}
SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
return TLO.CombineTo(
Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
}
}
}
}
// Compute the new bits that are at the top now.
if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero.lshrInPlace(ShAmt);
Known.One.lshrInPlace(ShAmt);
Known.Zero.setHighBits(ShAmt); // High bits known zero.
}
break;
}
case ISD::SRA: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// If this is an arithmetic shift right and only the low-bit is set, we can
// always convert this into a logical shr, even if the shift amount is
// variable. The low bit of the shift cannot be an input sign bit unless
// the shift amount is >= the size of the datatype, which is undefined.
if (DemandedBits.isOneValue())
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
// If the shift count is an invalid immediate, don't do anything.
if (SA->getAPIntValue().uge(BitWidth))
break;
unsigned ShAmt = SA->getZExtValue();
APInt InDemandedMask = (DemandedBits << ShAmt);
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (Op->getFlags().hasExact())
InDemandedMask.setLowBits(ShAmt);
// If any of the demanded bits are produced by the sign extension, we also
// demand the input sign bit.
if (DemandedBits.countLeadingZeros() < ShAmt)
InDemandedMask.setSignBit();
if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero.lshrInPlace(ShAmt);
Known.One.lshrInPlace(ShAmt);
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if (Known.Zero[BitWidth - ShAmt - 1] ||
DemandedBits.countLeadingZeros() >= ShAmt) {
SDNodeFlags Flags;
Flags.setExact(Op->getFlags().hasExact());
return TLO.CombineTo(
Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
}
int Log2 = DemandedBits.exactLogBase2();
if (Log2 >= 0) {
// The bit must come from the sign.
SDValue NewSA =
TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
}
if (Known.One[BitWidth - ShAmt - 1])
// New bits are known one.
Known.One.setHighBits(ShAmt);
}
break;
}
case ISD::SIGN_EXTEND_INREG: {
SDValue Op0 = Op.getOperand(0);
EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned ExVTBits = ExVT.getScalarSizeInBits();
// If we only care about the highest bit, don't bother shifting right.
if (DemandedBits.isSignMask()) {
bool AlreadySignExtended =
TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
// However if the input is already sign extended we expect the sign
// extension to be dropped altogether later and do not simplify.
if (!AlreadySignExtended) {
// Compute the correct shift amount type, which must be getShiftAmountTy
// for scalar types after legalization.
EVT ShiftAmtTy = VT;
if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
SDValue ShiftAmt =
TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
return TLO.CombineTo(Op,
TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
}
}
// If none of the extended bits are demanded, eliminate the sextinreg.
if (DemandedBits.getActiveBits() <= ExVTBits)
return TLO.CombineTo(Op, Op0);
APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
// Since the sign extended bits are demanded, we know that the sign
// bit is demanded.
InputDemandedBits.setBit(ExVTBits - 1);
if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
// If the input sign bit is known zero, convert this into a zero extension.
if (Known.Zero[ExVTBits - 1])
return TLO.CombineTo(
Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
if (Known.One[ExVTBits - 1]) { // Input sign bit known set
Known.One.setBitsFrom(ExVTBits);
Known.Zero &= Mask;
} else { // Input sign bit unknown
Known.Zero &= Mask;
Known.One &= Mask;
}
break;
}
case ISD::BUILD_PAIR: {
EVT HalfVT = Op.getOperand(0).getValueType();
unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
KnownBits KnownLo, KnownHi;
if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
return true;
if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
return true;
Known.Zero = KnownLo.Zero.zext(BitWidth) |
KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
Known.One = KnownLo.One.zext(BitWidth) |
KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
break;
}
case ISD::ZERO_EXTEND: {
SDValue Src = Op.getOperand(0);
unsigned InBits = Src.getScalarValueSizeInBits();
// If none of the top bits are demanded, convert this into an any_extend.
if (DemandedBits.getActiveBits() <= InBits)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
APInt InDemandedBits = DemandedBits.trunc(InBits);
if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known = Known.zext(BitWidth);
Known.Zero.setBitsFrom(InBits);
break;
}
case ISD::SIGN_EXTEND: {
SDValue Src = Op.getOperand(0);
unsigned InBits = Src.getScalarValueSizeInBits();
// If none of the top bits are demanded, convert this into an any_extend.
if (DemandedBits.getActiveBits() <= InBits)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
// Since some of the sign extended bits are demanded, we know that the sign
// bit is demanded.
APInt InDemandedBits = DemandedBits.trunc(InBits);
InDemandedBits.setBit(InBits - 1);
if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
// If the sign bit is known one, the top bits match.
Known = Known.sext(BitWidth);
// If the sign bit is known zero, convert this to a zero extend.
if (Known.isNonNegative())
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
break;
}
case ISD::SIGN_EXTEND_VECTOR_INREG: {
// TODO - merge this with SIGN_EXTEND above?
SDValue Src = Op.getOperand(0);
unsigned InBits = Src.getScalarValueSizeInBits();
APInt InDemandedBits = DemandedBits.trunc(InBits);
// If some of the sign extended bits are demanded, we know that the sign
// bit is demanded.
if (InBits < DemandedBits.getActiveBits())
InDemandedBits.setBit(InBits - 1);
if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
// If the sign bit is known one, the top bits match.
Known = Known.sext(BitWidth);
break;
}
case ISD::ANY_EXTEND: {
SDValue Src = Op.getOperand(0);
unsigned InBits = Src.getScalarValueSizeInBits();
APInt InDemandedBits = DemandedBits.trunc(InBits);
if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known = Known.zext(BitWidth);
break;
}
case ISD::TRUNCATE: {
SDValue Src = Op.getOperand(0);
// Simplify the input, using demanded bit information, and compute the known
// zero/one bits live out.
unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
APInt TruncMask = DemandedBits.zext(OperandBitWidth);
if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
return true;
Known = Known.trunc(BitWidth);
// If the input is only used by this truncate, see if we can shrink it based
// on the known demanded bits.
if (Src.getNode()->hasOneUse()) {
switch (Src.getOpcode()) {
default:
break;
case ISD::SRL:
// Shrink SRL by a constant if none of the high bits shifted in are
// demanded.
if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
// Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
// undesirable.
break;
ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
if (!ShAmt)
break;
SDValue Shift = Src.getOperand(1);
if (TLO.LegalTypes()) {
uint64_t ShVal = ShAmt->getZExtValue();
Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
}
if (ShAmt->getZExtValue() < BitWidth) {
APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
OperandBitWidth - BitWidth);
HighBits.lshrInPlace(ShAmt->getZExtValue());
HighBits = HighBits.trunc(BitWidth);
if (!(HighBits & DemandedBits)) {
// None of the shifted in bits are needed. Add a truncate of the
// shift input, then shift it.
SDValue NewTrunc =
TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
return TLO.CombineTo(
Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
}
}
break;
}
}
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
break;
}
case ISD::AssertZext: {
// AssertZext demands all of the high bits, plus any of the low bits
// demanded by its users.
EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
Known, TLO, Depth+1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero |= ~InMask;
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
SDValue Src = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
unsigned EltBitWidth = Src.getScalarValueSizeInBits();
// Demand the bits from every vector element without a constant index.
APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
if (CIdx->getAPIntValue().ult(NumSrcElts))
DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
// If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
// anything about the extended bits.
APInt DemandedSrcBits = DemandedBits;
if (BitWidth > EltBitWidth)
DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
Depth + 1))
return true;
Known = Known2;
if (BitWidth > EltBitWidth)
Known = Known.zext(BitWidth);
break;
}
case ISD::BITCAST: {
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
// If this is an FP->Int bitcast and if the sign bit is the only
// thing demanded, turn this into a FGETSIGN.
if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
SrcVT.isFloatingPoint()) {
bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
SrcVT != MVT::f128) {
// Cannot eliminate/lower SHL for f128 yet.
EVT Ty = OpVTLegal ? VT : MVT::i32;
// Make a FGETSIGN + SHL to move the sign bit into the appropriate
// place. We expect the SHL to be eliminated by other optimizations.
SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
unsigned OpVTSizeInBits = Op.getValueSizeInBits();
if (!OpVTLegal && OpVTSizeInBits > 32)
Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
unsigned ShVal = Op.getValueSizeInBits() - 1;
SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
return TLO.CombineTo(Op,
TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
}
}
// If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
// demanding the element if any bits from it are demanded.
// TODO - bigendian once we have test coverage.
// TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
if (SrcVT.isVector() && NumSrcEltBits > 1 &&
(BitWidth % NumSrcEltBits) == 0 &&
TLO.DAG.getDataLayout().isLittleEndian()) {
unsigned Scale = BitWidth / NumSrcEltBits;
auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
DemandedSubElts = APInt::getNullValue(Scale);
for (unsigned i = 0; i != Scale; ++i) {
unsigned Offset = i * NumSrcEltBits;
APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
if (!Sub.isNullValue())
DemandedSubElts.setBit(i);
}
return true;
};
APInt DemandedSubElts;
if (GetDemandedSubMask(DemandedSubElts)) {
unsigned NumSrcElts = SrcVT.getVectorNumElements();
APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
APInt KnownUndef, KnownZero;
if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
TLO, Depth + 1))
return true;
}
}
// If this is a bitcast, let computeKnownBits handle it. Only do this on a
// recursive call where Known may be useful to the caller.
if (Depth > 0) {
Known = TLO.DAG.computeKnownBits(Op, Depth);
return false;
}
break;
}
case ISD::ADD:
case ISD::MUL:
case ISD::SUB: {
// Add, Sub, and Mul don't demand any bits in positions beyond that
// of the highest bit demanded of them.
SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
// See if the operation should be performed at a smaller bit width.
ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
SDNodeFlags Flags = Op.getNode()->getFlags();
if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
// Disable the nsw and nuw flags. We can no longer guarantee that we
// won't wrap after simplification.
Flags.setNoSignedWrap(false);
Flags.setNoUnsignedWrap(false);
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
Flags);
return TLO.CombineTo(Op, NewOp);
}
return true;
}
// If we have a constant operand, we may be able to turn it into -1 if we
// do not demand the high bits. This can make the constant smaller to
// encode, allow more general folding, or match specialized instruction
// patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
// is probably not useful (and could be detrimental).
ConstantSDNode *C = isConstOrConstSplat(Op1);
APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
if (C && !C->isAllOnesValue() && !C->isOne() &&
(C->getAPIntValue() | HighMask).isAllOnesValue()) {
SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
// We can't guarantee that the new math op doesn't wrap, so explicitly
// clear those flags to prevent folding with a potential existing node
// that has those flags set.
SDNodeFlags Flags;
Flags.setNoSignedWrap(false);
Flags.setNoUnsignedWrap(false);
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
return TLO.CombineTo(Op, NewOp);
}
LLVM_FALLTHROUGH;
}
default:
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
Known, TLO, Depth))
return true;
break;
}
// Just use computeKnownBits to compute output bits.
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
break;
}
// If we know the value of all of the demanded bits, return this as a
// constant.
if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
// Avoid folding to a constant if any OpaqueConstant is involved.
const SDNode *N = Op.getNode();
for (SDNodeIterator I = SDNodeIterator::begin(N),
E = SDNodeIterator::end(N);
I != E; ++I) {
SDNode *Op = *I;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
if (C->isOpaque())
return false;
}
// TODO: Handle float bits as well.
if (VT.isInteger())
return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
}
return false;
}
bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
const APInt &DemandedElts,
APInt &KnownUndef,
APInt &KnownZero,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
bool Simplified =
SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
if (Simplified) {
DCI.AddToWorklist(Op.getNode());
DCI.CommitTargetLoweringOpt(TLO);
}
return Simplified;
}
/// Given a vector binary operation and known undefined elements for each input
/// operand, compute whether each element of the output is undefined.
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
const APInt &UndefOp0,
const APInt &UndefOp1) {
EVT VT = BO.getValueType();
assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only");
EVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
assert(UndefOp0.getBitWidth() == NumElts &&
UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
const APInt &UndefVals) {
if (UndefVals[Index])
return DAG.getUNDEF(EltVT);
if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
// Try hard to make sure that the getNode() call is not creating temporary
// nodes. Ignore opaque integers because they do not constant fold.
SDValue Elt = BV->getOperand(Index);
auto *C = dyn_cast<ConstantSDNode>(Elt);
if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
return Elt;
}
return SDValue();
};
APInt KnownUndef = APInt::getNullValue(NumElts);
for (unsigned i = 0; i != NumElts; ++i) {
// If both inputs for this element are either constant or undef and match
// the element type, compute the constant/undef result for this element of
// the vector.
// TODO: Ideally we would use FoldConstantArithmetic() here, but that does
// not handle FP constants. The code within getNode() should be refactored
// to avoid the danger of creating a bogus temporary node here.
SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
KnownUndef.setBit(i);
}
return KnownUndef;
}
bool TargetLowering::SimplifyDemandedVectorElts(
SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
bool AssumeSingleUse) const {
EVT VT = Op.getValueType();
APInt DemandedElts = DemandedEltMask;
unsigned NumElts = DemandedElts.getBitWidth();
assert(VT.isVector() && "Expected vector op");
assert(VT.getVectorNumElements() == NumElts &&
"Mask size mismatches value type element count!");
KnownUndef = KnownZero = APInt::getNullValue(NumElts);
// Undef operand.
if (Op.isUndef()) {
KnownUndef.setAllBits();
return false;
}
// If Op has other users, assume that all elements are needed.
if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
DemandedElts.setAllBits();
// Not demanding any elements from Op.
if (DemandedElts == 0) {
KnownUndef.setAllBits();
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
}
// Limit search depth.
if (Depth >= 6)
return false;
SDLoc DL(Op);
unsigned EltSizeInBits = VT.getScalarSizeInBits();
switch (Op.getOpcode()) {
case ISD::SCALAR_TO_VECTOR: {
if (!DemandedElts[0]) {
KnownUndef.setAllBits();
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
}
KnownUndef.setHighBits(NumElts - 1);
break;
}
case ISD::BITCAST: {
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
// We only handle vectors here.
// TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
if (!SrcVT.isVector())
break;
// Fast handling of 'identity' bitcasts.
unsigned NumSrcElts = SrcVT.getVectorNumElements();
if (NumSrcElts == NumElts)
return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
KnownZero, TLO, Depth + 1);
APInt SrcZero, SrcUndef;
APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
// Bitcast from 'large element' src vector to 'small element' vector, we
// must demand a source element if any DemandedElt maps to it.
if ((NumElts % NumSrcElts) == 0) {
unsigned Scale = NumElts / NumSrcElts;
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i])
SrcDemandedElts.setBit(i / Scale);
if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
TLO, Depth + 1))
return true;
// Try calling SimplifyDemandedBits, converting demanded elts to the bits
// of the large element.
// TODO - bigendian once we have test coverage.
if (TLO.DAG.getDataLayout().isLittleEndian()) {
unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
unsigned Ofs = (i % Scale) * EltSizeInBits;
SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
}
KnownBits Known;
if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
return true;
}
// If the src element is zero/undef then all the output elements will be -
// only demanded elements are guaranteed to be correct.
for (unsigned i = 0; i != NumSrcElts; ++i) {
if (SrcDemandedElts[i]) {
if (SrcZero[i])
KnownZero.setBits(i * Scale, (i + 1) * Scale);
if (SrcUndef[i])
KnownUndef.setBits(i * Scale, (i + 1) * Scale);
}
}
}
// Bitcast from 'small element' src vector to 'large element' vector, we
// demand all smaller source elements covered by the larger demanded element
// of this vector.
if ((NumSrcElts % NumElts) == 0) {
unsigned Scale = NumSrcElts / NumElts;
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i])
SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
TLO, Depth + 1))
return true;
// If all the src elements covering an output element are zero/undef, then
// the output element will be as well, assuming it was demanded.
for (unsigned i = 0; i != NumElts; ++i) {
if (DemandedElts[i]) {
if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
KnownZero.setBit(i);
if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
KnownUndef.setBit(i);
}
}
}
break;
}
case ISD::BUILD_VECTOR: {
// Check all elements and simplify any unused elements with UNDEF.
if (!DemandedElts.isAllOnesValue()) {
// Don't simplify BROADCASTS.
if (llvm::any_of(Op->op_values(),
[&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
bool Updated = false;
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i] && !Ops[i].isUndef()) {
Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
KnownUndef.setBit(i);
Updated = true;
}
}
if (Updated)
return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
}
}
for (unsigned i = 0; i != NumElts; ++i) {
SDValue SrcOp = Op.getOperand(i);
if (SrcOp.isUndef()) {
KnownUndef.setBit(i);
} else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
(isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
KnownZero.setBit(i);
}
}
break;
}
case ISD::CONCAT_VECTORS: {
EVT SubVT = Op.getOperand(0).getValueType();
unsigned NumSubVecs = Op.getNumOperands();
unsigned NumSubElts = SubVT.getVectorNumElements();
for (unsigned i = 0; i != NumSubVecs; ++i) {
SDValue SubOp = Op.getOperand(i);
APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
APInt SubUndef, SubZero;
if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
Depth + 1))
return true;
KnownUndef.insertBits(SubUndef, i * NumSubElts);
KnownZero.insertBits(SubZero, i * NumSubElts);
}
break;
}
case ISD::INSERT_SUBVECTOR: {
if (!isa<ConstantSDNode>(Op.getOperand(2)))
break;
SDValue Base = Op.getOperand(0);
SDValue Sub = Op.getOperand(1);
EVT SubVT = Sub.getValueType();
unsigned NumSubElts = SubVT.getVectorNumElements();
const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
if (Idx.ugt(NumElts - NumSubElts))
break;
unsigned SubIdx = Idx.getZExtValue();
APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
APInt SubUndef, SubZero;
if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
Depth + 1))
return true;
APInt BaseElts = DemandedElts;
BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
Depth + 1))
return true;
KnownUndef.insertBits(SubUndef, SubIdx);
KnownZero.insertBits(SubZero, SubIdx);
break;
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue Src = Op.getOperand(0);
ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
// Offset the demanded elts by the subvector index.
uint64_t Idx = SubIdx->getZExtValue();
APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
APInt SrcUndef, SrcZero;
if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
Depth + 1))
return true;
KnownUndef = SrcUndef.extractBits(NumElts, Idx);
KnownZero = SrcZero.extractBits(NumElts, Idx);
}
break;
}
case ISD::INSERT_VECTOR_ELT: {
SDValue Vec = Op.getOperand(0);
SDValue Scl = Op.getOperand(1);
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
// For a legal, constant insertion index, if we don't need this insertion
// then strip it, else remove it from the demanded elts.
if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
unsigned Idx = CIdx->getZExtValue();
if (!DemandedElts[Idx])
return TLO.CombineTo(Op, Vec);
APInt DemandedVecElts(DemandedElts);
DemandedVecElts.clearBit(Idx);
if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
KnownZero, TLO, Depth + 1))
return true;
KnownUndef.clearBit(Idx);
if (Scl.isUndef())
KnownUndef.setBit(Idx);
KnownZero.clearBit(Idx);
if (isNullConstant(Scl) || isNullFPConstant(Scl))
KnownZero.setBit(Idx);
break;
}
APInt VecUndef, VecZero;
if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
Depth + 1))
return true;
// Without knowing the insertion index we can't set KnownUndef/KnownZero.
break;
}
case ISD::VSELECT: {
// Try to transform the select condition based on the current demanded
// elements.
// TODO: If a condition element is undef, we can choose from one arm of the
// select (and if one arm is undef, then we can propagate that to the
// result).
// TODO - add support for constant vselect masks (see IR version of this).
APInt UnusedUndef, UnusedZero;
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
UnusedZero, TLO, Depth + 1))
return true;
// See if we can simplify either vselect operand.
APInt DemandedLHS(DemandedElts);
APInt DemandedRHS(DemandedElts);
APInt UndefLHS, ZeroLHS;
APInt UndefRHS, ZeroRHS;
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
ZeroLHS, TLO, Depth + 1))
return true;
if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
ZeroRHS, TLO, Depth + 1))
return true;
KnownUndef = UndefLHS & UndefRHS;
KnownZero = ZeroLHS & ZeroRHS;
break;
}
case ISD::VECTOR_SHUFFLE: {
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
// Collect demanded elements from shuffle operands..
APInt DemandedLHS(NumElts, 0);
APInt DemandedRHS(NumElts, 0);
for (unsigned i = 0; i != NumElts; ++i) {
int M = ShuffleMask[i];
if (M < 0 || !DemandedElts[i])
continue;
assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
if (M < (int)NumElts)
DemandedLHS.setBit(M);
else
DemandedRHS.setBit(M - NumElts);
}
// See if we can simplify either shuffle operand.
APInt UndefLHS, ZeroLHS;
APInt UndefRHS, ZeroRHS;
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
ZeroLHS, TLO, Depth + 1))
return true;
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
ZeroRHS, TLO, Depth + 1))
return true;
// Simplify mask using undef elements from LHS/RHS.
bool Updated = false;
bool IdentityLHS = true, IdentityRHS = true;
SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
for (unsigned i = 0; i != NumElts; ++i) {
int &M = NewMask[i];
if (M < 0)
continue;
if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
(M >= (int)NumElts && UndefRHS[M - NumElts])) {
Updated = true;
M = -1;
}
IdentityLHS &= (M < 0) || (M == (int)i);
IdentityRHS &= (M < 0) || ((M - NumElts) == i);
}
// Update legal shuffle masks based on demanded elements if it won't reduce
// to Identity which can cause premature removal of the shuffle mask.
if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
isShuffleMaskLegal(NewMask, VT))
return TLO.CombineTo(Op,
TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
Op.getOperand(1), NewMask));
// Propagate undef/zero elements from LHS/RHS.
for (unsigned i = 0; i != NumElts; ++i) {
int M = ShuffleMask[i];
if (M < 0) {
KnownUndef.setBit(i);
} else if (M < (int)NumElts) {
if (UndefLHS[M])
KnownUndef.setBit(i);
if (ZeroLHS[M])
KnownZero.setBit(i);
} else {
if (UndefRHS[M - NumElts])
KnownUndef.setBit(i);
if (ZeroRHS[M - NumElts])
KnownZero.setBit(i);
}
}
break;
}
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG: {
APInt SrcUndef, SrcZero;
SDValue Src = Op.getOperand(0);
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
SrcZero, TLO, Depth + 1))
return true;
KnownZero = SrcZero.zextOrTrunc(NumElts);
KnownUndef = SrcUndef.zextOrTrunc(NumElts);
if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
// zext(undef) upper bits are guaranteed to be zero.
if (DemandedElts.isSubsetOf(KnownUndef))
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
KnownUndef.clearAllBits();
}
break;
}
// TODO: There are more binop opcodes that could be handled here - MUL, MIN,
// MAX, saturated math, etc.
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM: {
APInt UndefRHS, ZeroRHS;
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
ZeroRHS, TLO, Depth + 1))
return true;
APInt UndefLHS, ZeroLHS;
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
ZeroLHS, TLO, Depth + 1))
return true;
KnownZero = ZeroLHS & ZeroRHS;
KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
break;
}
case ISD::AND: {
APInt SrcUndef, SrcZero;
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
SrcZero, TLO, Depth + 1))
return true;
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
KnownZero, TLO, Depth + 1))
return true;
// If either side has a zero element, then the result element is zero, even
// if the other is an UNDEF.
// TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
// and then handle 'and' nodes with the rest of the binop opcodes.
KnownZero |= SrcZero;
KnownUndef &= SrcUndef;
KnownUndef &= ~KnownZero;
break;
}
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
KnownZero, TLO, Depth + 1))
return true;
if (Op.getOpcode() == ISD::ZERO_EXTEND) {
// zext(undef) upper bits are guaranteed to be zero.
if (DemandedElts.isSubsetOf(KnownUndef))
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
KnownUndef.clearAllBits();
}
break;
default: {
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
KnownZero, TLO, Depth))
return true;
} else {
KnownBits Known;
APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
Depth, AssumeSingleUse))
return true;
}
break;
}
}
assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
// Constant fold all undef cases.
// TODO: Handle zero cases as well.
if (DemandedElts.isSubsetOf(KnownUndef))
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
return false;
}
/// Determine which of the bits specified in Mask are known to be either zero or
/// one and return them in the Known.
void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
Known.resetAll();
}
void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
if (unsigned Align = DAG.InferPtrAlignment(Op)) {
// The low bits are known zero if the pointer is aligned.
Known.Zero.setLowBits(Log2_32(Align));
}
}
/// This method can be implemented by targets that want to expose additional
/// information about sign bits to the DAG Combiner.
unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &,
const SelectionDAG &,
unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!");
return 1;
}
bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
TargetLoweringOpt &TLO, unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!");
return false;
}
bool TargetLowering::SimplifyDemandedBitsForTargetNode(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!");
computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
return false;
}
bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
const SelectionDAG &DAG,
bool SNaN,
unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!");
return false;
}
// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
// work with truncating build vectors and vectors with elements of less than
// 8 bits.
bool TargetLowering::isConstTrueVal(const SDNode *N) const {
if (!N)
return false;
APInt CVal;
if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
CVal = CN->getAPIntValue();
} else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
auto *CN = BV->getConstantSplatNode();
if (!CN)
return false;
// If this is a truncating build vector, truncate the splat value.
// Otherwise, we may fail to match the expected values below.
unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
CVal = CN->getAPIntValue();
if (BVEltWidth < CVal.getBitWidth())
CVal = CVal.trunc(BVEltWidth);
} else {
return false;
}
switch (getBooleanContents(N->getValueType(0))) {
case UndefinedBooleanContent:
return CVal[0];
case ZeroOrOneBooleanContent:
return CVal.isOneValue();
case ZeroOrNegativeOneBooleanContent:
return CVal.isAllOnesValue();
}
llvm_unreachable("Invalid boolean contents");
}
bool TargetLowering::isConstFalseVal(const SDNode *N) const {
if (!N)
return false;
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN) {
const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
if (!BV)
return false;
// Only interested in constant splats, we don't care about undef
// elements in identifying boolean constants and getConstantSplatNode
// returns NULL if all ops are undef;
CN = BV->getConstantSplatNode();
if (!CN)
return false;
}
if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
return !CN->getAPIntValue()[0];
return CN->isNullValue();
}
bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
bool SExt) const {
if (VT == MVT::i1)
return N->isOne();
TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
switch (Cnt) {
case TargetLowering::ZeroOrOneBooleanContent:
// An extended value of 1 is always true, unless its original type is i1,
// in which case it will be sign extended to -1.
return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
case TargetLowering::UndefinedBooleanContent:
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return N->isAllOnesValue() && SExt;
}
llvm_unreachable("Unexpected enumeration.");
}
/// This helper function of SimplifySetCC tries to optimize the comparison when
/// either operand of the SetCC node is a bitwise-and instruction.
SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond,
DAGCombinerInfo &DCI,
const SDLoc &DL) const {
// Match these patterns in any of their permutations:
// (X & Y) == Y
// (X & Y) != Y
if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
std::swap(N0, N1);
EVT OpVT = N0.getValueType();
if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
(Cond != ISD::SETEQ && Cond != ISD::SETNE))
return SDValue();
SDValue X, Y;
if (N0.getOperand(0) == N1) {
X = N0.getOperand(1);
Y = N0.getOperand(0);
} else if (N0.getOperand(1) == N1) {
X = N0.getOperand(0);
Y = N0.getOperand(1);
} else {
return SDValue();
}
SelectionDAG &DAG = DCI.DAG;
SDValue Zero = DAG.getConstant(0, DL, OpVT);
if (DAG.isKnownToBeAPowerOfTwo(Y)) {
// Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
// Note that where Y is variable and is known to have at most one bit set
// (for example, if it is Z & 1) we cannot do this; the expressions are not
// equivalent when Y == 0.
Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(Cond, N0.getSimpleValueType()))
return DAG.getSetCC(DL, VT, N0, Zero, Cond);
} else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
// If the target supports an 'and-not' or 'and-complement' logic operation,
// try to use that to make a comparison operation more efficient.
// But don't do this transform if the mask is a single bit because there are
// more efficient ways to deal with that case (for example, 'bt' on x86 or
// 'rlwinm' on PPC).
// Bail out if the compare operand that we want to turn into a zero is
// already a zero (otherwise, infinite loop).
auto *YConst = dyn_cast<ConstantSDNode>(Y);
if (YConst && YConst->isNullValue())
return SDValue();
// Transform this into: ~X & Y == 0.
SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
}
return SDValue();
}
/// There are multiple IR patterns that could be checking whether certain
/// truncation of a signed number would be lossy or not. The pattern which is
/// best at IR level, may not lower optimally. Thus, we want to unfold it.
/// We are looking for the following pattern: (KeptBits is a constant)
/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
/// We will unfold it into the natural trunc+sext pattern:
/// ((%x << C) a>> C) dstcond %x
/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
const SDLoc &DL) const {
// We must be comparing with a constant.
ConstantSDNode *C1;
if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
return SDValue();
// N0 should be: add %x, (1 << (KeptBits-1))
if (N0->getOpcode() != ISD::ADD)
return SDValue();
// And we must be 'add'ing a constant.
ConstantSDNode *C01;
if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
return SDValue();
SDValue X = N0->getOperand(0);
EVT XVT = X.getValueType();
// Validate constants ...
APInt I1 = C1->getAPIntValue();
ISD::CondCode NewCond;
if (Cond == ISD::CondCode::SETULT) {
NewCond = ISD::CondCode::SETEQ;
} else if (Cond == ISD::CondCode::SETULE) {
NewCond = ISD::CondCode::SETEQ;
// But need to 'canonicalize' the constant.
I1 += 1;
} else if (Cond == ISD::CondCode::SETUGT) {
NewCond = ISD::CondCode::SETNE;
// But need to 'canonicalize' the constant.
I1 += 1;
} else if (Cond == ISD::CondCode::SETUGE) {
NewCond = ISD::CondCode::SETNE;
} else
return SDValue();
APInt I01 = C01->getAPIntValue();
auto checkConstants = [&I1, &I01]() -> bool {
// Both of them must be power-of-two, and the constant from setcc is bigger.
return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
};
if (checkConstants()) {
// Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
} else {
// What if we invert constants? (and the target predicate)
I1.negate();
I01.negate();
NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
if (!checkConstants())
return SDValue();
// Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
}
// They are power-of-two, so which bit is set?
const unsigned KeptBits = I1.logBase2();
const unsigned KeptBitsMinusOne = I01.logBase2();
// Magic!
if (KeptBits != (KeptBitsMinusOne + 1))
return SDValue();
assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
// We don't want to do this in every single case.
SelectionDAG &DAG = DCI.DAG;
if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
XVT, KeptBits))
return SDValue();
const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
// Unfold into: ((%x << C) a>> C) cond %x
// Where 'cond' will be either 'eq' or 'ne'.
SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
return T2;
}
/// Try to simplify a setcc built with the specified operands and cc. If it is
/// unable to simplify it, return a null SDValue.
SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond, bool foldBooleans,
DAGCombinerInfo &DCI,
const SDLoc &dl) const {
SelectionDAG &DAG = DCI.DAG;
EVT OpVT = N0.getValueType();
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT);
}
// Ensure that the constant occurs on the RHS and fold constant comparisons.
// TODO: Handle non-splat vector constants. All undef causes trouble.
ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
if (isConstOrConstSplat(N0) &&
(DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
// If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
// equality comparison, then we're just comparing whether X itself is
// zero.
if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
N0.getOperand(0).getOpcode() == ISD::CTLZ &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
const APInt &ShAmt
= cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
ShAmt == Log2_32(N0.getValueSizeInBits())) {
if ((C1 == 0) == (Cond == ISD::SETEQ)) {
// (srl (ctlz x), 5) == 0 -> X != 0
// (srl (ctlz x), 5) != 1 -> X != 0
Cond = ISD::SETNE;
} else {
// (srl (ctlz x), 5) != 0 -> X == 0
// (srl (ctlz x), 5) == 1 -> X == 0
Cond = ISD::SETEQ;
}
SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
Zero, Cond);
}
}
SDValue CTPOP = N0;
// Look through truncs that don't change the value of a ctpop.
if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
CTPOP = N0.getOperand(0);
if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
(N0 == CTPOP ||
N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
EVT CTVT = CTPOP.getValueType();
SDValue CTOp = CTPOP.getOperand(0);
// (ctpop x) u< 2 -> (x & x-1) == 0
// (ctpop x) u> 1 -> (x & x-1) != 0
if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
DAG.getConstant(1, dl, CTVT));
SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
}
// TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
}
// (zext x) == C --> x == (trunc C)
// (sext x) == C --> x == (trunc C)
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
DCI.isBeforeLegalize() && N0->hasOneUse()) {
unsigned MinBits = N0.getValueSizeInBits();
SDValue PreExt;
bool Signed = false;
if (N0->getOpcode() == ISD::ZERO_EXTEND) {
// ZExt
MinBits = N0->getOperand(0).getValueSizeInBits();
PreExt = N0->getOperand(0);
} else if (N0->getOpcode() == ISD::AND) {
// DAGCombine turns costly ZExts into ANDs
if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
if ((C->getAPIntValue()+1).isPowerOf2()) {
MinBits = C->getAPIntValue().countTrailingOnes();
PreExt = N0->getOperand(0);
}
} else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
// SExt
MinBits = N0->getOperand(0).getValueSizeInBits();
PreExt = N0->getOperand(0);
Signed = true;
} else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
// ZEXTLOAD / SEXTLOAD
if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
MinBits = LN0->getMemoryVT().getSizeInBits();
PreExt = N0;
} else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
Signed = true;
MinBits = LN0->getMemoryVT().getSizeInBits();
PreExt = N0;
}
}
// Figure out how many bits we need to preserve this constant.
unsigned ReqdBits = Signed ?
C1.getBitWidth() - C1.getNumSignBits() + 1 :
C1.getActiveBits();
// Make sure we're not losing bits from the constant.
if (MinBits > 0 &&
MinBits < C1.getBitWidth() &&
MinBits >= ReqdBits) {
EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
// Will get folded away.
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
if (MinBits == 1 && C1 == 1)
// Invert the condition.
return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
return DAG.getSetCC(dl, VT, Trunc, C, Cond);
}
// If truncating the setcc operands is not desirable, we can still
// simplify the expression in some cases:
// setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
// setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
// setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
// setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
// setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
// setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
SDValue TopSetCC = N0->getOperand(0);
unsigned N0Opc = N0->getOpcode();
bool SExt = (N0Opc == ISD::SIGN_EXTEND);
if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
TopSetCC.getOpcode() == ISD::SETCC &&
(N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
(isConstFalseVal(N1C) ||
isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
(!N1C->isNullValue() && Cond == ISD::SETNE);
if (!Inverse)
return TopSetCC;
ISD::CondCode InvCond = ISD::getSetCCInverse(
cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
TopSetCC.getOperand(0).getValueType().isInteger());
return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
TopSetCC.getOperand(1),
InvCond);
}
}
}
// If the LHS is '(and load, const)', the RHS is 0, the test is for
// equality or unsigned, and all 1 bits of the const are in the same
// partial word, see if we can shorten the load.
if (DCI.isBeforeLegalize() &&
!ISD::isSignedIntSetCC(Cond) &&
N0.getOpcode() == ISD::AND && C1 == 0 &&
N0.getNode()->hasOneUse() &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(0).getNode()->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
APInt bestMask;
unsigned bestWidth = 0, bestOffset = 0;
if (!Lod->isVolatile() && Lod->isUnindexed()) {
unsigned origWidth = N0.getValueSizeInBits();
unsigned maskWidth = origWidth;
// We can narrow (e.g.) 16-bit extending loads on 32-bit target to
// 8 bits, but have to be careful...
if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
origWidth = Lod->getMemoryVT().getSizeInBits();
const APInt &Mask =
cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
for (unsigned width = origWidth / 2; width>=8; width /= 2) {
APInt newMask = APInt::getLowBitsSet(maskWidth, width);
for (unsigned offset=0; offset<origWidth/width; offset++) {
if (Mask.isSubsetOf(newMask)) {
if (DAG.getDataLayout().isLittleEndian())
bestOffset = (uint64_t)offset * (width/8);
else
bestOffset = (origWidth/width - offset - 1) * (width/8);
bestMask = Mask.lshr(offset * (width/8) * 8);
bestWidth = width;
break;
}
newMask <<= width;
}
}
}
if (bestWidth) {
EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
if (newVT.isRound() &&
shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
EVT PtrType = Lod->getOperand(1).getValueType();
SDValue Ptr = Lod->getBasePtr();
if (bestOffset != 0)
Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
DAG.getConstant(bestOffset, dl, PtrType));
unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
SDValue NewLoad = DAG.getLoad(
newVT, dl, Lod->getChain(), Ptr,
Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
return DAG.getSetCC(dl, VT,
DAG.getNode(ISD::AND, dl, newVT, NewLoad,
DAG.getConstant(bestMask.trunc(bestWidth),
dl, newVT)),
DAG.getConstant(0LL, dl, newVT), Cond);
}
}
}
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
unsigned InSize = N0.getOperand(0).getValueSizeInBits();
// If the comparison constant has bits in the upper part, the
// zero-extended value could never match.
if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
C1.getBitWidth() - InSize))) {
switch (Cond) {
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETEQ:
return DAG.getConstant(0, dl, VT);
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETNE:
return DAG.getConstant(1, dl, VT);
case ISD::SETGT:
case ISD::SETGE:
// True if the sign bit of C1 is set.
return DAG.getConstant(C1.isNegative(), dl, VT);
case ISD::SETLT:
case ISD::SETLE:
// True if the sign bit of C1 isn't set.
return DAG.getConstant(C1.isNonNegative(), dl, VT);
default:
break;
}
}
// Otherwise, we can perform the comparison with the low bits.
switch (Cond) {
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETULT:
case ISD::SETULE: {
EVT newVT = N0.getOperand(0).getValueType();
if (DCI.isBeforeLegalizeOps() ||
(isOperationLegal(ISD::SETCC, newVT) &&
isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
EVT NewSetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
NewConst, Cond);
return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
}
break;
}
default:
break; // todo, be more careful with signed comparisons
}
} else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
EVT ExtDstTy = N0.getValueType();
unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
// If the constant doesn't fit into the number of bits for the source of
// the sign extension, it is impossible for both sides to be equal.
if (C1.getMinSignedBits() > ExtSrcTyBits)
return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
SDValue ZextOp;
EVT Op0Ty = N0.getOperand(0).getValueType();
if (Op0Ty == ExtSrcTy) {
ZextOp = N0.getOperand(0);
} else {
APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
DAG.getConstant(Imm, dl, Op0Ty));
}
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(ZextOp.getNode());
// Otherwise, make this a use of a zext.
return DAG.getSetCC(dl, VT, ZextOp,
DAG.getConstant(C1 & APInt::getLowBitsSet(
ExtDstTyBits,
ExtSrcTyBits),
dl, ExtDstTy),
Cond);
} else if ((N1C->isNullValue() || N1C->isOne()) &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
// SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
if (N0.getOpcode() == ISD::SETCC &&
isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
if (TrueWhenTrue)
return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
// Invert the condition.
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
CC = ISD::getSetCCInverse(CC,
N0.getOperand(0).getValueType().isInteger());
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
}
if ((N0.getOpcode() == ISD::XOR ||
(N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR &&
N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
// If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
// can only do this if the top bits are known zero.
unsigned BitWidth = N0.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N0,
APInt::getHighBitsSet(BitWidth,
BitWidth-1))) {
// Okay, get the un-inverted input value.
SDValue Val;
if (N0.getOpcode() == ISD::XOR) {
Val = N0.getOperand(0);
} else {
assert(N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR);
// ((X^1)&1)^1 -> X & 1
Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
N0.getOperand(0).getOperand(0),
N0.getOperand(1));
}
return DAG.getSetCC(dl, VT, Val, N1,
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
}
} else if (N1C->isOne() &&
(VT == MVT::i1 ||
getBooleanContents(N0->getValueType(0)) ==
ZeroOrOneBooleanContent)) {
SDValue Op0 = N0;
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if ((Op0.getOpcode() == ISD::XOR) &&
Op0.getOperand(0).getOpcode() == ISD::SETCC &&
Op0.getOperand(1).getOpcode() == ISD::SETCC) {
// (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
Cond);
}
if (Op0.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(Op0.getOperand(1)) &&
cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
// If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
if (Op0.getValueType().bitsGT(VT))
Op0 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
DAG.getConstant(1, dl, VT));
else if (Op0.getValueType().bitsLT(VT))
Op0 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
DAG.getConstant(1, dl, VT));
return DAG.getSetCC(dl, VT, Op0,
DAG.getConstant(0, dl, Op0.getValueType()),
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
}
if (Op0.getOpcode() == ISD::AssertZext &&
cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
return DAG.getSetCC(dl, VT, Op0,
DAG.getConstant(0, dl, Op0.getValueType()),
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
}
}
if (SDValue V =
optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
return V;
}
// These simplifications apply to splat vectors as well.
// TODO: Handle more splat vector cases.
if (auto *N1C = isConstOrConstSplat(N1)) {
const APInt &C1 = N1C->getAPIntValue();
APInt MinVal, MaxVal;
unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
if (ISD::isSignedIntSetCC(Cond)) {
MinVal = APInt::getSignedMinValue(OperandBitSize);
MaxVal = APInt::getSignedMaxValue(OperandBitSize);
} else {
MinVal = APInt::getMinValue(OperandBitSize);
MaxVal = APInt::getMaxValue(OperandBitSize);
}
// Canonicalize GE/LE comparisons to use GT/LT comparisons.
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
// X >= MIN --> true
if (C1 == MinVal)
return DAG.getBoolConstant(true, dl, VT, OpVT);
if (!VT.isVector()) { // TODO: Support this for vectors.
// X >= C0 --> X > (C0 - 1)
APInt C = C1 - 1;
ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
if ((DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
(!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
isLegalICmpImmediate(C.getSExtValue())))) {
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(C, dl, N1.getValueType()),
NewCC);
}
}
}
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
// X <= MAX --> true
if (C1 == MaxVal)
return DAG.getBoolConstant(true, dl, VT, OpVT);
// X <= C0 --> X < (C0 + 1)
if (!VT.isVector()) { // TODO: Support this for vectors.
APInt C = C1 + 1;
ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
if ((DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
(!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
isLegalICmpImmediate(C.getSExtValue())))) {
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(C, dl, N1.getValueType()),
NewCC);
}
}
}
if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
if (C1 == MinVal)
return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
// TODO: Support this for vectors after legalize ops.
if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
// Canonicalize setlt X, Max --> setne X, Max
if (C1 == MaxVal)
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
// If we have setult X, 1, turn it into seteq X, 0
if (C1 == MinVal+1)
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(MinVal, dl, N0.getValueType()),
ISD::SETEQ);
}
}
if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
if (C1 == MaxVal)
return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
// TODO: Support this for vectors after legalize ops.
if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
// Canonicalize setgt X, Min --> setne X, Min
if (C1 == MinVal)
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
// If we have setugt X, Max-1, turn it into seteq X, Max
if (C1 == MaxVal-1)
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(MaxVal, dl, N0.getValueType()),
ISD::SETEQ);
}
}
// If we have "setcc X, C0", check to see if we can shrink the immediate
// by changing cc.
// TODO: Support this for vectors after legalize ops.
if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
// SETUGT X, SINTMAX -> SETLT X, 0
if (Cond == ISD::SETUGT &&
C1 == APInt::getSignedMaxValue(OperandBitSize))
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(0, dl, N1.getValueType()),
ISD::SETLT);
// SETULT X, SINTMIN -> SETGT X, -1
if (Cond == ISD::SETULT &&
C1 == APInt::getSignedMinValue(OperandBitSize)) {
SDValue ConstMinusOne =
DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
N1.getValueType());
return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
}
}
}
// Back to non-vector simplifications.
// TODO: Can we do these for vector splats?
if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
// Fold bit comparisons when we can.
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
(VT == N0.getValueType() ||
(isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
N0.getOpcode() == ISD::AND) {
auto &DL = DAG.getDataLayout();
if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
!DCI.isBeforeLegalize());
if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
// Perform the xform if the AND RHS is a single bit.
if (AndRHS->getAPIntValue().isPowerOf2()) {
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
ShiftTy)));
}
} else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
// (X & 8) == 8 --> (X & 8) >> 3
// Perform the xform if C1 is a single bit.
if (C1.isPowerOf2()) {
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
DAG.getConstant(C1.logBase2(), dl,
ShiftTy)));
}
}
}
}
if (C1.getMinSignedBits() <= 64 &&
!isLegalICmpImmediate(C1.getSExtValue())) {
// (X & -256) == 256 -> (X >> 8) == 1
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
const APInt &AndRHSC = AndRHS->getAPIntValue();
if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
unsigned ShiftBits = AndRHSC.countTrailingZeros();
auto &DL = DAG.getDataLayout();
EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
!DCI.isBeforeLegalize());
EVT CmpTy = N0.getValueType();
SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
DAG.getConstant(ShiftBits, dl,
ShiftTy));
SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
}
}
} else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
Cond == ISD::SETULE || Cond == ISD::SETUGT) {
bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
// X < 0x100000000 -> (X >> 32) < 1
// X >= 0x100000000 -> (X >> 32) >= 1
// X <= 0x0ffffffff -> (X >> 32) < 1
// X > 0x0ffffffff -> (X >> 32) >= 1
unsigned ShiftBits;
APInt NewC = C1;
ISD::CondCode NewCond = Cond;
if (AdjOne) {
ShiftBits = C1.countTrailingOnes();
NewC = NewC + 1;
NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
} else {
ShiftBits = C1.countTrailingZeros();
}
NewC.lshrInPlace(ShiftBits);
if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
isLegalICmpImmediate(NewC.getSExtValue())) {
auto &DL = DAG.getDataLayout();
EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
!DCI.isBeforeLegalize());
EVT CmpTy = N0.getValueType();
SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
DAG.getConstant(ShiftBits, dl, ShiftTy));
SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
}
}
}
}
if (isa<ConstantFPSDNode>(N0.getNode())) {
// Constant fold or commute setcc.
SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
if (O.getNode()) return O;
} else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
// If the RHS of an FP comparison is a constant, simplify it away in
// some cases.
if (CFP->getValueAPF().isNaN()) {
// If an operand is known to be a nan, we can fold it.
switch (ISD::getUnorderedFlavor(Cond)) {
default: llvm_unreachable("Unknown flavor!");
case 0: // Known false.
return DAG.getBoolConstant(false, dl, VT, OpVT);
case 1: // Known true.
return DAG.getBoolConstant(true, dl, VT, OpVT);
case 2: // Undefined.
return DAG.getUNDEF(VT);
}
}
// Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
// constant if knowing that the operand is non-nan is enough. We prefer to
// have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
// materialize 0.0.
if (Cond == ISD::SETO || Cond == ISD::SETUO)
return DAG.getSetCC(dl, VT, N0, N0, Cond);
// setcc (fneg x), C -> setcc swap(pred) x, -C
if (N0.getOpcode() == ISD::FNEG) {
ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
}
}
// If the condition is not legal, see if we can find an equivalent one
// which is legal.
if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
// If the comparison was an awkward floating-point == or != and one of
// the comparison operands is infinity or negative infinity, convert the
// condition to a less-awkward <= or >=.
if (CFP->getValueAPF().isInfinity()) {
if (CFP->getValueAPF().isNegative()) {
if (Cond == ISD::SETOEQ &&
isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
if (Cond == ISD::SETUEQ &&
isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
if (Cond == ISD::SETUNE &&
isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
if (Cond == ISD::SETONE &&
isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
} else {
if (Cond == ISD::SETOEQ &&
isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
if (Cond == ISD::SETUEQ &&
isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
if (Cond == ISD::SETUNE &&
isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
if (Cond == ISD::SETONE &&
isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
}
}
}
}
if (N0 == N1) {
// The sext(setcc()) => setcc() optimization relies on the appropriate
// constant being emitted.
bool EqTrue = ISD::isTrueWhenEqual(Cond);
// We can always fold X == X for integer setcc's.
if (N0.getValueType().isInteger())
return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
unsigned UOF = ISD::getUnorderedFlavor(Cond);
if (UOF == 2) // FP operators that are undefined on NaNs.
return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
if (UOF == unsigned(EqTrue))
return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
// Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
// if it is not already.
ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
if (NewCond != Cond &&
(DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(NewCond, N0.getSimpleValueType())))
return DAG.getSetCC(dl, VT, N0, N1, NewCond);
}
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
N0.getValueType().isInteger()) {
if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
N0.getOpcode() == ISD::XOR) {
// Simplify (X+Y) == (X+Z) --> Y == Z
if (N0.getOpcode() == N1.getOpcode()) {
if (N0.getOperand(0) == N1.getOperand(0))
return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
if (N0.getOperand(1) == N1.getOperand(1))
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
if (isCommutativeBinOp(N0.getOpcode())) {
// If X op Y == Y op X, try other combinations.
if (N0.getOperand(0) == N1.getOperand(1))
return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
Cond);
if (N0.getOperand(1) == N1.getOperand(0))
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
Cond);
}
}
// If RHS is a legal immediate value for a compare instruction, we need
// to be careful about increasing register pressure needlessly.
bool LegalRHSImm = false;
if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
// Turn (X+C1) == C2 --> X == C2-C1
if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
return DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(RHSC->getAPIntValue()-
LHSR->getAPIntValue(),
dl, N0.getValueType()), Cond);
}
// Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
if (N0.getOpcode() == ISD::XOR)
// If we know that all of the inverted bits are zero, don't bother
// performing the inversion.
if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
return
DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(LHSR->getAPIntValue() ^
RHSC->getAPIntValue(),
dl, N0.getValueType()),
Cond);
}
// Turn (C1-X) == C2 --> X == C1-C2
if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
return
DAG.getSetCC(dl, VT, N0.getOperand(1),
DAG.getConstant(SUBC->getAPIntValue() -
RHSC->getAPIntValue(),
dl, N0.getValueType()),
Cond);
}
}
// Could RHSC fold directly into a compare?
if (RHSC->getValueType(0).getSizeInBits() <= 64)
LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
}
// Simplify (X+Z) == X --> Z == 0
// Don't do this if X is an immediate that can fold into a cmp
// instruction and X+Z has other uses. It could be an induction variable
// chain, and the transform would increase register pressure.
if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
if (N0.getOperand(0) == N1)
return DAG.getSetCC(dl, VT, N0.getOperand(1),
DAG.getConstant(0, dl, N0.getValueType()), Cond);
if (N0.getOperand(1) == N1) {
if (isCommutativeBinOp(N0.getOpcode()))
return DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(0, dl, N0.getValueType()),
Cond);
if (N0.getNode()->hasOneUse()) {
assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
auto &DL = DAG.getDataLayout();
// (Z-X) == X --> Z == X<<1
SDValue SH = DAG.getNode(
ISD::SHL, dl, N1.getValueType(), N1,
DAG.getConstant(1, dl,
getShiftAmountTy(N1.getValueType(), DL,
!DCI.isBeforeLegalize())));
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(SH.getNode());
return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
}
}
}
}
if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
N1.getOpcode() == ISD::XOR) {
// Simplify X == (X+Z) --> Z == 0
if (N1.getOperand(0) == N0)
return DAG.getSetCC(dl, VT, N1.getOperand(1),
DAG.getConstant(0, dl, N1.getValueType()), Cond);
if (N1.getOperand(1) == N0) {
if (isCommutativeBinOp(N1.getOpcode()))
return DAG.getSetCC(dl, VT, N1.getOperand(0),
DAG.getConstant(0, dl, N1.getValueType()), Cond);
if (N1.getNode()->hasOneUse()) {
assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
auto &DL = DAG.getDataLayout();
// X == (Z-X) --> X<<1 == Z
SDValue SH = DAG.getNode(
ISD::SHL, dl, N1.getValueType(), N0,
DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
!DCI.isBeforeLegalize())));
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(SH.getNode());
return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
}
}
}
if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
return V;
}
// Fold away ALL boolean setcc's.
SDValue Temp;
if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
EVT OpVT = N0.getValueType();
switch (Cond) {
default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: // X == Y -> ~(X^Y)
Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
N0 = DAG.getNOT(dl, Temp, OpVT);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETNE: // X != Y --> (X^Y)
N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
break;
case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
Temp = DAG.getNOT(dl, N0, OpVT);
N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
Temp = DAG.getNOT(dl, N1, OpVT);
N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
Temp = DAG.getNOT(dl, N0, OpVT);
N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
Temp = DAG.getNOT(dl, N1, OpVT);
N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
break;
}
if (VT.getScalarType() != MVT::i1) {
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(N0.getNode());
// FIXME: If running after legalize, we probably can't do this.
ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
N0 = DAG.getNode(ExtendCode, dl, VT, N0);
}
return N0;
}
// Could not fold it.
return SDValue();
}
/// Returns true (and the GlobalValue and the offset) if the node is a
/// GlobalAddress + offset.
bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
int64_t &Offset) const {
SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
GA = GASD->getGlobal();
Offset += GASD->getOffset();
return true;
}
if (N->getOpcode() == ISD::ADD) {
SDValue N1 = N->getOperand(0);
SDValue N2 = N->getOperand(1);
if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
Offset += V->getSExtValue();
return true;
}
} else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
Offset += V->getSExtValue();
return true;
}
}
}
return false;
}
SDValue TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
// Default implementation: no optimization.
return SDValue();
}
//===----------------------------------------------------------------------===//
// Inline Assembler Implementation Methods
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
TargetLowering::getConstraintType(StringRef Constraint) const {
unsigned S = Constraint.size();
if (S == 1) {
switch (Constraint[0]) {
default: break;
case 'r': return C_RegisterClass;
case 'm': // memory
case 'o': // offsetable
case 'V': // not offsetable
return C_Memory;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 'E': // Floating Point Constant
case 'F': // Floating Point Constant
case 's': // Relocatable Constant
case 'p': // Address.
case 'X': // Allow ANY value.
case 'I': // Target registers.
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
case '<':
case '>':
return C_Other;
}
}
if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
return C_Memory;
return C_Register;
}
return C_Unknown;
}
/// Try to replace an X constraint, which matches anything, with another that
/// has more specific requirements based on the type of the corresponding
/// operand.
const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
if (ConstraintVT.isInteger())
return "r";
if (ConstraintVT.isFloatingPoint())
return "f"; // works for many targets
return nullptr;
}
/// Lower the specified operand into the Ops vector.
/// If it is invalid, don't add anything to Ops.
void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'X': // Allows any operand; labels (basic block) use this.
if (Op.getOpcode() == ISD::BasicBlock) {
Ops.push_back(Op);
return;
}
LLVM_FALLTHROUGH;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 's': { // Relocatable Constant
// These operands are interested in values of the form (GV+C), where C may
// be folded in as an offset of GV, or it may be explicitly added. Also, it
// is possible and fine if either GV or C are missing.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
// If we have "(add GV, C)", pull out GV/C
if (Op.getOpcode() == ISD::ADD) {
C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
if (!C || !GA) {
C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
}
if (!C || !GA) {
C = nullptr;
GA = nullptr;
}
}
// If we find a valid operand, map to the TargetXXX version so that the
// value itself doesn't get selected.
if (GA) { // Either &GV or &GV+C
if (ConstraintLetter != 'n') {
int64_t Offs = GA->getOffset();
if (C) Offs += C->getZExtValue();
Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
C ? SDLoc(C) : SDLoc(),
Op.getValueType(), Offs));
}
return;
}
if (C) { // just C, no GV.
// Simple constants are not allowed for 's'.
if (ConstraintLetter != 's') {
// gcc prints these as sign extended. Sign extend value to 64 bits
// now; without this it would get ZExt'd later in
// ScheduleDAGSDNodes::EmitNode, which is very generic.
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
SDLoc(C), MVT::i64));
}
return;
}
break;
}
}
}
std::pair<unsigned, const TargetRegisterClass *>
TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
StringRef Constraint,
MVT VT) const {
if (Constraint.empty() || Constraint[0] != '{')
return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
// Remove the braces from around the name.
StringRef RegName(Constraint.data()+1, Constraint.size()-2);
std::pair<unsigned, const TargetRegisterClass*> R =
std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
// Figure out which register class contains this reg.
for (const TargetRegisterClass *RC : RI->regclasses()) {
// If none of the value types for this register class are valid, we
// can't use it. For example, 64-bit reg classes on 32-bit targets.
if (!isLegalRC(*RI, *RC))
continue;
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I) {
if (RegName.equals_lower(RI->getRegAsmName(*I))) {
std::pair<unsigned, const TargetRegisterClass*> S =
std::make_pair(*I, RC);
// If this register class has the requested value type, return it,
// otherwise keep searching and return the first class found
// if no other is found which explicitly has the requested type.
if (RI->isTypeLegalForClass(*RC, VT))
return S;
if (!R.second)
R = S;
}
}
}
return R;
}
//===----------------------------------------------------------------------===//
// Constraint Selection.
/// Return true of this is an input operand that is a matching constraint like
/// "4".
bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
assert(!ConstraintCode.empty() && "No known constraint!");
return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
}
/// If this is an input matching constraint, this method returns the output
/// operand it matches.
unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
assert(!ConstraintCode.empty() && "No known constraint!");
return atoi(ConstraintCode.c_str());
}
/// Split up the constraint string from the inline assembly value into the
/// specific constraints and their prefixes, and also tie in the associated
/// operand values.
/// If this returns an empty vector, and if the constraint string itself
/// isn't empty, there was an error parsing.
TargetLowering::AsmOperandInfoVector
TargetLowering::ParseConstraints(const DataLayout &DL,
const TargetRegisterInfo *TRI,
ImmutableCallSite CS) const {
/// Information about all of the constraints.
AsmOperandInfoVector ConstraintOperands;
const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
unsigned maCount = 0; // Largest number of multiple alternative constraints.
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
ConstraintOperands.emplace_back(std::move(CI));
AsmOperandInfo &OpInfo = ConstraintOperands.back();
// Update multiple alternative constraint count.
if (OpInfo.multipleAlternatives.size() > maCount)
maCount = OpInfo.multipleAlternatives.size();
OpInfo.ConstraintVT = MVT::Other;
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
// Indirect outputs just consume an argument.
if (OpInfo.isIndirect) {
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
break;
}
// The return value of the call is this value. As such, there is no
// corresponding argument.
assert(!CS.getType()->isVoidTy() &&
"Bad inline asm!");
if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
OpInfo.ConstraintVT =
getSimpleValueType(DL, STy->getElementType(ResNo));
} else {
assert(ResNo == 0 && "Asm only has one result!");
OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
}
++ResNo;
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
if (OpInfo.CallOperandVal) {
llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
if (OpInfo.isIndirect) {
llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
if (!PtrTy)
report_fatal_error("Indirect operand for inline asm not a pointer!");
OpTy = PtrTy->getElementType();
}
// Look for vector wrapped in a struct. e.g. { <16 x i8> }.
if (StructType *STy = dyn_cast<StructType>(OpTy))
if (STy->getNumElements() == 1)
OpTy = STy->getElementType(0);
// If OpTy is not a single value, it may be a struct/union that we
// can tile with integers.
if (!OpTy->isSingleValueType() && OpTy->isSized()) {
unsigned BitSize = DL.getTypeSizeInBits(OpTy);
switch (BitSize) {
default: break;
case 1:
case 8:
case 16:
case 32:
case 64:
case 128:
OpInfo.ConstraintVT =
MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
break;
}
} else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
} else {
OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
}
}
}
// If we have multiple alternative constraints, select the best alternative.
if (!ConstraintOperands.empty()) {
if (maCount) {
unsigned bestMAIndex = 0;
int bestWeight = -1;
// weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
int weight = -1;
unsigned maIndex;
// Compute the sums of the weights for each alternative, keeping track
// of the best (highest weight) one so far.
for (maIndex = 0; maIndex < maCount; ++maIndex) {
int weightSum = 0;
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
if (OpInfo.Type == InlineAsm::isClobber)
continue;
// If this is an output operand with a matching input operand,
// look up the matching input. If their types mismatch, e.g. one
// is an integer, the other is floating point, or their sizes are
// different, flag it as an maCantMatch.
if (OpInfo.hasMatchingInput()) {
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(OpInfo.ConstraintVT.getSizeInBits() !=
Input.ConstraintVT.getSizeInBits())) {
weightSum = -1; // Can't match.
break;
}
}
}
weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
if (weight == -1) {
weightSum = -1;
break;
}
weightSum += weight;
}
// Update best.
if (weightSum > bestWeight) {
bestWeight = weightSum;
bestMAIndex = maIndex;
}
}
// Now select chosen alternative in each constraint.
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
if (cInfo.Type == InlineAsm::isClobber)
continue;
cInfo.selectAlternative(bestMAIndex);
}
}
}
// Check and hook up tied operands, choose constraint code to use.
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
// If this is an output operand with a matching input operand, look up the
// matching input. If their types mismatch, e.g. one is an integer, the
// other is floating point, or their sizes are different, flag it as an
// error.
if (OpInfo.hasMatchingInput()) {
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
std::pair<unsigned, const TargetRegisterClass *> MatchRC =
getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
OpInfo.ConstraintVT);
std::pair<unsigned, const TargetRegisterClass *> InputRC =
getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
Input.ConstraintVT);
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(MatchRC.second != InputRC.second)) {
report_fatal_error("Unsupported asm: input constraint"
" with a matching output constraint of"
" incompatible type!");
}
}
}
}
return ConstraintOperands;
}
/// Return an integer indicating how general CT is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
case TargetLowering::C_Register:
return 1;
case TargetLowering::C_RegisterClass:
return 2;
case TargetLowering::C_Memory:
return 3;
}
llvm_unreachable("Invalid constraint type");
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
TargetLowering::getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const {
InlineAsm::ConstraintCodeVector *rCodes;
if (maIndex >= (int)info.multipleAlternatives.size())
rCodes = &info.Codes;
else
rCodes = &info.multipleAlternatives[maIndex].Codes;
ConstraintWeight BestWeight = CW_Invalid;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
ConstraintWeight weight =
getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
if (weight > BestWeight)
BestWeight = weight;
}
return BestWeight;
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
// Look at the constraint type.
switch (*constraint) {
case 'i': // immediate integer.
case 'n': // immediate integer with a known value.
if (isa<ConstantInt>(CallOperandVal))
weight = CW_Constant;
break;
case 's': // non-explicit intregal immediate.
if (isa<GlobalValue>(CallOperandVal))
weight = CW_Constant;
break;
case 'E': // immediate float if host format.
case 'F': // immediate float.
if (isa<ConstantFP>(CallOperandVal))
weight = CW_Constant;
break;
case '<': // memory operand with autodecrement.
case '>': // memory operand with autoincrement.
case 'm': // memory operand.
case 'o': // offsettable memory operand
case 'V': // non-offsettable memory operand
weight = CW_Memory;
break;
case 'r': // general register.
case 'g': // general register, memory operand or immediate integer.
// note: Clang converts "g" to "imr".
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_Register;
break;
case 'X': // any operand.
default:
weight = CW_Default;
break;
}
return weight;
}
/// If there are multiple different constraints that we could pick for this
/// operand (e.g. "imr") try to pick the 'best' one.
/// This is somewhat tricky: constraints fall into four classes:
/// Other -> immediates and magic values
/// Register -> one specific register
/// RegisterClass -> a group of regs
/// Memory -> memory
/// Ideally, we would pick the most specific constraint possible: if we have
/// something that fits into a register, we would pick it. The problem here
/// is that if we have something that could either be in a register or in
/// memory that use of the register could cause selection of *other*
/// operands to fail: they might only succeed if we pick memory. Because of
/// this the heuristic we use is:
///
/// 1) If there is an 'other' constraint, and if the operand is valid for
/// that constraint, use it. This makes us take advantage of 'i'
/// constraints when available.
/// 2) Otherwise, pick the most general constraint present. This prefers
/// 'm' over 'r', for example.
///
static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
const TargetLowering &TLI,
SDValue Op, SelectionDAG *DAG) {
assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
unsigned BestIdx = 0;
TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
int BestGenerality = -1;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
TargetLowering::ConstraintType CType =
TLI.getConstraintType(OpInfo.Codes[i]);
// If this is an 'other' constraint, see if the operand is valid for it.
// For example, on X86 we might have an 'rI' constraint. If the operand
// is an integer in the range [0..31] we want to use I (saving a load
// of a register), otherwise we must use 'r'.
if (CType == TargetLowering::C_Other && Op.getNode()) {
assert(OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint");
std::vector<SDValue> ResultOps;
TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
ResultOps, *DAG);
if (!ResultOps.empty()) {
BestType = CType;
BestIdx = i;
break;
}
}
// Things with matching constraints can only be registers, per gcc
// documentation. This mainly affects "g" constraints.
if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
continue;
// This constraint letter is more general than the previous one, use it.
int Generality = getConstraintGenerality(CType);
if (Generality > BestGenerality) {
BestType = CType;
BestIdx = i;
BestGenerality = Generality;
}
}
OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
OpInfo.ConstraintType = BestType;
}
/// Determines the constraint code and constraint type to use for the specific
/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
SDValue Op,
SelectionDAG *DAG) const {
assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
// Single-letter constraints ('r') are very common.
if (OpInfo.Codes.size() == 1) {
OpInfo.ConstraintCode = OpInfo.Codes[0];
OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
} else {
ChooseConstraint(OpInfo, *this, Op, DAG);
}
// 'X' matches anything.
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
// Labels and constants are handled elsewhere ('X' is the only thing
// that matches labels). For Functions, the type here is the type of
// the result, which is not what we want to look at; leave them alone.
Value *v = OpInfo.CallOperandVal;
if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
OpInfo.CallOperandVal = v;
return;
}
// Otherwise, try to resolve it to something we know about by looking at
// the actual operand type.
if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
OpInfo.ConstraintCode = Repl;
OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
}
}
}
/// Given an exact SDIV by a constant, create a multiplication
/// with the multiplicative inverse of the constant.
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
EVT ShSVT = ShVT.getScalarType();
bool UseSRA = false;
SmallVector<SDValue, 16> Shifts, Factors;
auto BuildSDIVPattern = [&](ConstantSDNode *C) {
if (C->isNullValue())
return false;
APInt Divisor = C->getAPIntValue();
unsigned Shift = Divisor.countTrailingZeros();
if (Shift) {
Divisor.ashrInPlace(Shift);
UseSRA = true;
}
// Calculate the multiplicative inverse, using Newton's method.
APInt t;
APInt Factor = Divisor;
while ((t = Divisor * Factor) != 1)
Factor *= APInt(Divisor.getBitWidth(), 2) - t;
Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
Factors.push_back(DAG.getConstant(Factor, dl, SVT));
return true;
};
// Collect all magic values from the build vector.
if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
return SDValue();
SDValue Shift, Factor;
if (VT.isVector()) {
Shift = DAG.getBuildVector(ShVT, dl, Shifts);
Factor = DAG.getBuildVector(VT, dl, Factors);
} else {
Shift = Shifts[0];
Factor = Factors[0];
}
SDValue Res = Op0;
// Shift the value upfront if it is even, so the LSB is one.
if (UseSRA) {
// TODO: For UDIV use SRL instead of SRA.
SDNodeFlags Flags;
Flags.setExact(true);
Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
Created.push_back(Res.getNode());
}
return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
}
SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isIntDivCheap(N->getValueType(0), Attr))
return SDValue(N,0); // Lower SDIV as SDIV
return SDValue();
}
/// Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
bool IsAfterLegalization,
SmallVectorImpl<SDNode *> &Created) const {
SDLoc dl(N);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
EVT ShSVT = ShVT.getScalarType();
unsigned EltBits = VT.getScalarSizeInBits();
// Check to see if we can do this.
// FIXME: We should be more aggressive here.
if (!isTypeLegal(VT))
return SDValue();
// If the sdiv has an 'exact' bit we can use a simpler lowering.
if (N->getFlags().hasExact())
return BuildExactSDIV(*this, N, dl, DAG, Created);
SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
auto BuildSDIVPattern = [&](ConstantSDNode *C) {
if (C->isNullValue())
return false;
const APInt &Divisor = C->getAPIntValue();
APInt::ms magics = Divisor.magic();
int NumeratorFactor = 0;
int ShiftMask = -1;
if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
// If d is +1/-1, we just multiply the numerator by +1/-1.
NumeratorFactor = Divisor.getSExtValue();
magics.m = 0;
magics.s = 0;
ShiftMask = 0;
} else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
// If d > 0 and m < 0, add the numerator.
NumeratorFactor = 1;
} else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
// If d < 0 and m > 0, subtract the numerator.
NumeratorFactor = -1;
}
MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
return true;
};
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Collect the shifts / magic values from each element.
if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
return SDValue();
SDValue MagicFactor, Factor, Shift, ShiftMask;
if (VT.isVector()) {
MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
Factor = DAG.getBuildVector(VT, dl, Factors);
Shift = DAG.getBuildVector(ShVT, dl, Shifts);
ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
} else {
MagicFactor = MagicFactors[0];
Factor = Factors[0];
Shift = Shifts[0];
ShiftMask = ShiftMasks[0];
}
// Multiply the numerator (operand 0) by the magic value.
// FIXME: We should support doing a MUL in a wider type.
SDValue Q;
if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
: isOperationLegalOrCustom(ISD::MULHS, VT))
Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
: isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
SDValue LoHi =
DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
Q = SDValue(LoHi.getNode(), 1);
} else
return SDValue(); // No mulhs or equivalent.
Created.push_back(Q.getNode());
// (Optionally) Add/subtract the numerator using Factor.
Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
Created.push_back(Factor.getNode());
Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
Created.push_back(Q.getNode());
// Shift right algebraic by shift value.
Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
Created.push_back(Q.getNode());
// Extract the sign bit, mask it and add it to the quotient.
SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
Created.push_back(T.getNode());
T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
Created.push_back(T.getNode());
return DAG.getNode(ISD::ADD, dl, VT, Q, T);
}
/// Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
bool IsAfterLegalization,
SmallVectorImpl<SDNode *> &Created) const {
SDLoc dl(N);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
EVT ShSVT = ShVT.getScalarType();
unsigned EltBits = VT.getScalarSizeInBits();
// Check to see if we can do this.
// FIXME: We should be more aggressive here.
if (!isTypeLegal(VT))
return SDValue();
bool UseNPQ = false;
SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
auto BuildUDIVPattern = [&](ConstantSDNode *C) {
if (C->isNullValue())
return false;
// FIXME: We should use a narrower constant when the upper
// bits are known to be zero.
APInt Divisor = C->getAPIntValue();
APInt::mu magics = Divisor.magicu();
unsigned PreShift = 0, PostShift = 0;
// If the divisor is even, we can avoid using the expensive fixup by
// shifting the divided value upfront.
if (magics.a != 0 && !Divisor[0]) {
PreShift = Divisor.countTrailingZeros();
// Get magic number for the shifted divisor.
magics = Divisor.lshr(PreShift).magicu(PreShift);
assert(magics.a == 0 && "Should use cheap fixup now");
}
APInt Magic = magics.m;
unsigned SelNPQ;
if (magics.a == 0 || Divisor.isOneValue()) {
assert(magics.s < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
PostShift = magics.s;
SelNPQ = false;
} else {
PostShift = magics.s - 1;
SelNPQ = true;
}
PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
NPQFactors.push_back(
DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
: APInt::getNullValue(EltBits),
dl, SVT));
PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
UseNPQ |= SelNPQ;
return true;
};
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Collect the shifts/magic values from each element.
if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
return SDValue();
SDValue PreShift, PostShift, MagicFactor, NPQFactor;
if (VT.isVector()) {
PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
} else {
PreShift = PreShifts[0];
MagicFactor = MagicFactors[0];
PostShift = PostShifts[0];
}
SDValue Q = N0;
Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
Created.push_back(Q.getNode());
// FIXME: We should support doing a MUL in a wider type.
auto GetMULHU = [&](SDValue X, SDValue Y) {
if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
: isOperationLegalOrCustom(ISD::MULHU, VT))
return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
: isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
SDValue LoHi =
DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
return SDValue(LoHi.getNode(), 1);
}
return SDValue(); // No mulhu or equivalent
};
// Multiply the numerator (operand 0) by the magic value.
Q = GetMULHU(Q, MagicFactor);
if (!Q)
return SDValue();
Created.push_back(Q.getNode());
if (UseNPQ) {
SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
Created.push_back(NPQ.getNode());
// For vectors we might have a mix of non-NPQ/NPQ paths, so use
// MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
if (VT.isVector())
NPQ = GetMULHU(NPQ, NPQFactor);
else
NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
Created.push_back(NPQ.getNode());
Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
Created.push_back(Q.getNode());
}
Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
Created.push_back(Q.getNode());
SDValue One = DAG.getConstant(1, dl, VT);
SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
return DAG.getSelect(dl, VT, IsOne, N0, Q);
}
bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
if (!isa<ConstantSDNode>(Op.getOperand(0))) {
DAG.getContext()->emitError("argument to '__builtin_return_address' must "
"be a constant integer");
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Legalization Utilities
//===----------------------------------------------------------------------===//
bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
SDValue LHS, SDValue RHS,
SmallVectorImpl<SDValue> &Result,
EVT HiLoVT, SelectionDAG &DAG,
MulExpansionKind Kind, SDValue LL,
SDValue LH, SDValue RL, SDValue RH) const {
assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
Opcode == ISD::SMUL_LOHI);
bool HasMULHS = (Kind == MulExpansionKind::Always) ||
isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
bool HasMULHU = (Kind == MulExpansionKind::Always) ||
isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
return false;
unsigned OuterBitSize = VT.getScalarSizeInBits();
unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
// LL, LH, RL, and RH must be either all NULL or all set to a value.
assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
(!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
bool Signed) -> bool {
if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
Hi = SDValue(Lo.getNode(), 1);
return true;
}
if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
return true;
}
return false;
};
SDValue Lo, Hi;
if (!LL.getNode() && !RL.getNode() &&
isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
}
if (!LL.getNode())
return false;
APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
if (DAG.MaskedValueIsZero(LHS, HighMask) &&
DAG.MaskedValueIsZero(RHS, HighMask)) {
// The inputs are both zero-extended.
if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
Result.push_back(Lo);
Result.push_back(Hi);
if (Opcode != ISD::MUL) {
SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
Result.push_back(Zero);
Result.push_back(Zero);
}
return true;
}
}
if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
RHSSB > InnerBitSize) {
// The input values are both sign-extended.
// TODO non-MUL case?
if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
Result.push_back(Lo);
Result.push_back(Hi);
return true;
}
}
unsigned ShiftAmount = OuterBitSize - InnerBitSize;
EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
// FIXME getShiftAmountTy does not always return a sensible result when VT
// is an illegal type, and so the type may be too small to fit the shift
// amount. Override it with i32. The shift will have to be legalized.
ShiftAmountTy = MVT::i32;
}
SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
if (!LH.getNode() && !RH.getNode() &&
isOperationLegalOrCustom(ISD::SRL, VT) &&
isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
}
if (!LH.getNode())
return false;
if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
return false;
Result.push_back(Lo);
if (Opcode == ISD::MUL) {
RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
Result.push_back(Hi);
return true;
}
// Compute the full width result.
auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
};
SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
return false;
// This is effectively the add part of a multiply-add of half-sized operands,
// so it cannot overflow.
Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
return false;
SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
isOperationLegalOrCustom(ISD::ADDE, VT));
if (UseGlue)
Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
Merge(Lo, Hi));
else
Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
SDValue Carry = Next.getValue(1);
Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
return false;
if (UseGlue)
Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
Carry);
else
Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
Zero, Carry);
Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
if (Opcode == ISD::SMUL_LOHI) {
SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
}
Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
return true;
}
bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
SelectionDAG &DAG, MulExpansionKind Kind,
SDValue LL, SDValue LH, SDValue RL,
SDValue RH) const {
SmallVector<SDValue, 2> Result;
bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
N->getOperand(0), N->getOperand(1), Result, HiLoVT,
DAG, Kind, LL, LH, RL, RH);
if (Ok) {
assert(Result.size() == 2);
Lo = Result[0];
Hi = Result[1];
}
return Ok;
}
bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
EVT VT = Node->getValueType(0);
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
!isOperationLegalOrCustom(ISD::SRL, VT) ||
!isOperationLegalOrCustom(ISD::SUB, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
return false;
// fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
// fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
SDValue X = Node->getOperand(0);
SDValue Y = Node->getOperand(1);
SDValue Z = Node->getOperand(2);
unsigned EltSizeInBits = VT.getScalarSizeInBits();
bool IsFSHL = Node->getOpcode() == ISD::FSHL;
SDLoc DL(SDValue(Node, 0));
EVT ShVT = Z.getValueType();
SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
SDValue Zero = DAG.getConstant(0, DL, ShVT);
SDValue ShAmt;
if (isPowerOf2_32(EltSizeInBits)) {
SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
} else {
ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
}
SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
// If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
// and that is undefined. We must compare and select to avoid UB.
EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
// For fshl, 0-shift returns the 1st arg (X).
// For fshr, 0-shift returns the 2nd arg (Y).
SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
return true;
}
// TODO: Merge with expandFunnelShift.
bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
EVT VT = Node->getValueType(0);
unsigned EltSizeInBits = VT.getScalarSizeInBits();
bool IsLeft = Node->getOpcode() == ISD::ROTL;
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
SDLoc DL(SDValue(Node, 0));
EVT ShVT = Op1.getValueType();
SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
// If a rotate in the other direction is legal, use it.
unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
if (isOperationLegal(RevRot, VT)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
return true;
}
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
!isOperationLegalOrCustom(ISD::SRL, VT) ||
!isOperationLegalOrCustom(ISD::SUB, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
return false;
// Otherwise,
// (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
// (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
//
assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
"Expecting the type bitwidth to be a power of 2");
unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
DAG.getNode(HsOpc, DL, VT, Op0, And1));
return true;
}
bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
SDValue Src = Node->getOperand(0);
EVT SrcVT = Src.getValueType();
EVT DstVT = Node->getValueType(0);
SDLoc dl(SDValue(Node, 0));
// FIXME: Only f32 to i64 conversions are supported.
if (SrcVT != MVT::f32 || DstVT != MVT::i64)
return false;
// Expand f32 -> i64 conversion
// This algorithm comes from compiler-rt's implementation of fixsfdi:
// https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
EVT IntVT = SrcVT.changeTypeToInteger();
EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
SDValue Bias = DAG.getConstant(127, dl, IntVT);
SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
SDValue ExponentBits = DAG.getNode(
ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
DAG.getConstant(0x00800000, dl, IntVT));
R = DAG.getZExtOrTrunc(R, dl, DstVT);
R = DAG.getSelectCC(
dl, Exponent, ExponentLoBit,
DAG.getNode(ISD::SHL, dl, DstVT, R,
DAG.getZExtOrTrunc(
DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
dl, IntShVT)),
DAG.getNode(ISD::SRL, dl, DstVT, R,
DAG.getZExtOrTrunc(
DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
dl, IntShVT)),
ISD::SETGT);
SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
return true;
}
bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
SDLoc dl(SDValue(Node, 0));
SDValue Src = Node->getOperand(0);
EVT SrcVT = Src.getValueType();
EVT DstVT = Node->getValueType(0);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
// Only expand vector types if we have the appropriate vector bit operations.
if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
!isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
return false;
// If the maximum float value is smaller then the signed integer range,
// the destination signmask can't be represented by the float, so we can
// just use FP_TO_SINT directly.
const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
if (APFloat::opOverflow &
APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
return true;
}
SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
if (Strict) {
// Expand based on maximum range of FP_TO_SINT, if the value exceeds the
// signmask then offset (the result of which should be fully representable).
// Sel = Src < 0x8000000000000000
// Val = select Sel, Src, Src - 0x8000000000000000
// Ofs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val) ^ Ofs
// TODO: Should any fast-math-flags be set for the FSUB?
SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
DAG.getConstant(SignMask, dl, DstVT));
Result = DAG.getNode(ISD::XOR, dl, DstVT,
DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
} else {
// Expand based on maximum range of FP_TO_SINT:
// True = fp_to_sint(Src)
// False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
// Result = select (Src < 0x8000000000000000), True, False
SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
// TODO: Should any fast-math-flags be set for the FSUB?
SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
False = DAG.getNode(ISD::XOR, dl, DstVT, False,
DAG.getConstant(SignMask, dl, DstVT));
Result = DAG.getSelect(dl, DstVT, Sel, True, False);
}
return true;
}
bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
SDValue Src = Node->getOperand(0);
EVT SrcVT = Src.getValueType();
EVT DstVT = Node->getValueType(0);
if (SrcVT.getScalarType() != MVT::i64)
return false;
SDLoc dl(SDValue(Node, 0));
EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
if (DstVT.getScalarType() == MVT::f32) {
// Only expand vector types if we have the appropriate vector bit
// operations.
if (SrcVT.isVector() &&
(!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
!isOperationLegalOrCustom(ISD::FADD, DstVT) ||
!isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
!isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
!isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
return false;
// For unsigned conversions, convert them to signed conversions using the
// algorithm from the x86_64 __floatundidf in compiler_rt.
SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
// TODO: This really should be implemented using a branch rather than a
// select. We happen to get lucky and machinesink does the right
// thing most of the time. This would be a good candidate for a
// pseudo-op, or, even better, for whole-function isel.
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
SDValue SignBitTest = DAG.getSetCC(
dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
return true;
}
if (DstVT.getScalarType() == MVT::f64) {
// Only expand vector types if we have the appropriate vector bit
// operations.
if (SrcVT.isVector() &&
(!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
!isOperationLegalOrCustom(ISD::FADD, DstVT) ||
!isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
!isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
!isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
return false;
// Implementation of unsigned i64 to f64 following the algorithm in
// __floatundidf in compiler_rt. This implementation has the advantage
// of performing rounding correctly, both in the default rounding mode
// and in all alternate rounding modes.
SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
return true;
}
return false;
}
SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
SelectionDAG &DAG) const {
SDLoc dl(Node);
unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
EVT VT = Node->getValueType(0);
if (isOperationLegalOrCustom(NewOp, VT)) {
SDValue Quiet0 = Node->getOperand(0);
SDValue Quiet1 = Node->getOperand(1);
if (!Node->getFlags().hasNoNaNs()) {
// Insert canonicalizes if it's possible we need to quiet to get correct
// sNaN behavior.
if (!DAG.isKnownNeverSNaN(Quiet0)) {
Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
Node->getFlags());
}
if (!DAG.isKnownNeverSNaN(Quiet1)) {
Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
Node->getFlags());
}
}
return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
}
return SDValue();
}
bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
SDValue Op = Node->getOperand(0);
unsigned Len = VT.getScalarSizeInBits();
assert(VT.isInteger() && "CTPOP not implemented for this type.");
// TODO: Add support for irregular type lengths.
if (!(Len <= 128 && Len % 8 == 0))
return false;
// Only expand vector types if we have the appropriate vector bit operations.
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
!isOperationLegalOrCustom(ISD::SUB, VT) ||
!isOperationLegalOrCustom(ISD::SRL, VT) ||
(Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
!isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
return false;
// This is the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
SDValue Mask55 =
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
SDValue Mask33 =
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
SDValue Mask0F =
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
SDValue Mask01 =
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
// v = v - ((v >> 1) & 0x55555555...)
Op = DAG.getNode(ISD::SUB, dl, VT, Op,
DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRL, dl, VT, Op,
DAG.getConstant(1, dl, ShVT)),
Mask55));
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRL, dl, VT, Op,
DAG.getConstant(2, dl, ShVT)),
Mask33));
// v = (v + (v >> 4)) & 0x0F0F0F0F...
Op = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::ADD, dl, VT, Op,
DAG.getNode(ISD::SRL, dl, VT, Op,
DAG.getConstant(4, dl, ShVT))),
Mask0F);
// v = (v * 0x01010101...) >> (Len - 8)
if (Len > 8)
Op =
DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
DAG.getConstant(Len - 8, dl, ShVT));
Result = Op;
return true;
}
bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
SDValue Op = Node->getOperand(0);
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
// If the non-ZERO_UNDEF version is supported we can use that instead.
if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
isOperationLegalOrCustom(ISD::CTLZ, VT)) {
Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
return true;
}
// If the ZERO_UNDEF version is supported use that and handle the zero case.
if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
return true;
}
// Only expand vector types if we have the appropriate vector bit operations.
if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
!isOperationLegalOrCustom(ISD::CTPOP, VT) ||
!isOperationLegalOrCustom(ISD::SRL, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
return false;
// for now, we do this:
// x = x | (x >> 1);
// x = x | (x >> 2);
// ...
// x = x | (x >>16);
// x = x | (x >>32); // for 64-bit input
// return popcount(~x);
//
// Ref: "Hacker's Delight" by Henry Warren
for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
Op = DAG.getNode(ISD::OR, dl, VT, Op,
DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
}
Op = DAG.getNOT(dl, Op, VT);
Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
return true;
}
bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
SelectionDAG &DAG) const {
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
SDValue Op = Node->getOperand(0);
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
// If the non-ZERO_UNDEF version is supported we can use that instead.
if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
isOperationLegalOrCustom(ISD::CTTZ, VT)) {
Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
return true;
}
// If the ZERO_UNDEF version is supported use that and handle the zero case.
if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
return true;
}
// Only expand vector types if we have the appropriate vector bit operations.
if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
(!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
!isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
!isOperationLegalOrCustom(ISD::SUB, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
return false;
// for now, we use: { return popcount(~x & (x - 1)); }
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
// Ref: "Hacker's Delight" by Henry Warren
SDValue Tmp = DAG.getNode(
ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
// If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
Result =
DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
return true;
}
Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
return true;
}
bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
SelectionDAG &DAG) const {
SDLoc dl(N);
EVT VT = N->getValueType(0);
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
SDValue Op = N->getOperand(0);
// Only expand vector types if we have the appropriate vector operations.
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
!isOperationLegalOrCustom(ISD::ADD, VT) ||
!isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
return false;
SDValue Shift =
DAG.getNode(ISD::SRA, dl, VT, Op,
DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
return true;
}
SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
SelectionDAG &DAG) const {
SDLoc SL(LD);
SDValue Chain = LD->getChain();
SDValue BasePTR = LD->getBasePtr();
EVT SrcVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = LD->getExtensionType();
unsigned NumElem = SrcVT.getVectorNumElements();
EVT SrcEltVT = SrcVT.getScalarType();
EVT DstEltVT = LD->getValueType(0).getScalarType();
unsigned Stride = SrcEltVT.getSizeInBits() / 8;
assert(SrcEltVT.isByteSized());
SmallVector<SDValue, 8> Vals;
SmallVector<SDValue, 8> LoadChains;
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
SDValue ScalarLoad =
DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Idx * Stride),
SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
LD->getMemOperand()->getFlags(), LD->getAAInfo());
BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
Vals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
return DAG.getMergeValues({ Value, NewChain }, SL);
}
SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
SelectionDAG &DAG) const {
SDLoc SL(ST);
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
SDValue Value = ST->getValue();
EVT StVT = ST->getMemoryVT();
// The type of the data we want to save
EVT RegVT = Value.getValueType();
EVT RegSclVT = RegVT.getScalarType();
// The type of data as saved in memory.
EVT MemSclVT = StVT.getScalarType();
EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
unsigned NumElem = StVT.getVectorNumElements();
// A vector must always be stored in memory as-is, i.e. without any padding
// between the elements, since various code depend on it, e.g. in the
// handling of a bitcast of a vector type to int, which may be done with a
// vector store followed by an integer load. A vector that does not have
// elements that are byte-sized must therefore be stored as an integer
// built out of the extracted vector elements.
if (!MemSclVT.isByteSized()) {
unsigned NumBits = StVT.getSizeInBits();
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
DAG.getConstant(Idx, SL, IdxVT));
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
unsigned ShiftIntoIdx =
(DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
SDValue ShiftAmount =
DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
SDValue ShiftedElt =
DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
}
return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
ST->getAlignment(), ST->getMemOperand()->getFlags(),
ST->getAAInfo());
}
// Store Stride in bytes
unsigned Stride = MemSclVT.getSizeInBits() / 8;
assert (Stride && "Zero stride!");
// Extract each of the elements from the original vector and save them into
// memory individually.
SmallVector<SDValue, 8> Stores;
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
DAG.getConstant(Idx, SL, IdxVT));
SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
// This scalar TruncStore may be illegal, but we legalize it later.
SDValue Store = DAG.getTruncStore(
Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
ST->getMemOperand()->getFlags(), ST->getAAInfo());
Stores.push_back(Store);
}
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
}
std::pair<SDValue, SDValue>
TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
assert(LD->getAddressingMode() == ISD::UNINDEXED &&
"unaligned indexed loads not implemented!");
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
EVT VT = LD->getValueType(0);
EVT LoadedVT = LD->getMemoryVT();
SDLoc dl(LD);
auto &MF = DAG.getMachineFunction();
if (VT.isFloatingPoint() || VT.isVector()) {
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
LoadedVT.isVector()) {
// Scalarize the load and let the individual components be handled.
SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
}
// Expand to a (misaligned) integer load of the same size,
// then bitconvert to floating point or vector.
SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
if (LoadedVT != VT)
Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
ISD::ANY_EXTEND, dl, VT, Result);
return std::make_pair(Result, newLoad.getValue(1));
}
// Copy the value to a (aligned) stack slot using (unaligned) integer
// loads and stores, then do a (aligned) load from the stack slot.
MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
unsigned LoadedBytes = LoadedVT.getStoreSize();
unsigned RegBytes = RegVT.getSizeInBits() / 8;
unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
// Make sure the stack slot is also aligned for the register type.
SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
SmallVector<SDValue, 8> Stores;
SDValue StackPtr = StackBase;
unsigned Offset = 0;
EVT PtrVT = Ptr.getValueType();
EVT StackPtrVT = StackPtr.getValueType();
SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
// Do all but one copies using the full register width.
for (unsigned i = 1; i < NumRegs; i++) {
// Load one integer register's worth from the original location.
SDValue Load = DAG.getLoad(
RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
LD->getAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
Stores.push_back(DAG.getStore(
Load.getValue(1), dl, Load, StackPtr,
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
// Increment the pointers.
Offset += RegBytes;
Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
}
// The last copy may be partial. Do an extending load.
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8 * (LoadedBytes - Offset));
SDValue Load =
DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(Offset), MemVT,
MinAlign(LD->getAlignment(), Offset),
LD->getMemOperand()->getFlags(), LD->getAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
// On big-endian machines this requires a truncating store to ensure
// that the bits end up in the right place.
Stores.push_back(DAG.getTruncStore(
Load.getValue(1), dl, Load, StackPtr,
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
// The order of the stores doesn't matter - say it with a TokenFactor.
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
// Finally, perform the original load only redirected to the stack slot.
Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
LoadedVT);
// Callers expect a MERGE_VALUES node.
return std::make_pair(Load, TF);
}
assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
"Unaligned load of unsupported type.");
// Compute the new VT that is half the size of the old one. This is an
// integer MVT.
unsigned NumBits = LoadedVT.getSizeInBits();
EVT NewLoadedVT;
NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
NumBits >>= 1;
unsigned Alignment = LD->getAlignment();
unsigned IncrementSize = NumBits / 8;
ISD::LoadExtType HiExtType = LD->getExtensionType();
// If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
if (HiExtType == ISD::NON_EXTLOAD)
HiExtType = ISD::ZEXTLOAD;
// Load the value in two parts
SDValue Lo, Hi;
if (DAG.getDataLayout().isLittleEndian()) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
LD->getAAInfo());
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, MinAlign(Alignment, IncrementSize),
LD->getMemOperand()->getFlags(), LD->getAAInfo());
} else {
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
LD->getAAInfo());
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, MinAlign(Alignment, IncrementSize),
LD->getMemOperand()->getFlags(), LD->getAAInfo());
}
// aggregate the two parts
SDValue ShiftAmount =
DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
DAG.getDataLayout()));
SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
return std::make_pair(Result, TF);
}
SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
SelectionDAG &DAG) const {
assert(ST->getAddressingMode() == ISD::UNINDEXED &&
"unaligned indexed stores not implemented!");
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDValue Val = ST->getValue();
EVT VT = Val.getValueType();
int Alignment = ST->getAlignment();
auto &MF = DAG.getMachineFunction();
EVT MemVT = ST->getMemoryVT();
SDLoc dl(ST);
if (MemVT.isFloatingPoint() || MemVT.isVector()) {
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
if (isTypeLegal(intVT)) {
if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
MemVT.isVector()) {
// Scalarize the store and let the individual components be handled.
SDValue Result = scalarizeVectorStore(ST, DAG);
return Result;
}
// Expand to a bitconvert of the value to the integer type of the
// same size, then a (misaligned) int store.
// FIXME: Does not handle truncating floating point stores!
SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
Alignment, ST->getMemOperand()->getFlags());
return Result;
}
// Do a (aligned) store to a stack slot, then copy from the stack slot
// to the final destination using (unaligned) integer loads and stores.
EVT StoredVT = ST->getMemoryVT();
MVT RegVT =
getRegisterType(*DAG.getContext(),
EVT::getIntegerVT(*DAG.getContext(),
StoredVT.getSizeInBits()));
EVT PtrVT = Ptr.getValueType();
unsigned StoredBytes = StoredVT.getStoreSize();
unsigned RegBytes = RegVT.getSizeInBits() / 8;
unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
// Make sure the stack slot is also aligned for the register type.
SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
// Perform the original store, only redirected to the stack slot.
SDValue Store = DAG.getTruncStore(
Chain, dl, Val, StackPtr,
MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
EVT StackPtrVT = StackPtr.getValueType();
SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
SmallVector<SDValue, 8> Stores;
unsigned Offset = 0;
// Do all but one copies using the full register width.
for (unsigned i = 1; i < NumRegs; i++) {
// Load one integer register's worth from the stack slot.
SDValue Load = DAG.getLoad(
RegVT, dl, Store, StackPtr,
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
// Store it to the final location. Remember the store.
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
ST->getPointerInfo().getWithOffset(Offset),
MinAlign(ST->getAlignment(), Offset),
ST->getMemOperand()->getFlags()));
// Increment the pointers.
Offset += RegBytes;
StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
}
// The last store may be partial. Do a truncating store. On big-endian
// machines this requires an extending load from the stack slot to ensure
// that the bits are in the right place.
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8 * (StoredBytes - Offset));
// Load from the stack slot.
SDValue Load = DAG.getExtLoad(
ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
Stores.push_back(
DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
ST->getPointerInfo().getWithOffset(Offset), MemVT,
MinAlign(ST->getAlignment(), Offset),
ST->getMemOperand()->getFlags(), ST->getAAInfo()));
// The order of the stores doesn't matter - say it with a TokenFactor.
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
return Result;
}
assert(ST->getMemoryVT().isInteger() &&
!ST->getMemoryVT().isVector() &&
"Unaligned store of unknown type.");
// Get the half-size VT
EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
int NumBits = NewStoredVT.getSizeInBits();
int IncrementSize = NumBits / 8;
// Divide the stored value in two parts.
SDValue ShiftAmount =
DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
DAG.getDataLayout()));
SDValue Lo = Val;
SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
// Store the two parts
SDValue Store1, Store2;
Store1 = DAG.getTruncStore(Chain, dl,
DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
ST->getMemOperand()->getFlags());
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
Alignment = MinAlign(Alignment, IncrementSize);
Store2 = DAG.getTruncStore(
Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
ST->getMemOperand()->getFlags(), ST->getAAInfo());
SDValue Result =
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
return Result;
}
SDValue
TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
const SDLoc &DL, EVT DataVT,
SelectionDAG &DAG,
bool IsCompressedMemory) const {
SDValue Increment;
EVT AddrVT = Addr.getValueType();
EVT MaskVT = Mask.getValueType();
assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
"Incompatible types of Data and Mask");
if (IsCompressedMemory) {
// Incrementing the pointer according to number of '1's in the mask.
EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
if (MaskIntVT.getSizeInBits() < 32) {
MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
MaskIntVT = MVT::i32;
}
// Count '1's with POPCNT.
Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
// Scale is an element size in bytes.
SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
AddrVT);
Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
} else
Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
}
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
SDValue Idx,
EVT VecVT,
const SDLoc &dl) {
if (isa<ConstantSDNode>(Idx))
return Idx;
EVT IdxVT = Idx.getValueType();
unsigned NElts = VecVT.getVectorNumElements();
if (isPowerOf2_32(NElts)) {
APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
Log2_32(NElts));
return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
DAG.getConstant(Imm, dl, IdxVT));
}
return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
DAG.getConstant(NElts - 1, dl, IdxVT));
}
SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
SDValue VecPtr, EVT VecVT,
SDValue Index) const {
SDLoc dl(Index);
// Make sure the index type is big enough to compute in.
Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
EVT EltVT = VecVT.getVectorElementType();
// Calculate the element offset and add it to the pointer.
unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
assert(EltSize * 8 == EltVT.getSizeInBits() &&
"Converting bits to bytes lost precision");
Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
EVT IdxVT = Index.getValueType();
Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
DAG.getConstant(EltSize, dl, IdxVT));
return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
}
//===----------------------------------------------------------------------===//
// Implementation of Emulated TLS Model
//===----------------------------------------------------------------------===//
SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
// Access to address of TLS varialbe xyz is lowered to a function call:
// __emutls_get_address( address of global variable named "__emutls_v.xyz" )
EVT PtrVT = getPointerTy(DAG.getDataLayout());
PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
SDLoc dl(GA);
ArgListTy Args;
ArgListEntry Entry;
std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
StringRef EmuTlsVarName(NameString);
GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
assert(EmuTlsVar && "Cannot find EmuTlsVar ");
Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
Entry.Ty = VoidPtrType;
Args.push_back(Entry);
SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
// At last for X86 targets, maybe good for other targets too?
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setAdjustsStack(true); // Is this only for X86 target?
MFI.setHasCalls(true);
assert((GA->getOffset() == 0) &&
"Emulated TLS must have zero offset in GlobalAddressSDNode");
return CallResult.first;
}
SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
SelectionDAG &DAG) const {
assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
if (!isCtlzFast())
return SDValue();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc dl(Op);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (C->isNullValue() && CC == ISD::SETEQ) {
EVT VT = Op.getOperand(0).getValueType();
SDValue Zext = Op.getOperand(0);
if (VT.bitsLT(MVT::i32)) {
VT = MVT::i32;
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
}
unsigned Log2b = Log2_32(VT.getSizeInBits());
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
DAG.getConstant(Log2b, dl, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
}
}
return SDValue();
}
SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
unsigned Opcode = Node->getOpcode();
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
EVT VT = LHS.getValueType();
SDLoc dl(Node);
// usub.sat(a, b) -> umax(a, b) - b
if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
}
if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
}
if (VT.isVector()) {
// TODO: Consider not scalarizing here.
return SDValue();
}
unsigned OverflowOp;
switch (Opcode) {
case ISD::SADDSAT:
OverflowOp = ISD::SADDO;
break;
case ISD::UADDSAT:
OverflowOp = ISD::UADDO;
break;
case ISD::SSUBSAT:
OverflowOp = ISD::SSUBO;
break;
case ISD::USUBSAT:
OverflowOp = ISD::USUBO;
break;
default:
llvm_unreachable("Expected method to receive signed or unsigned saturation "
"addition or subtraction node.");
}
assert(LHS.getValueType().isScalarInteger() &&
"Expected operands to be integers. Vector of int arguments should "
"already be unrolled.");
assert(RHS.getValueType().isScalarInteger() &&
"Expected operands to be integers. Vector of int arguments should "
"already be unrolled.");
assert(LHS.getValueType() == RHS.getValueType() &&
"Expected both operands to be the same type");
unsigned BitWidth = LHS.getValueSizeInBits();
EVT ResultType = LHS.getValueType();
EVT BoolVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
SDValue Result =
DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
SDValue SumDiff = Result.getValue(0);
SDValue Overflow = Result.getValue(1);
SDValue Zero = DAG.getConstant(0, dl, ResultType);
if (Opcode == ISD::UADDSAT) {
// Just need to check overflow for SatMax.
APInt MaxVal = APInt::getMaxValue(BitWidth);
SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
} else if (Opcode == ISD::USUBSAT) {
// Just need to check overflow for SatMin.
APInt MinVal = APInt::getMinValue(BitWidth);
SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
} else {
// SatMax -> Overflow && SumDiff < 0
// SatMin -> Overflow && SumDiff >= 0
APInt MinVal = APInt::getSignedMinValue(BitWidth);
APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
}
}
SDValue
TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX.");
SDLoc dl(Node);
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
EVT VT = LHS.getValueType();
unsigned Scale = Node->getConstantOperandVal(2);
// [us]mul.fix(a, b, 0) -> mul(a, b)
if (!Scale) {
if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT))
return SDValue();
return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
}
assert(LHS.getValueType() == RHS.getValueType() &&
"Expected both operands to be the same type");
assert(Scale < VT.getScalarSizeInBits() &&
"Expected scale to be less than the number of bits.");
// Get the upper and lower bits of the result.
SDValue Lo, Hi;
if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
SDValue Result =
DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS);
Lo = Result.getValue(0);
Hi = Result.getValue(1);
} else if (isOperationLegalOrCustom(ISD::MULHS, VT)) {
Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS);
} else if (VT.isVector()) {
return SDValue();
} else {
report_fatal_error("Unable to expand signed fixed point multiplication.");
}
// The result will need to be shifted right by the scale since both operands
// are scaled. The result is given to us in 2 halves, so we only want part of
// both in the result.
EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy));
Hi = DAG.getNode(
ISD::SHL, dl, VT, Hi,
DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy));
return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
}