mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-28 02:26:05 +00:00
2706 lines
108 KiB
C++
2706 lines
108 KiB
C++
//===- LinalgOps.cpp - Implementation of the linalg operations ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Linalg operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
|
|
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Interfaces/InferTypeOpInterface.h"
|
|
#include "mlir/Parser.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOpsDialect.cpp.inc"
|
|
|
|
/// Forward declarations.
|
|
|
|
/// Generic entry point to create the block for the region of a LinalgOp.
|
|
/// This is used by both named structured ops created by ods-gen and by manually
|
|
/// defined C++ ops.
|
|
/// This is used by both builders and parsers.
|
|
/// This function creates the block in the region with arguments corresponding
|
|
/// to the elemental types of `inputTypes` and `outputTypes`. The latter are
|
|
/// asserted to be of ShapedType.
|
|
template <typename NamedStructuredOpType>
|
|
static void fillStructuredOpRegion(
|
|
OpBuilder &opBuilder, Region ®ion, TypeRange inputTypes,
|
|
TypeRange outputTypes,
|
|
std::function<void(unsigned, unsigned)> errorHandler = nullptr);
|
|
|
|
/// Generic entry point to create both the region and the block of a LinalgOp.
|
|
template <typename NamedStructuredOpType>
|
|
static void
|
|
createAndFillStructuredOpRegion(OpBuilder &opBuilder, OperationState &result,
|
|
TypeRange inputTypes, TypeRange outputTypes);
|
|
|
|
/// Common parsing and printing used for both named structured ops created by
|
|
/// ods-gen and by manually defined C++ ops. Does not handle regions.
|
|
static ParseResult
|
|
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
|
|
SmallVectorImpl<Type> &inputTypes,
|
|
SmallVectorImpl<Type> &outputTypes);
|
|
template <typename NamedStructuredOpType>
|
|
static void printCommonStructuredOpParts(OpAsmPrinter &p,
|
|
NamedStructuredOpType op);
|
|
|
|
/// Specific parsing and printing for named structured ops created by ods-gen.
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult
|
|
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
|
|
TypeRange inputTypes, TypeRange outputTypes);
|
|
|
|
static ParseResult
|
|
parseNamedStructuredOpResults(OpAsmParser &parser,
|
|
SmallVectorImpl<Type> &resultTypes);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
|
|
OperationState &result);
|
|
|
|
static void printNamedStructuredOpResults(OpAsmPrinter &p,
|
|
TypeRange resultTypes);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op);
|
|
|
|
/// This is a common class used for patterns of the form
|
|
/// ```
|
|
/// someop(memrefcast(%src)) -> someop(%src)
|
|
/// ```
|
|
/// It folds the source of the memref.cast into the root operation directly.
|
|
static LogicalResult foldMemRefCast(Operation *op) {
|
|
bool folded = false;
|
|
for (OpOperand &operand : op->getOpOperands()) {
|
|
auto castOp = operand.get().getDefiningOp<memref::CastOp>();
|
|
if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
|
|
operand.set(castOp.getOperand());
|
|
folded = true;
|
|
}
|
|
}
|
|
return success(folded);
|
|
}
|
|
|
|
/// This is a specialization of `foldMemRefCast` used for patterns of the form
|
|
/// ```
|
|
/// tiled_loop(memrefcast(%src)) -> tiled_loop(%src)
|
|
/// ```
|
|
/// It folds the source of the memref.cast into the root operation directly.
|
|
static LogicalResult foldMemRefCastInTiledLoopOp(TiledLoopOp op) {
|
|
bool folded = false;
|
|
Location loc = op->getLoc();
|
|
|
|
Block *body = op.getBody();
|
|
OpBuilder b = OpBuilder::atBlockBegin(body);
|
|
|
|
// Update `input` and `output` operands and block arguments if necessary.
|
|
// Operands list: [lbs, ubs, steps, inputs, outputs].
|
|
// Block args list: [ivs, inputs, outputs].
|
|
for (size_t operandIndex = op.getNumControlOperands(),
|
|
bbArgIndex = op.getNumLoops(), e = op.getNumOperands();
|
|
operandIndex < e; ++operandIndex, ++bbArgIndex) {
|
|
OpOperand &operand = op->getOpOperand(operandIndex);
|
|
|
|
auto castOp = operand.get().getDefiningOp<memref::CastOp>();
|
|
if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
|
|
operand.set(castOp.getOperand());
|
|
BlockArgument newBbArg =
|
|
body->insertArgument(bbArgIndex, castOp.getOperand().getType());
|
|
BlockArgument oldBbArg = body->getArgument(newBbArg.getArgNumber() + 1);
|
|
|
|
// Insert memref.cast back to the original type.
|
|
oldBbArg.replaceAllUsesWith(
|
|
b.create<memref::CastOp>(loc, oldBbArg.getType(), newBbArg));
|
|
body->eraseArgument(oldBbArg.getArgNumber());
|
|
|
|
folded = true;
|
|
}
|
|
}
|
|
return success(folded);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region builder helper.
|
|
// TODO: Move this to a utility library.
|
|
// The public methods on this class are referenced directly from generated code
|
|
// and bind by name to math functions in the DSL as:
|
|
// `applyfn__{fnName}`
|
|
// Examples:
|
|
// `applyfn__add`
|
|
// `applyfn__mul`
|
|
// The naming convention is intentional in order to match snake-cased DSL names.
|
|
// See mlir-linalg-ods-yaml-gen.cpp for the code that mates to this class.
|
|
//
|
|
// Implementations of the math functions must be polymorphic over numeric types,
|
|
// internally performing necessary casts. If the function application makes no
|
|
// sense, then the only recourse is to assert and return nullptr. This can be
|
|
// extended later if it becomes possible to fail construction of the region. The
|
|
// invariant should be enforced at a higher level.
|
|
//
|
|
// TODO: These helpers are currently type polymorphic over the class of integer
|
|
// and floating point types, but they will not internally cast within bit
|
|
// widths of a class (mixed precision such as i8->i32) or across classes
|
|
// (i.e. mixed float and integer). Many such combinations are ambiguous or need
|
|
// to be handled with care and work is being considered to extend the op
|
|
// language to make such cases explicit. In the mean-time, violating this will
|
|
// fail verification, which is deemed acceptable.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class RegionBuilderHelper {
|
|
public:
|
|
RegionBuilderHelper(MLIRContext *context, Block &block)
|
|
: context(context), block(block) {}
|
|
|
|
// Generates operations to cast the given operand to a specified type.
|
|
// If the cast cannot be performed, a warning will be issued and the
|
|
// operand returned as-is (which will presumably yield a verification
|
|
// issue downstream).
|
|
Value cast(Type toType, Value operand, bool isUnsignedCast) {
|
|
OpBuilder builder = getBuilder();
|
|
auto loc = operand.getLoc();
|
|
|
|
if (operand.getType() == toType)
|
|
return operand;
|
|
if (auto toIntType = toType.dyn_cast<IntegerType>()) {
|
|
// If operand is floating point, cast directly to the int type.
|
|
if (operand.getType().isa<FloatType>()) {
|
|
if (isUnsignedCast)
|
|
return builder.create<arith::FPToUIOp>(loc, toType, operand);
|
|
return builder.create<arith::FPToSIOp>(loc, toType, operand);
|
|
}
|
|
// Cast index operands directly to the int type.
|
|
if (operand.getType().isIndex())
|
|
return builder.create<arith::IndexCastOp>(loc, toType, operand);
|
|
if (auto fromIntType = operand.getType().dyn_cast<IntegerType>()) {
|
|
// Either extend or truncate.
|
|
if (toIntType.getWidth() > fromIntType.getWidth()) {
|
|
if (isUnsignedCast)
|
|
return builder.create<arith::ExtUIOp>(loc, toType, operand);
|
|
return builder.create<arith::ExtSIOp>(loc, toType, operand);
|
|
}
|
|
if (toIntType.getWidth() < fromIntType.getWidth())
|
|
return builder.create<arith::TruncIOp>(loc, toType, operand);
|
|
}
|
|
} else if (auto toFloatType = toType.dyn_cast<FloatType>()) {
|
|
// If operand is integer, cast directly to the float type.
|
|
// Note that it is unclear how to cast from BF16<->FP16.
|
|
if (operand.getType().isa<IntegerType>()) {
|
|
if (isUnsignedCast)
|
|
return builder.create<arith::UIToFPOp>(loc, toFloatType, operand);
|
|
return builder.create<arith::SIToFPOp>(loc, toFloatType, operand);
|
|
}
|
|
if (auto fromFloatType = operand.getType().dyn_cast<FloatType>()) {
|
|
if (toFloatType.getWidth() > fromFloatType.getWidth())
|
|
return builder.create<arith::ExtFOp>(loc, toFloatType, operand);
|
|
if (toFloatType.getWidth() < fromFloatType.getWidth())
|
|
return builder.create<arith::TruncFOp>(loc, toFloatType, operand);
|
|
}
|
|
}
|
|
|
|
emitWarning(operand.getLoc()) << "could not cast operand of type "
|
|
<< operand.getType() << " to " << toType;
|
|
return operand;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__add(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::AddFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::AddIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__exp(Value x) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(x))
|
|
return builder.create<math::ExpOp>(x.getLoc(), x);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__log(Value x) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(x))
|
|
return builder.create<math::LogOp>(x.getLoc(), x);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__sub(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::SubFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::SubIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__mul(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::MulFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::MulIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__max(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::MaxFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::MaxSIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__max_unsigned(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::MaxFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::MaxUIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__min(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::MinFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::MinSIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-identifier-naming): externally called.
|
|
Value applyfn__min_unsigned(Value lhs, Value rhs) {
|
|
OpBuilder builder = getBuilder();
|
|
if (isFloatingPoint(lhs))
|
|
return builder.create<arith::MinFOp>(lhs.getLoc(), lhs, rhs);
|
|
if (isInteger(lhs))
|
|
return builder.create<arith::MinUIOp>(lhs.getLoc(), lhs, rhs);
|
|
llvm_unreachable("unsupported non numeric type");
|
|
}
|
|
|
|
void yieldOutputs(ValueRange values) {
|
|
assert(!values.empty() && "linalg ops must yield outputs");
|
|
if (values.empty())
|
|
return;
|
|
Value first = values.front();
|
|
OpBuilder builder = getBuilder();
|
|
builder.create<YieldOp>(first.getLoc(), values);
|
|
}
|
|
|
|
Value constant(std::string value) {
|
|
OpBuilder builder = getBuilder();
|
|
Location loc = builder.getUnknownLoc();
|
|
Attribute valueAttr = parseAttribute(value, builder.getContext());
|
|
return builder.create<arith::ConstantOp>(loc, valueAttr.getType(),
|
|
valueAttr);
|
|
}
|
|
|
|
Value index(int64_t dim) {
|
|
OpBuilder builder = getBuilder();
|
|
return builder.create<IndexOp>(builder.getUnknownLoc(), dim);
|
|
}
|
|
|
|
Type getIntegerType(unsigned width) {
|
|
return IntegerType::get(context, width);
|
|
}
|
|
|
|
Type getFloat32Type() { return Float32Type::get(context); }
|
|
|
|
Type getFloat64Type() { return Float64Type::get(context); }
|
|
|
|
private:
|
|
MLIRContext *context;
|
|
Block █
|
|
|
|
bool isFloatingPoint(Value value) { return value.getType().isa<FloatType>(); }
|
|
bool isInteger(Value value) { return value.getType().isa<IntegerType>(); }
|
|
|
|
OpBuilder getBuilder() {
|
|
OpBuilder builder(context);
|
|
builder.setInsertionPointToEnd(&block);
|
|
return builder;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CopyOp
|
|
//===----------------------------------------------------------------------===//
|
|
void CopyOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block) {
|
|
assert(block.getNumArguments() == 2 && "CopyOp regionBuilder expects 2 args");
|
|
b.create<linalg::YieldOp>(block.getArgument(0));
|
|
}
|
|
|
|
void CopyOp::build(OpBuilder &builder, OperationState &result, Value input,
|
|
Value output, AffineMap inputPermutation,
|
|
AffineMap outputPermutation,
|
|
ArrayRef<NamedAttribute> namedAttrs) {
|
|
result.addOperands({input, output});
|
|
result.addAttributes(namedAttrs);
|
|
if (inputPermutation)
|
|
result.addAttribute("inputPermutation",
|
|
AffineMapAttr::get(inputPermutation));
|
|
if (outputPermutation)
|
|
result.addAttribute("outputPermutation",
|
|
AffineMapAttr::get(outputPermutation));
|
|
result.addRegion();
|
|
fillStructuredOpRegion<CopyOp>(builder, *result.regions.front(),
|
|
TypeRange{input.getType()},
|
|
TypeRange{output.getType()});
|
|
}
|
|
|
|
ParseResult parseCopyOpRegion(OpAsmParser &parser, Region &r, Type inputType,
|
|
Type outputType) {
|
|
OpBuilder opBuilder(parser.getContext());
|
|
fillStructuredOpRegion<CopyOp>(opBuilder, r, TypeRange{inputType},
|
|
TypeRange{outputType});
|
|
return success();
|
|
}
|
|
|
|
/// CopyOp region is elided when printing.
|
|
void printCopyOpRegion(OpAsmPrinter &, Operation *, Region &, Type, Type) {}
|
|
|
|
static LogicalResult verify(CopyOp op) {
|
|
OpOperand *output = op.getOutputOperand(0);
|
|
OpOperand *input = op.getInputOperand(0);
|
|
if (getElementTypeOrSelf(input->get()) != getElementTypeOrSelf(output->get()))
|
|
return op.emitOpError("expects views of the same type");
|
|
if (op.getRank(input) != op.getRank(output))
|
|
return op.emitOpError("expects views of the same rank");
|
|
auto rank = op.getNumParallelLoops();
|
|
auto inputPermutationMap = op.inputPermutation();
|
|
if (inputPermutationMap) {
|
|
if (inputPermutationMap->getNumInputs() != rank)
|
|
return op.emitOpError("expects optional input_permutation map of rank ")
|
|
<< rank;
|
|
if (!inputPermutationMap->isPermutation())
|
|
return op.emitOpError(
|
|
"expects optional input_permutation map to be a permutation");
|
|
}
|
|
auto outputPermutationMap = op.outputPermutation();
|
|
if (outputPermutationMap) {
|
|
if (outputPermutationMap->getNumInputs() != rank)
|
|
return op.emitOpError("expects optional output_permutation map of rank ")
|
|
<< rank;
|
|
if (!outputPermutationMap->isPermutation())
|
|
return op.emitOpError(
|
|
"expects optional output_permutation map to be a permutation");
|
|
}
|
|
if (rank == 0 && inputPermutationMap)
|
|
return op.emitOpError("expected no input permutation when rank == 0");
|
|
if (rank == 0 && outputPermutationMap)
|
|
return op.emitOpError("expected no output permutation when rank == 0");
|
|
return success();
|
|
}
|
|
|
|
void CopyOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), input(),
|
|
SideEffects::DefaultResource::get());
|
|
effects.emplace_back(MemoryEffects::Write::get(), output(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
namespace {
|
|
/// Remove copy operations that copy data inplace. Requirements are:
|
|
/// 1) The input and output values are identical.
|
|
/// 2) The input and output permutation maps are identical.
|
|
struct EraseIdentityCopyOp : public OpRewritePattern<CopyOp> {
|
|
using OpRewritePattern<CopyOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(CopyOp copyOp,
|
|
PatternRewriter &rewriter) const override {
|
|
assert(copyOp.hasBufferSemantics());
|
|
if (copyOp.input() == copyOp.output() &&
|
|
copyOp.inputPermutation() == copyOp.outputPermutation()) {
|
|
rewriter.eraseOp(copyOp);
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<EraseIdentityCopyOp>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FillOp
|
|
//===----------------------------------------------------------------------===//
|
|
void FillOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block) {
|
|
assert(block.getNumArguments() == 2 && "FillOp regionBuilder expects 2 args");
|
|
b.create<linalg::YieldOp>(block.getArgument(0));
|
|
}
|
|
|
|
void FillOp::build(OpBuilder &builder, OperationState &result, Value value,
|
|
Value output) {
|
|
build(builder, result, output.getType().dyn_cast<RankedTensorType>(), value,
|
|
output);
|
|
fillStructuredOpRegion<FillOp>(builder, *result.regions.front(),
|
|
TypeRange{value.getType()},
|
|
TypeRange{output.getType()}, {});
|
|
}
|
|
|
|
ParseResult parseFillOpRegion(OpAsmParser &parser, Region &r, Type valueType,
|
|
Type outputType) {
|
|
OpBuilder opBuilder(parser.getContext());
|
|
fillStructuredOpRegion<FillOp>(opBuilder, r, TypeRange{valueType},
|
|
TypeRange{outputType});
|
|
return success();
|
|
}
|
|
|
|
/// FillOp region is elided when printing.
|
|
void printFillOpRegion(OpAsmPrinter &, Operation *, Region &, Type, Type) {}
|
|
|
|
static LogicalResult verify(FillOp op) {
|
|
OpOperand *output = op.getOutputOperand(0);
|
|
Type fillType = op.value().getType();
|
|
if (getElementTypeOrSelf(output->get()) != fillType)
|
|
return op.emitOpError("expects fill type to match view elemental type");
|
|
return success();
|
|
}
|
|
|
|
void FillOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
if (output().getType().isa<MemRefType>())
|
|
effects.emplace_back(MemoryEffects::Write::get(), output(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Fold linalg.fill -> tensor.expand/collapse_shape chain.
|
|
///
|
|
/// For such op chains, we can create new linalg.fill ops with the result
|
|
/// type of the tensor.expand/collapse_shape op.
|
|
template <typename TensorReshapeOp>
|
|
struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> {
|
|
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto oldFill = reshapeOp.src().template getDefiningOp<FillOp>();
|
|
if (!oldFill)
|
|
return failure();
|
|
|
|
Location loc = oldFill.getLoc();
|
|
auto newInit = rewriter.create<TensorReshapeOp>(
|
|
loc, reshapeOp.getResultType(), oldFill.output(),
|
|
reshapeOp.reassociation());
|
|
rewriter.replaceOpWithNewOp<FillOp>(reshapeOp, oldFill.value(), newInit);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void FillOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<FoldFillWithTensorReshape<tensor::CollapseShapeOp>,
|
|
FoldFillWithTensorReshape<tensor::ExpandShapeOp>>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GenericOps
|
|
//===----------------------------------------------------------------------===//
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
|
|
ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
build(builder, result, resultTensorTypes, inputs, outputs,
|
|
builder.getAffineMapArrayAttr(indexingMaps),
|
|
builder.getStrArrayAttr(iteratorTypes),
|
|
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
|
|
libraryCall.empty() ? StringAttr()
|
|
: builder.getStringAttr(libraryCall));
|
|
result.addAttributes(attributes);
|
|
if (!bodyBuild)
|
|
return;
|
|
|
|
SmallVector<Type, 4> blockArgTypes;
|
|
for (ValueRange container : {inputs, outputs})
|
|
for (Value v : container)
|
|
blockArgTypes.push_back(getElementTypeOrSelf(v));
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
auto ®ion = *result.regions.front();
|
|
Block *bodyBlock = builder.createBlock(®ion, region.end(), blockArgTypes);
|
|
bodyBuild(builder, result.location, bodyBlock->getArguments());
|
|
}
|
|
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, ValueRange inputs,
|
|
ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
|
|
iteratorTypes, doc, libraryCall, bodyBuild, attributes);
|
|
}
|
|
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, ValueRange inputs,
|
|
ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
|
|
/*doc=*/"",
|
|
/*libraryCall=*/"", bodyBuild, attributes);
|
|
}
|
|
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
|
|
ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
|
|
iteratorTypes,
|
|
/*doc=*/"",
|
|
/*libraryCall=*/"", bodyBuild, attributes);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, GenericOp op) {
|
|
p << " ";
|
|
|
|
// Print extra attributes.
|
|
auto genericAttrNames = op.linalgTraitAttrNames();
|
|
|
|
llvm::StringSet<> genericAttrNamesSet;
|
|
genericAttrNamesSet.insert(genericAttrNames.begin(), genericAttrNames.end());
|
|
SmallVector<NamedAttribute, 8> genericAttrs;
|
|
for (auto attr : op->getAttrs())
|
|
if (genericAttrNamesSet.count(attr.getName().strref()) > 0)
|
|
genericAttrs.push_back(attr);
|
|
if (!genericAttrs.empty()) {
|
|
auto genericDictAttr = DictionaryAttr::get(op.getContext(), genericAttrs);
|
|
p << genericDictAttr;
|
|
}
|
|
|
|
// Printing is shared with named ops, except for the region and attributes
|
|
printCommonStructuredOpParts(p, op);
|
|
|
|
genericAttrNames.push_back("operand_segment_sizes");
|
|
genericAttrNamesSet.insert(genericAttrNames.back());
|
|
|
|
bool hasExtraAttrs = false;
|
|
for (NamedAttribute n : op->getAttrs()) {
|
|
if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.getName().strref())))
|
|
break;
|
|
}
|
|
if (hasExtraAttrs) {
|
|
p << " attrs = ";
|
|
p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/genericAttrNames);
|
|
}
|
|
|
|
// Print region.
|
|
if (!op.region().empty())
|
|
p.printRegion(op.region());
|
|
|
|
// Print results.
|
|
printNamedStructuredOpResults(p, op.result_tensors().getTypes());
|
|
}
|
|
|
|
static ParseResult parseGenericOp(OpAsmParser &parser, OperationState &result) {
|
|
DictionaryAttr dictAttr;
|
|
// Parse the core linalg traits that must check into a dictAttr.
|
|
// The name is unimportant as we will overwrite result.attributes.
|
|
// The core linalg traits must contain the information necessary to pass the
|
|
// verifier.
|
|
if (parser.parseAttribute(dictAttr, "_", result.attributes))
|
|
return failure();
|
|
result.attributes.assign(dictAttr.getValue().begin(),
|
|
dictAttr.getValue().end());
|
|
|
|
// Parsing is shared with named ops, except for the region.
|
|
SmallVector<Type, 1> inputTypes, outputTypes;
|
|
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
|
|
return failure();
|
|
|
|
// Optional attributes may be added.
|
|
if (succeeded(parser.parseOptionalKeyword("attrs")))
|
|
if (failed(parser.parseEqual()) ||
|
|
failed(parser.parseOptionalAttrDict(result.attributes)))
|
|
return failure();
|
|
|
|
SmallVector<OpAsmParser::OperandType, 8> regionOperands;
|
|
std::unique_ptr<Region> region = std::make_unique<Region>();
|
|
SmallVector<Type, 8> operandTypes, regionTypes;
|
|
if (parser.parseRegion(*region, regionOperands, regionTypes))
|
|
return failure();
|
|
result.addRegion(std::move(region));
|
|
|
|
// Generic ops may specify that a subset of its outputs are tensors. Such
|
|
// outputs are specified in the result type.
|
|
// TODO: may need to move output parsing before region parsing.
|
|
// Need to wait for declarative assembly resolution to decide.
|
|
SmallVector<Type, 1> outputTensorsTypes;
|
|
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
|
|
return failure();
|
|
result.addTypes(outputTensorsTypes);
|
|
|
|
return success();
|
|
}
|
|
|
|
static void getGenericEffectsImpl(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects,
|
|
ValueRange results, ValueRange inputBuffers, ValueRange outputs) {
|
|
for (Value value : results) {
|
|
effects.emplace_back(MemoryEffects::Allocate::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
for (Value value : inputBuffers) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
for (Value value : outputs) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
effects.emplace_back(MemoryEffects::Write::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
}
|
|
|
|
void GenericOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
SmallVector<Value> inputBuffers = getInputBufferOperands();
|
|
SmallVector<Value> outputBuffers = getOutputBufferOperands();
|
|
getGenericEffectsImpl(effects, getOperation()->getResults(), inputBuffers,
|
|
outputBuffers);
|
|
}
|
|
|
|
template <typename GenericOpType>
|
|
static LogicalResult verifyGenericOp(GenericOpType op) {
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verify(GenericOp op) { return verifyGenericOp(op); }
|
|
|
|
namespace {
|
|
// Deduplicate redundant args of a linalg generic op.
|
|
// An arg is redundant if it has the same Value and indexing map as another.
|
|
struct DeduplicateGenericOpInputs : public OpRewritePattern<GenericOp> {
|
|
using OpRewritePattern<GenericOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(GenericOp genericOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Associate each input to an equivalent "canonical" input that has the same
|
|
// Value and indexing map.
|
|
//
|
|
// In the non-duplicate case, input `i` will have canonical input `i`. But
|
|
// in the case of duplicated inputs, the canonical input could be some other
|
|
// input `< i`. That is, a later input will have some earlier input as its
|
|
// canonical input.
|
|
llvm::SmallDenseMap<std::pair<Value, AffineMap>, unsigned> canonicalInput;
|
|
// For later remapping tasks like deduplicating payload block arguments,
|
|
// having a simple "inputIndex -> canonicalInputIndex" integer mapping is
|
|
// convenient.
|
|
SmallVector<unsigned> canonicalInputIndices;
|
|
for (OpOperand *opOperand : genericOp.getInputOperands()) {
|
|
AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand);
|
|
// STL-like maps have a convenient behavior for our use case here. In the
|
|
// case of duplicate keys, the insertion is rejected, and the returned
|
|
// iterator gives access to the value already in the map.
|
|
auto pair = canonicalInput.insert(
|
|
{{opOperand->get(), indexingMap}, opOperand->getOperandNumber()});
|
|
canonicalInputIndices.push_back(pair.first->second);
|
|
}
|
|
|
|
// If there are no duplicate args, then bail out.
|
|
if (canonicalInput.size() == genericOp.getNumInputs())
|
|
return failure();
|
|
|
|
// The operands for the newly canonicalized op.
|
|
SmallVector<Value> newInputOperands;
|
|
for (OpOperand *opOperand : genericOp.getInputOperands())
|
|
if (canonicalInputIndices[opOperand->getOperandNumber()] ==
|
|
opOperand->getOperandNumber())
|
|
newInputOperands.push_back(opOperand->get());
|
|
|
|
// Repair the indexing maps by filtering out the ones that have been
|
|
// eliminated.
|
|
SmallVector<AffineMap> newIndexingMaps;
|
|
for (OpOperand *opOperand : genericOp.getInputOperands())
|
|
if (canonicalInputIndices[opOperand->getOperandNumber()] ==
|
|
opOperand->getOperandNumber())
|
|
newIndexingMaps.push_back(genericOp.getTiedIndexingMap(opOperand));
|
|
for (OpOperand *opOperand : genericOp.getOutputOperands())
|
|
newIndexingMaps.push_back(genericOp.getTiedIndexingMap(opOperand));
|
|
|
|
// Clone the old op with new operands.
|
|
SmallVector<Value> outputOperands = genericOp.getOutputOperands();
|
|
auto newOp = rewriter.create<GenericOp>(
|
|
genericOp.getLoc(), genericOp->getResultTypes(), newInputOperands,
|
|
outputOperands, rewriter.getAffineMapArrayAttr(newIndexingMaps),
|
|
genericOp.iterator_types(), genericOp.docAttr(),
|
|
genericOp.library_callAttr());
|
|
|
|
// Copy over unknown attributes. They might be load bearing for some flow.
|
|
ArrayRef<StringRef> odsAttrs = genericOp.getAttributeNames();
|
|
for (NamedAttribute kv : genericOp->getAttrs()) {
|
|
if (!llvm::is_contained(odsAttrs, kv.getName().getValue())) {
|
|
newOp->setAttr(kv.getName(), kv.getValue());
|
|
}
|
|
}
|
|
|
|
rewriter.inlineRegionBefore(genericOp.region(), newOp.region(),
|
|
newOp.region().begin());
|
|
|
|
// Repair the payload entry block by RAUW'ing redundant arguments and
|
|
// erasing them.
|
|
Block &payload = newOp.region().front();
|
|
SmallVector<OpOperand *> inputOperands = genericOp.getInputOperands();
|
|
for (OpOperand *opOperand : llvm::reverse(inputOperands)) {
|
|
// Iterate in reverse, so that we erase later args first, preventing the
|
|
// argument list from shifting unexpectedly and invalidating all our
|
|
// indices.
|
|
unsigned operandNumber = opOperand->getOperandNumber();
|
|
if (canonicalInputIndices[operandNumber] == operandNumber)
|
|
continue;
|
|
payload.getArgument(operandNumber)
|
|
.replaceAllUsesWith(
|
|
payload.getArgument(canonicalInputIndices[operandNumber]));
|
|
payload.eraseArgument(operandNumber);
|
|
}
|
|
|
|
rewriter.replaceOp(genericOp, newOp->getResults());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Remove generic operations (on tensors) that are just copying
|
|
/// the values from inputs to the results. Requirements are
|
|
/// 1) All iterator types are parallel
|
|
/// 2) The body contains just a yield operation with the yielded values being
|
|
/// the arguments corresponding to the operands.
|
|
struct EraseIdentityGenericOp : public OpRewritePattern<GenericOp> {
|
|
using OpRewritePattern<GenericOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(GenericOp genericOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!genericOp.hasTensorSemantics())
|
|
return failure();
|
|
// Check all indexing maps are identity.
|
|
if (llvm::any_of(genericOp.getIndexingMaps(),
|
|
[](AffineMap map) { return !map.isIdentity(); }))
|
|
return failure();
|
|
|
|
// Check that the body of the linalg operation is just a linalg.yield
|
|
// operation.
|
|
Block &body = genericOp.region().front();
|
|
if (!llvm::hasSingleElement(body))
|
|
return failure();
|
|
auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
|
|
if (!yieldOp)
|
|
return failure();
|
|
|
|
// Get the argument number of the returned values. That is the operand
|
|
// number to use for replacing uses of this operation.
|
|
SmallVector<Value> returnedArgs;
|
|
for (Value yieldVal : yieldOp.values()) {
|
|
auto yieldArg = yieldVal.dyn_cast<BlockArgument>();
|
|
if (!yieldArg || yieldArg.getOwner() != &body)
|
|
return failure();
|
|
unsigned argumentNumber = yieldArg.getArgNumber();
|
|
returnedArgs.push_back(genericOp->getOperand(argumentNumber));
|
|
}
|
|
if (returnedArgs.size() != genericOp->getNumResults())
|
|
return failure();
|
|
rewriter.replaceOp(genericOp, returnedArgs);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void GenericOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<DeduplicateGenericOpInputs, EraseIdentityGenericOp>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InitTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InitTensorOp::build(OpBuilder &b, OperationState &result,
|
|
ArrayRef<OpFoldResult> sizes, Type elementType,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
SmallVector<Value, 4> dynamicSizes;
|
|
SmallVector<int64_t, 4> staticSizes;
|
|
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
|
|
ShapedType::kDynamicSize);
|
|
auto resultType = RankedTensorType ::get(staticSizes, elementType);
|
|
build(b, result, resultType, dynamicSizes, b.getI64ArrayAttr(staticSizes));
|
|
result.addAttributes(attrs);
|
|
}
|
|
|
|
static LogicalResult verify(InitTensorOp op) {
|
|
RankedTensorType resultType = op.getType();
|
|
SmallVector<int64_t, 4> staticSizes = llvm::to_vector<4>(llvm::map_range(
|
|
op.static_sizes().cast<ArrayAttr>(),
|
|
[](Attribute a) -> int64_t { return a.cast<IntegerAttr>().getInt(); }));
|
|
|
|
if (failed(verifyListOfOperandsOrIntegers(op, "sizes", resultType.getRank(),
|
|
op.static_sizes(), op.sizes(),
|
|
ShapedType::isDynamic)))
|
|
return failure();
|
|
|
|
if (op.static_sizes().size() != static_cast<unsigned>(resultType.getRank()))
|
|
return op->emitError("expected ")
|
|
<< resultType.getRank() << " sizes values";
|
|
|
|
Type expectedType =
|
|
InitTensorOp::inferResultType(staticSizes, resultType.getElementType());
|
|
if (resultType != expectedType) {
|
|
return op.emitError("specified type ")
|
|
<< resultType << " does not match the inferred type "
|
|
<< expectedType;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
Type InitTensorOp::inferResultType(ArrayRef<int64_t> staticSizes,
|
|
Type elementType) {
|
|
return RankedTensorType::get(staticSizes, elementType);
|
|
}
|
|
|
|
namespace {
|
|
/// Change the type of the result of a `linalg.init_tensor` by making the result
|
|
/// type statically sized along dimension that in the original operation where
|
|
/// defined as dynamic, but the size was defined using a `constant` op. For
|
|
/// example
|
|
///
|
|
/// %c5 = arith.constant 5: index
|
|
/// %0 = linalg.init_tensor [%arg0, %c5] : tensor<?x?xf32>
|
|
///
|
|
/// to
|
|
///
|
|
/// %0 = linalg.init_tensor [%arg0, 5] : tensor<?x5xf32>
|
|
struct ReplaceStaticShapeDims : OpRewritePattern<InitTensorOp> {
|
|
using OpRewritePattern<InitTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(InitTensorOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
SmallVector<Value, 4> dynamicSizes;
|
|
SmallVector<int64_t, 4> staticSizes;
|
|
for (unsigned i = 0, e = op.getType().getRank(); i != e; ++i) {
|
|
// If the size is already static, nothing to do.
|
|
if (!op.isDynamicSize(i)) {
|
|
staticSizes.push_back(op.getStaticSize(i));
|
|
continue;
|
|
}
|
|
|
|
// If the size is dynamic but defined using a `constant` op, get the
|
|
// constant value to find the static size to use.
|
|
unsigned operandNum = op.getIndexOfDynamicSize(i);
|
|
Value sizeOperand = op.getOperand(operandNum);
|
|
if (auto constantIndexOp =
|
|
sizeOperand.getDefiningOp<arith::ConstantIndexOp>()) {
|
|
staticSizes.push_back(constantIndexOp.value());
|
|
continue;
|
|
}
|
|
|
|
// Fallback case. Keep the size dynamic.
|
|
dynamicSizes.push_back(sizeOperand);
|
|
staticSizes.push_back(ShapedType::kDynamicSize);
|
|
}
|
|
RankedTensorType newType =
|
|
RankedTensorType::get(staticSizes, op.getType().getElementType());
|
|
if (newType == op.getType())
|
|
return failure();
|
|
auto newOp =
|
|
rewriter.create<InitTensorOp>(op.getLoc(), newType, dynamicSizes,
|
|
rewriter.getI64ArrayAttr(staticSizes));
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// Since `init_tensor` operation creates a tensor needed only for its shape, a
|
|
/// slice of this is also needed only for its shape. The result can be
|
|
/// replaced by a new init_tensor operation of the same size as the extract
|
|
/// slice op.
|
|
struct FoldInitTensorWithExtractSliceOp
|
|
: public OpRewritePattern<tensor::ExtractSliceOp> {
|
|
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!sliceOp.source().getDefiningOp<linalg::InitTensorOp>())
|
|
return failure();
|
|
// ExtractSliceOp may be rank-reducing; its dynamic sizes must be preserved
|
|
// as well as its result type.
|
|
rewriter.replaceOpWithNewOp<linalg::InitTensorOp>(
|
|
sliceOp, sliceOp.sizes(),
|
|
sliceOp.result().getType().cast<RankedTensorType>().getShape(),
|
|
sliceOp.getSourceType().getElementType());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename TensorReshapeOp>
|
|
struct FoldInitTensorWithTensorReshapeOp
|
|
: public OpRewritePattern<TensorReshapeOp> {
|
|
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!reshapeOp.src().template getDefiningOp<InitTensorOp>())
|
|
return failure();
|
|
Location loc = reshapeOp.getLoc();
|
|
ReifiedRankedShapedTypeDims resultShapes;
|
|
ReifyRankedShapedTypeOpInterface reifyShapedTypeInterface =
|
|
dyn_cast<ReifyRankedShapedTypeOpInterface>(reshapeOp.getOperation());
|
|
if (failed(reifyShapedTypeInterface.reifyResultShapes(rewriter,
|
|
resultShapes)) ||
|
|
!llvm::hasSingleElement(resultShapes))
|
|
return failure();
|
|
Value initTensor = rewriter.create<InitTensorOp>(
|
|
loc, getAsOpFoldResult(resultShapes[0]),
|
|
reshapeOp.getResultType().getElementType());
|
|
if (initTensor.getType() != reshapeOp.getResultType()) {
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(
|
|
reshapeOp, reshapeOp.getResultType(), initTensor);
|
|
} else {
|
|
rewriter.replaceOp(reshapeOp, initTensor);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct FoldInitTensorWithDimOp : public OpRewritePattern<tensor::DimOp> {
|
|
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
Optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex();
|
|
auto initTensorOp = dimOp.source().getDefiningOp<linalg::InitTensorOp>();
|
|
if (!initTensorOp || !maybeConstantIndex)
|
|
return failure();
|
|
if (!initTensorOp.isDynamicSize(*maybeConstantIndex))
|
|
return failure();
|
|
rewriter.replaceOp(dimOp, initTensorOp.getDynamicSize(*maybeConstantIndex));
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void InitTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<FoldInitTensorWithDimOp, FoldInitTensorWithExtractSliceOp,
|
|
FoldInitTensorWithTensorReshapeOp<tensor::ExpandShapeOp>,
|
|
FoldInitTensorWithTensorReshapeOp<tensor::CollapseShapeOp>,
|
|
ReplaceStaticShapeDims>(context);
|
|
}
|
|
|
|
LogicalResult InitTensorOp::reifyResultShapes(
|
|
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
|
|
auto shapes = llvm::to_vector<4>(llvm::map_range(
|
|
llvm::seq<int64_t>(0, getType().getRank()), [&](int64_t dim) -> Value {
|
|
if (isDynamicSize(dim))
|
|
return getDynamicSize(dim);
|
|
return builder.create<arith::ConstantIndexOp>(getLoc(),
|
|
getStaticSize(dim));
|
|
}));
|
|
reifiedReturnShapes.emplace_back(std::move(shapes));
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PadTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
|
|
// supports optional types.
|
|
void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
|
|
Type typeToInfer, Type typeToInferFrom) {}
|
|
|
|
ParseResult parseInferType(OpAsmParser &parser,
|
|
Optional<OpAsmParser::OperandType> optOperand,
|
|
Type &typeToInfer, Type typeToInferFrom) {
|
|
if (optOperand)
|
|
typeToInfer = typeToInferFrom;
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verify(PadTensorOp op) {
|
|
auto sourceType = op.source().getType().cast<RankedTensorType>();
|
|
auto resultType = op.result().getType().cast<RankedTensorType>();
|
|
auto expectedType = PadTensorOp::inferResultType(
|
|
sourceType, extractFromI64ArrayAttr(op.static_low()),
|
|
extractFromI64ArrayAttr(op.static_high()));
|
|
for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
|
|
if (resultType.getDimSize(i) == expectedType.getDimSize(i))
|
|
continue;
|
|
if (expectedType.isDynamicDim(i))
|
|
continue;
|
|
return op.emitError("specified type ")
|
|
<< resultType << " does not match the inferred type "
|
|
<< expectedType;
|
|
}
|
|
|
|
auto ®ion = op.region();
|
|
unsigned rank = resultType.getRank();
|
|
Block &block = region.front();
|
|
if (block.getNumArguments() != rank)
|
|
return op.emitError("expected the block to have ") << rank << " arguments";
|
|
|
|
// Note: the number and type of yield values are checked in the YieldOp.
|
|
for (auto en : llvm::enumerate(block.getArgumentTypes())) {
|
|
if (!en.value().isIndex())
|
|
return op.emitOpError("expected block argument ")
|
|
<< (en.index() + 1) << " to be an index";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
RankedTensorType PadTensorOp::inferResultType(RankedTensorType sourceType,
|
|
ArrayRef<int64_t> staticLow,
|
|
ArrayRef<int64_t> staticHigh,
|
|
ArrayRef<int64_t> resultShape) {
|
|
unsigned rank = sourceType.getRank();
|
|
assert(staticLow.size() == rank && "unexpected staticLow size mismatch");
|
|
assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch");
|
|
assert((resultShape.empty() || resultShape.size() == rank) &&
|
|
"unexpected resultShape size mismatch");
|
|
|
|
SmallVector<int64_t, 4> inferredShape;
|
|
for (auto i : llvm::seq<unsigned>(0, rank)) {
|
|
if (sourceType.isDynamicDim(i) ||
|
|
staticLow[i] == ShapedType::kDynamicSize ||
|
|
staticHigh[i] == ShapedType::kDynamicSize) {
|
|
inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize
|
|
: resultShape[i]);
|
|
} else {
|
|
int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
|
|
assert((resultShape.empty() || size == resultShape[i] ||
|
|
resultShape[i] == ShapedType::kDynamicSize) &&
|
|
"mismatch between inferred shape and result shape");
|
|
inferredShape.push_back(size);
|
|
}
|
|
}
|
|
|
|
return RankedTensorType::get(inferredShape, sourceType.getElementType());
|
|
}
|
|
|
|
void PadTensorOp::build(OpBuilder &b, OperationState &result, Value source,
|
|
ArrayRef<int64_t> staticLow,
|
|
ArrayRef<int64_t> staticHigh, ValueRange low,
|
|
ValueRange high, bool nofold,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto sourceType = source.getType().cast<RankedTensorType>();
|
|
auto resultType = inferResultType(sourceType, staticLow, staticHigh);
|
|
build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow),
|
|
b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr());
|
|
result.addAttributes(attrs);
|
|
}
|
|
|
|
void PadTensorOp::build(OpBuilder &b, OperationState &result, Value source,
|
|
ValueRange low, ValueRange high, bool nofold,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto sourceType = source.getType().cast<RankedTensorType>();
|
|
unsigned rank = sourceType.getRank();
|
|
SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize);
|
|
build(b, result, source, staticVector, staticVector, low, high, nofold,
|
|
attrs);
|
|
}
|
|
|
|
void PadTensorOp::build(OpBuilder &b, OperationState &result, Type resultType,
|
|
Value source, ArrayRef<OpFoldResult> low,
|
|
ArrayRef<OpFoldResult> high, bool nofold,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
assert(resultType.isa<RankedTensorType>());
|
|
auto sourceType = source.getType().cast<RankedTensorType>();
|
|
SmallVector<Value, 4> dynamicLow, dynamicHigh;
|
|
SmallVector<int64_t, 4> staticLow, staticHigh;
|
|
// staticLow and staticHigh have full information of the padding config.
|
|
// This will grow staticLow and staticHigh with 1 value. If the config is
|
|
// dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
|
|
// value as well.
|
|
dispatchIndexOpFoldResults(low, dynamicLow, staticLow,
|
|
ShapedType::kDynamicSize);
|
|
dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh,
|
|
ShapedType::kDynamicSize);
|
|
if (!resultType) {
|
|
resultType =
|
|
PadTensorOp::inferResultType(sourceType, staticLow, staticHigh);
|
|
}
|
|
build(b, result, resultType, source, dynamicLow, dynamicHigh,
|
|
b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh),
|
|
nofold ? b.getUnitAttr() : UnitAttr());
|
|
result.addAttributes(attrs);
|
|
}
|
|
|
|
PadTensorOp PadTensorOp::createPadScalarOp(Type type, Value source, Value pad,
|
|
ArrayRef<OpFoldResult> low,
|
|
ArrayRef<OpFoldResult> high,
|
|
bool nofold, Location loc,
|
|
OpBuilder &builder) {
|
|
auto padTensorOp =
|
|
builder.create<linalg::PadTensorOp>(loc, type, source, low, high, nofold);
|
|
int rank = padTensorOp.getResultType().getRank();
|
|
SmallVector<Type, 4> blockArgTypes;
|
|
blockArgTypes.assign(rank, builder.getIndexType());
|
|
auto ®ion = padTensorOp.region();
|
|
// `builder.createBlock` changes the insertion point within the block. Create
|
|
// a guard to reset the insertion point of the builder after it is destroyed.
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
builder.createBlock(®ion, region.end(), blockArgTypes);
|
|
builder.create<linalg::YieldOp>(loc, pad);
|
|
return padTensorOp;
|
|
}
|
|
|
|
PadTensorOp PadTensorOp::createPadHighOp(Type type, Value source, Value pad,
|
|
bool nofold, Location loc,
|
|
OpBuilder &b) {
|
|
SmallVector<OpFoldResult, 4> low, high;
|
|
auto rankedTensorType = type.cast<RankedTensorType>();
|
|
assert(rankedTensorType.hasStaticShape());
|
|
for (auto en : enumerate(rankedTensorType.getShape())) {
|
|
AffineExpr d0;
|
|
bindDims(b.getContext(), d0);
|
|
auto dimOp = b.createOrFold<tensor::DimOp>(loc, source, en.index());
|
|
Value paddingWidth =
|
|
makeComposedAffineApply(b, loc, en.value() - d0, {dimOp});
|
|
high.push_back(paddingWidth);
|
|
low.push_back(b.createOrFold<arith::ConstantIndexOp>(loc, 0));
|
|
}
|
|
return PadTensorOp::createPadScalarOp(type, source, pad, low, high, nofold,
|
|
loc, b);
|
|
}
|
|
|
|
LogicalResult PadTensorOp::reifyResultShapes(
|
|
OpBuilder &b, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
|
|
Location loc = getLoc();
|
|
auto lowPad = getMixedLowPad();
|
|
auto highPad = getMixedHighPad();
|
|
SmallVector<Value> shapes;
|
|
for (auto dim : llvm::seq<int64_t>(0, getSourceType().getRank())) {
|
|
// Shape along each dimension is source dim + low pad + high pad.
|
|
SmallVector<Value> mapOperands;
|
|
mapOperands.push_back(b.createOrFold<tensor::DimOp>(loc, source(), dim));
|
|
AffineExpr expr = b.getAffineDimExpr(0);
|
|
unsigned numSymbols = 0;
|
|
auto addOpFoldResult = [&](OpFoldResult valueOrAttr) {
|
|
if (Value v = valueOrAttr.dyn_cast<Value>()) {
|
|
expr = expr + b.getAffineSymbolExpr(numSymbols++);
|
|
mapOperands.push_back(v);
|
|
return;
|
|
}
|
|
int64_t staticValue =
|
|
valueOrAttr.get<Attribute>().cast<IntegerAttr>().getInt();
|
|
expr = expr + staticValue;
|
|
};
|
|
addOpFoldResult(lowPad[dim]);
|
|
addOpFoldResult(highPad[dim]);
|
|
shapes.push_back(applyMapToValues(
|
|
b, loc, AffineMap::get(1, numSymbols, expr), mapOperands)[0]);
|
|
}
|
|
reifiedReturnShapes.emplace_back(std::move(shapes));
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods related to PadTensor tiling.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SmallVector<Value> PadTensorOp::getDestinationOperands(OpBuilder &b) {
|
|
ReifiedRankedShapedTypeDims reifiedShapes;
|
|
(void)reifyResultShapes(b, reifiedShapes);
|
|
SmallVector<OpFoldResult> mixedSizes = getAsOpFoldResult(reifiedShapes[0]);
|
|
Value initTensor = b.create<InitTensorOp>(getLoc(), mixedSizes,
|
|
getResultType().getElementType());
|
|
return {initTensor};
|
|
}
|
|
|
|
SmallVector<StringRef> PadTensorOp::getLoopIteratorTypes() {
|
|
SmallVector<StringRef> iteratorTypes(getResultType().getRank(),
|
|
getParallelIteratorTypeName());
|
|
return iteratorTypes;
|
|
}
|
|
|
|
SmallVector<Range> PadTensorOp::getIterationDomain(OpBuilder &b) {
|
|
ReifiedRankedShapedTypeDims reifiedShapes;
|
|
(void)reifyResultShapes(b, reifiedShapes);
|
|
Value zero = b.create<arith::ConstantIndexOp>(getLoc(), 0);
|
|
Value one = b.create<arith::ConstantIndexOp>(getLoc(), 1);
|
|
// Initialize all the ranges to {zero, one, one}. All the `ub`s are
|
|
// overwritten.
|
|
SmallVector<Range> loopRanges(reifiedShapes[0].size(), {zero, one, one});
|
|
for (auto ub : enumerate(reifiedShapes[0]))
|
|
loopRanges[ub.index()].size = ub.value();
|
|
return loopRanges;
|
|
}
|
|
|
|
SmallVector<Operation *> PadTensorOp::getTiledImplementation(
|
|
OpBuilder &b, ValueRange dest, ArrayRef<OpFoldResult> offsets,
|
|
ArrayRef<OpFoldResult> sizes, bool /*tileDestOperands*/) {
|
|
// Only constant padding value supported.
|
|
Value padValue = getConstantPaddingValue();
|
|
if (!padValue)
|
|
return {};
|
|
|
|
// Helper variables and functions for various arithmetic operations. These are
|
|
// used extensively for computing new offset/length and padding values.
|
|
Location loc = getLoc();
|
|
AffineExpr dim0, dim1;
|
|
bindDims(b.getContext(), dim0, dim1);
|
|
// Add two integers.
|
|
auto addMap = AffineMap::get(2, 0, {dim0 + dim1});
|
|
auto add = [&](Value v1, Value v2) {
|
|
return b.createOrFold<AffineApplyOp>(loc, addMap, ValueRange{v1, v2});
|
|
};
|
|
// Subtract two integers.
|
|
auto subMap = AffineMap::get(2, 0, {dim0 - dim1});
|
|
auto sub = [&](Value v1, Value v2) {
|
|
return b.createOrFold<AffineApplyOp>(loc, subMap, ValueRange{v1, v2});
|
|
};
|
|
// Take the minimum of two integers.
|
|
auto idMap = AffineMap::getMultiDimIdentityMap(2, b.getContext());
|
|
auto min = [&](Value v1, Value v2) {
|
|
return b.createOrFold<AffineMinOp>(loc, idMap, ValueRange{v1, v2});
|
|
};
|
|
// Take the maximum of two integers.
|
|
auto max = [&](Value v1, Value v2) {
|
|
return b.createOrFold<AffineMaxOp>(loc, idMap, ValueRange{v1, v2});
|
|
};
|
|
// Zero index-typed integer.
|
|
auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
|
|
|
|
// Helper function for filling static/dynamic low/high padding indices vectors
|
|
// of PadTensorOp.
|
|
auto appendIndex = [&](Value val, SmallVector<Value> &dynIndices,
|
|
SmallVector<int64_t> &staticIndices) {
|
|
if (auto constInt = getConstantIntValue(val)) {
|
|
staticIndices.push_back(*constInt);
|
|
} else {
|
|
staticIndices.push_back(ShapedType::kDynamicSize);
|
|
dynIndices.push_back(val);
|
|
}
|
|
};
|
|
|
|
// Compute new offsets, lengths, low padding, high padding.
|
|
SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
|
|
SmallVector<Value> newLows, newHighs;
|
|
SmallVector<int64_t> staticNewLows, staticNewHighs;
|
|
// Set to true if the original data source is not read at all.
|
|
bool hasZeroLen = false;
|
|
// Same as hasZeroLen, but for dynamic dimension sizes. This condition
|
|
// is true if the original data source turns out to be unused at runtime.
|
|
Value dynHasZeroLenCond;
|
|
|
|
int64_t rank = getSourceType().getRank();
|
|
for (unsigned dim = 0; dim < rank; ++dim) {
|
|
auto low = getValueOrCreateConstantIndexOp(b, loc, getMixedLowPad()[dim]);
|
|
bool hasLowPad = getConstantIntValue(low) != static_cast<int64_t>(0);
|
|
auto high = getValueOrCreateConstantIndexOp(b, loc, getMixedHighPad()[dim]);
|
|
bool hasHighPad = getConstantIntValue(high) != static_cast<int64_t>(0);
|
|
auto offset = getValueOrCreateConstantIndexOp(b, loc, offsets[dim]);
|
|
auto length = getValueOrCreateConstantIndexOp(b, loc, sizes[dim]);
|
|
auto srcSize = b.createOrFold<tensor::DimOp>(loc, source(), dim);
|
|
|
|
// The new amount of low padding is `low - offset`. Except for the case
|
|
// where none of the low padding is read. In that case, the new amount of
|
|
// low padding is zero.
|
|
//
|
|
// Optimization: If low = 0, then newLow = 0.
|
|
Value newLow = hasLowPad ? max(zero, sub(low, offset)) : zero;
|
|
appendIndex(newLow, newLows, staticNewLows);
|
|
|
|
// Start reading the data from position `offset - low`. Since the original
|
|
// read may have started in the low padding zone, this value could be
|
|
// negative. Therefore, start reading from:
|
|
//
|
|
// max(offset - low, 0)
|
|
//
|
|
// The original read could also have started in the high padding zone.
|
|
// In that case, set the offset to the end of source tensor. The new
|
|
// ExtractSliceOp length will be zero in that case. (Effectively reading no
|
|
// data from the source.)
|
|
//
|
|
// Optimization: If low = 0, then the formula can be simplified.
|
|
Value newOffset = hasLowPad ? min(max(sub(offset, low), zero), srcSize)
|
|
: min(offset, srcSize);
|
|
newOffsets.push_back(getAsOpFoldResult(newOffset));
|
|
|
|
// The original ExtractSliceOp was reading until position `offset + length`.
|
|
// Therefore, the corresponding position within the source tensor is:
|
|
//
|
|
// offset + length - low
|
|
//
|
|
// In case the original ExtractSliceOp stopped reading within the low
|
|
// padding zone, this value can be negative. In that case, the end position
|
|
// of the read should be zero. (Similar to newOffset.)
|
|
//
|
|
// The original read could also have stopped in the high padding zone.
|
|
// In that case, set the end positition of the read should be the end of the
|
|
// source tensor. (Similar to newOffset.)
|
|
//
|
|
// endLoc = min(max(offset - low + length, 0), srcSize)
|
|
//
|
|
// The new ExtractSliceOp length is `endLoc - newOffset`.
|
|
//
|
|
// Optimization: If low = 0, then the formula can be simplified.
|
|
Value endLoc = hasLowPad
|
|
? min(max(add(sub(offset, low), length), zero), srcSize)
|
|
: min(add(offset, length), srcSize);
|
|
Value newLength = sub(endLoc, newOffset);
|
|
newLengths.push_back(getAsOpFoldResult(newLength));
|
|
|
|
// Check if newLength is zero. In that case, no SubTensorOp should be
|
|
// executed.
|
|
if (auto newLengthInt = getConstantIntValue(newLength)) {
|
|
hasZeroLen |= *newLengthInt == 0;
|
|
} else {
|
|
Value check = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
newLength, zero);
|
|
dynHasZeroLenCond =
|
|
dynHasZeroLenCond
|
|
? b.create<arith::OrIOp>(loc, check, dynHasZeroLenCond)
|
|
: check;
|
|
}
|
|
|
|
// The amount of high padding is simply the number of elements remaining,
|
|
// so that the result has the same length as the original ExtractSliceOp.
|
|
// As an optimization, if the original high padding is zero, then the new
|
|
// high padding must also be zero.
|
|
Value newHigh = hasHighPad ? sub(sub(length, newLength), newLow) : zero;
|
|
appendIndex(newHigh, newHighs, staticNewHighs);
|
|
|
|
// Only unit stride supported.
|
|
newStrides.push_back(b.getIndexAttr(1));
|
|
}
|
|
|
|
// The shape of the result can be obtained from the sizes passed in.
|
|
SmallVector<Value> dynDims;
|
|
SmallVector<int64_t> shape;
|
|
dispatchIndexOpFoldResults(sizes, dynDims, shape, ShapedType::kDynamicSize);
|
|
RankedTensorType resultType =
|
|
RankedTensorType::get(shape, getResultType().getElementType());
|
|
|
|
// Insert cast to ensure that types match. (May be folded away.)
|
|
auto castResult = [&](Value val) -> Operation * {
|
|
auto castOp = b.create<tensor::CastOp>(loc, resultType, val);
|
|
return castOp;
|
|
};
|
|
|
|
// In cases where the original data source is unused: Emit a GenerateOp and
|
|
// do not generate a SliceOp. (The result shape of the SliceOp would
|
|
// have a dimension of size 0, the semantics of which is unclear.)
|
|
auto createGenerateOp = [&]() {
|
|
// Create GenerateOp.
|
|
auto generateOp = b.create<tensor::GenerateOp>(
|
|
loc, resultType, dynDims,
|
|
[&](OpBuilder &builder, Location gLoc, ValueRange indices) {
|
|
builder.create<tensor::YieldOp>(gLoc, padValue);
|
|
});
|
|
return castResult(generateOp);
|
|
};
|
|
|
|
// Emit a SliceOp and a PadTensorOp. Should not be used in cases where
|
|
// the result shape of the new SliceOp has a zero dimension.
|
|
auto createPadTensorOfSubTensor = [&]() {
|
|
// Create pad_tensor(subtensor(x)).
|
|
auto newSliceOp = b.create<tensor::ExtractSliceOp>(
|
|
loc, source(), newOffsets, newLengths, newStrides);
|
|
auto newPadTensorOp = b.create<PadTensorOp>(
|
|
loc, newSliceOp, staticNewLows, staticNewHighs, newLows, newHighs);
|
|
|
|
// Copy region to new PadTensorOp.
|
|
BlockAndValueMapping bvm;
|
|
region().cloneInto(&newPadTensorOp.getRegion(), bvm);
|
|
|
|
// Cast result and return.
|
|
return castResult(newPadTensorOp);
|
|
};
|
|
|
|
// Rewrite subtensor(pad_tensor(x)) into a GenerateOp it is statically known
|
|
// that the original data source x is not used.
|
|
if (hasZeroLen) {
|
|
return {createGenerateOp()};
|
|
}
|
|
|
|
// If there are dynamic dimensions: Generate an scf.if check to avoid creating
|
|
// SliceOps with result dimensions of size 0 at runtime.
|
|
if (dynHasZeroLenCond) {
|
|
auto result = b.create<scf::IfOp>(
|
|
loc, resultType, dynHasZeroLenCond,
|
|
/*thenBuilder=*/
|
|
[&](OpBuilder &b, Location loc) {
|
|
b.create<scf::YieldOp>(loc, createGenerateOp()->getResult(0));
|
|
},
|
|
/*elseBuilder=*/
|
|
[&](OpBuilder &b, Location loc) {
|
|
b.create<scf::YieldOp>(loc,
|
|
createPadTensorOfSubTensor()->getResult(0));
|
|
});
|
|
return {result};
|
|
}
|
|
return {createPadTensorOfSubTensor()};
|
|
}
|
|
|
|
namespace {
|
|
// Folds linalg.pad_tensor when padding is static zeros and the attribute
|
|
// doesn't request otherwise.
|
|
struct FoldStaticZeroPadding : public OpRewritePattern<PadTensorOp> {
|
|
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(PadTensorOp padTensorOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
|
|
return failure();
|
|
if (padTensorOp.nofold())
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(
|
|
padTensorOp, padTensorOp.result().getType(), padTensorOp.source());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Fold CastOp into PadTensorOp when adding static information.
|
|
struct FoldSourceTensorCast : public OpRewritePattern<PadTensorOp> {
|
|
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(PadTensorOp padTensorOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>();
|
|
if (!tensor::canFoldIntoConsumerOp(castOp))
|
|
return failure();
|
|
|
|
auto newResultType = PadTensorOp::inferResultType(
|
|
castOp.source().getType().cast<RankedTensorType>(),
|
|
extractFromI64ArrayAttr(padTensorOp.static_low()),
|
|
extractFromI64ArrayAttr(padTensorOp.static_high()),
|
|
padTensorOp.getResultType().getShape());
|
|
|
|
if (newResultType == padTensorOp.getResultType()) {
|
|
rewriter.updateRootInPlace(padTensorOp, [&]() {
|
|
padTensorOp.sourceMutable().assign(castOp.source());
|
|
});
|
|
} else {
|
|
auto newOp = rewriter.create<PadTensorOp>(
|
|
padTensorOp->getLoc(), newResultType, padTensorOp.source(),
|
|
padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(),
|
|
padTensorOp.static_high(), padTensorOp.nofold());
|
|
BlockAndValueMapping mapper;
|
|
padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(
|
|
padTensorOp, padTensorOp.getResultType(), newOp);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Fold CastOp using the result of PadTensorOp back into the latter if it adds
|
|
// static information.
|
|
struct FoldTargetTensorCast : public OpRewritePattern<PadTensorOp> {
|
|
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(PadTensorOp padTensorOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!padTensorOp.result().hasOneUse())
|
|
return failure();
|
|
auto tensorCastOp =
|
|
dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin());
|
|
if (!tensorCastOp)
|
|
return failure();
|
|
if (!tensor::preservesStaticInformation(padTensorOp.result().getType(),
|
|
tensorCastOp.dest().getType()))
|
|
return failure();
|
|
|
|
auto replacementOp = rewriter.create<PadTensorOp>(
|
|
padTensorOp.getLoc(), tensorCastOp.dest().getType(),
|
|
padTensorOp.source(), padTensorOp.low(), padTensorOp.high(),
|
|
padTensorOp.static_low(), padTensorOp.static_high(),
|
|
padTensorOp.nofold());
|
|
replacementOp.region().takeBody(padTensorOp.region());
|
|
|
|
rewriter.replaceOp(padTensorOp, replacementOp.result());
|
|
rewriter.replaceOp(tensorCastOp, replacementOp.result());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void PadTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<FoldStaticZeroPadding, FoldSourceTensorCast>(context);
|
|
results.add<FoldTargetTensorCast>(context);
|
|
}
|
|
|
|
/// Return the padding value of the PadTensorOp if it constant. In this context,
|
|
/// "constant" means an actual constant or "defined outside of the block".
|
|
///
|
|
/// Values are considered constant in three cases:
|
|
/// - A ConstantLike value.
|
|
/// - A basic block argument from a different block.
|
|
/// - A value defined outside of the block.
|
|
///
|
|
/// If the padding value is not constant, an empty Value is returned.
|
|
Value PadTensorOp::getConstantPaddingValue() {
|
|
auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
|
|
if (!yieldOp || yieldOp.values().size() != 1)
|
|
return {};
|
|
Value padValue = yieldOp.values().front();
|
|
// Check if yield value is a constant.
|
|
if (matchPattern(padValue, m_Constant()))
|
|
return padValue;
|
|
// Check if yield value is defined inside the PadTensorOp block.
|
|
if (padValue.getParentBlock() == &getRegion().front())
|
|
return {};
|
|
// Else: Yield value defined outside of the PadTensorOp block.
|
|
return padValue;
|
|
}
|
|
|
|
OpFoldResult PadTensorOp::fold(ArrayRef<Attribute>) {
|
|
if (getResultType().hasStaticShape() && getResultType() == getSourceType() &&
|
|
!nofold())
|
|
return source();
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// YieldOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void print(OpAsmPrinter &p, linalg::YieldOp op) {
|
|
if (op.getNumOperands() > 0)
|
|
p << ' ' << op.getOperands();
|
|
p.printOptionalAttrDict(op->getAttrs());
|
|
if (op.getNumOperands() > 0)
|
|
p << " : " << op.getOperandTypes();
|
|
}
|
|
|
|
static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 2> opInfo;
|
|
SmallVector<Type, 2> types;
|
|
llvm::SMLoc loc = parser.getCurrentLocation();
|
|
return failure(parser.parseOperandList(opInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
(!opInfo.empty() && parser.parseColonTypeList(types)) ||
|
|
parser.resolveOperands(opInfo, types, loc, result.operands));
|
|
}
|
|
|
|
// Check the operand number and types must match the element types of the
|
|
// LinalgOp interface's shaped operands.
|
|
static LogicalResult verifyYield(linalg::YieldOp op, LinalgOp linalgOp) {
|
|
if (op.getNumOperands() != linalgOp.getNumOutputs())
|
|
return op.emitOpError("expected number of yield values (")
|
|
<< linalgOp.getNumOutputs()
|
|
<< ") to match the number of operands of the enclosing "
|
|
<< "LinalgOp (" << op.getNumOperands() << ")";
|
|
|
|
for (OpOperand &opOperand : op->getOpOperands()) {
|
|
OpOperand *outputOperand =
|
|
linalgOp.getOutputOperand(opOperand.getOperandNumber());
|
|
Type elementType = getElementTypeOrSelf(outputOperand->get().getType());
|
|
if (opOperand.get().getType() != elementType)
|
|
return op.emitOpError("type of yield operand ")
|
|
<< (opOperand.getOperandNumber() + 1) << " ("
|
|
<< opOperand.get().getType() << ") doesn't match "
|
|
<< "the element type of the enclosing linalg.generic op ("
|
|
<< elementType << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verify(linalg::YieldOp op) {
|
|
auto *parentOp = op->getParentOp();
|
|
if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty())
|
|
return op.emitOpError("expected single non-empty parent region");
|
|
|
|
if (auto linalgOp = dyn_cast<LinalgOp>(parentOp))
|
|
return verifyYield(op, cast<LinalgOp>(parentOp));
|
|
|
|
if (auto padTensorOp = dyn_cast<linalg::PadTensorOp>(parentOp)) {
|
|
if (op.getNumOperands() != 1)
|
|
return op.emitOpError("expected single yield operand (got ")
|
|
<< op->getNumOperands() << ")";
|
|
if (op.getOperand(0).getType() !=
|
|
padTensorOp.getType().cast<ShapedType>().getElementType())
|
|
return op.emitOpError("expected yield type to match shape element type");
|
|
return success();
|
|
}
|
|
|
|
if (auto tiledLoopOp = dyn_cast<linalg::TiledLoopOp>(parentOp)) {
|
|
// Check if output args with tensor types match results types.
|
|
SmallVector<Value, 2> tensorOuts;
|
|
llvm::copy_if(
|
|
tiledLoopOp.outputs(), std::back_inserter(tensorOuts),
|
|
[&](Value out) { return out.getType().isa<RankedTensorType>(); });
|
|
if (tensorOuts.size() != op.values().size())
|
|
return op.emitOpError("expected number of tensor output args = ")
|
|
<< tensorOuts.size() << " to match the number of yield operands = "
|
|
<< op.values().size();
|
|
|
|
TypeRange tensorTypes(llvm::makeArrayRef(tensorOuts));
|
|
for (auto &item :
|
|
llvm::enumerate(llvm::zip(tensorTypes, op.getOperandTypes()))) {
|
|
Type outType, resultType;
|
|
unsigned index = item.index();
|
|
std::tie(outType, resultType) = item.value();
|
|
if (outType != resultType)
|
|
return op.emitOpError("expected yield operand ")
|
|
<< index << " with type = " << resultType
|
|
<< " to match output arg type = " << outType;
|
|
}
|
|
return success();
|
|
}
|
|
return op.emitOpError("expected parent op with LinalgOp interface");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TiledLoopOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TiledLoopOp::build(OpBuilder &builder, OperationState &result,
|
|
ValueRange lowerBounds, ValueRange upperBounds,
|
|
ValueRange steps, ValueRange inputs, ValueRange outputs,
|
|
ArrayAttr iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange,
|
|
ValueRange, ValueRange)>
|
|
bodyBuilderFn) {
|
|
build(builder, result, lowerBounds, upperBounds, steps, inputs, outputs,
|
|
iteratorTypes, llvm::None, bodyBuilderFn);
|
|
}
|
|
|
|
void TiledLoopOp::build(OpBuilder &builder, OperationState &result,
|
|
ValueRange lowerBounds, ValueRange upperBounds,
|
|
ValueRange steps, ValueRange inputs, ValueRange outputs,
|
|
ArrayAttr iteratorTypes,
|
|
Optional<ArrayAttr> distributionTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange,
|
|
ValueRange, ValueRange)>
|
|
bodyBuilderFn) {
|
|
result.addOperands(lowerBounds);
|
|
result.addOperands(upperBounds);
|
|
result.addOperands(steps);
|
|
result.addOperands(inputs);
|
|
result.addOperands(outputs);
|
|
result.addAttribute(
|
|
TiledLoopOp::getOperandSegmentSizeAttr(),
|
|
builder.getI32VectorAttr({static_cast<int32_t>(lowerBounds.size()),
|
|
static_cast<int32_t>(upperBounds.size()),
|
|
static_cast<int32_t>(steps.size()),
|
|
static_cast<int32_t>(inputs.size()),
|
|
static_cast<int32_t>(outputs.size())}));
|
|
result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
|
|
|
|
if (distributionTypes.hasValue())
|
|
result.addAttribute(getDistributionTypesAttrName(),
|
|
distributionTypes.getValue());
|
|
|
|
// Add output types for `RankedTensorType` output arguments.
|
|
for (Value output : outputs) {
|
|
Type outputType = output.getType();
|
|
if (outputType.isa<RankedTensorType>())
|
|
result.addTypes(outputType);
|
|
}
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
unsigned numIVs = steps.size();
|
|
SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
|
|
for (Type type : TypeRange(inputs))
|
|
argTypes.push_back(type);
|
|
for (Type type : TypeRange(outputs))
|
|
argTypes.push_back(type);
|
|
Region *bodyRegion = result.addRegion();
|
|
Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes);
|
|
|
|
if (bodyBuilderFn) {
|
|
builder.setInsertionPointToStart(bodyBlock);
|
|
bodyBuilderFn(builder, result.location,
|
|
bodyBlock->getArguments().take_front(numIVs),
|
|
bodyBlock->getArguments().slice(numIVs, inputs.size()),
|
|
bodyBlock->getArguments().take_back(outputs.size()));
|
|
TiledLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
|
|
}
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, TiledLoopOp op) {
|
|
p << " (" << op.getInductionVars() << ") = (" << op.lowerBound() << ") to ("
|
|
<< op.upperBound() << ") step (" << op.step() << ")";
|
|
|
|
if (!op.inputs().empty()) {
|
|
p << " ins (";
|
|
llvm::interleaveComma(llvm::zip(op.getRegionInputArgs(), op.inputs()), p,
|
|
[&](auto it) {
|
|
p << std::get<0>(it) << " = " << std::get<1>(it)
|
|
<< ": " << std::get<1>(it).getType();
|
|
});
|
|
p << ")";
|
|
}
|
|
if (!op.outputs().empty()) {
|
|
p << " outs (";
|
|
llvm::interleaveComma(llvm::zip(op.getRegionOutputArgs(), op.outputs()), p,
|
|
[&](auto it) {
|
|
p << std::get<0>(it) << " = " << std::get<1>(it)
|
|
<< ": " << std::get<1>(it).getType();
|
|
});
|
|
p << ")";
|
|
}
|
|
|
|
if (llvm::any_of(op.iterator_types(), [](Attribute attr) {
|
|
return attr.cast<StringAttr>().getValue() !=
|
|
getParallelIteratorTypeName();
|
|
}))
|
|
p << " iterators" << op.iterator_types() << "";
|
|
|
|
if (op.distribution_types().hasValue())
|
|
p << " distribution" << op.distribution_types().getValue() << "";
|
|
|
|
p.printRegion(op.region(), /*printEntryBlockArgs=*/false);
|
|
p.printOptionalAttrDict(
|
|
op->getAttrs(), /*elidedAttrs=*/{TiledLoopOp::getOperandSegmentSizeAttr(),
|
|
getIteratorTypesAttrName(),
|
|
getDistributionTypesAttrName()});
|
|
}
|
|
|
|
static ParseResult parseTiledLoopOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
// Parse an opening `(` followed by induction variables followed by `)`
|
|
SmallVector<OpAsmParser::OperandType, 4> ivs;
|
|
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
|
|
OpAsmParser::Delimiter::Paren))
|
|
return failure();
|
|
|
|
// Parse loop bounds.
|
|
SmallVector<OpAsmParser::OperandType, 4> lower;
|
|
if (parser.parseEqual() ||
|
|
parser.parseOperandList(lower, ivs.size(),
|
|
OpAsmParser::Delimiter::Paren) ||
|
|
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
|
|
return failure();
|
|
|
|
SmallVector<OpAsmParser::OperandType, 4> upper;
|
|
if (parser.parseKeyword("to") ||
|
|
parser.parseOperandList(upper, ivs.size(),
|
|
OpAsmParser::Delimiter::Paren) ||
|
|
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
|
|
return failure();
|
|
|
|
// Parse step values.
|
|
SmallVector<OpAsmParser::OperandType, 4> steps;
|
|
if (parser.parseKeyword("step") ||
|
|
parser.parseOperandList(steps, ivs.size(),
|
|
OpAsmParser::Delimiter::Paren) ||
|
|
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
|
|
return failure();
|
|
|
|
// Parse input tensors.
|
|
SmallVector<OpAsmParser::OperandType, 4> inputs, inputRegionArgs;
|
|
SmallVector<Type, 4> inputTypes;
|
|
if (succeeded(parser.parseOptionalKeyword("ins"))) {
|
|
llvm::SMLoc inputsOperandsLoc = parser.getCurrentLocation();
|
|
|
|
if (parser.parseAssignmentListWithTypes(inputRegionArgs, inputs,
|
|
inputTypes))
|
|
return failure();
|
|
|
|
if (parser.resolveOperands(inputs, inputTypes, inputsOperandsLoc,
|
|
result.operands))
|
|
return failure();
|
|
}
|
|
|
|
// Parse output tensors.
|
|
SmallVector<OpAsmParser::OperandType, 4> outputs, outputRegionArgs;
|
|
SmallVector<Type, 4> outputTypes;
|
|
if (succeeded(parser.parseOptionalKeyword("outs"))) {
|
|
llvm::SMLoc outputsOperandsLoc = parser.getCurrentLocation();
|
|
|
|
if (parser.parseAssignmentListWithTypes(outputRegionArgs, outputs,
|
|
outputTypes))
|
|
return failure();
|
|
|
|
if (parser.resolveOperands(outputs, outputTypes, outputsOperandsLoc,
|
|
result.operands))
|
|
return failure();
|
|
for (Type outputType : outputTypes)
|
|
if (outputType.isa<RankedTensorType>())
|
|
result.addTypes(outputType);
|
|
}
|
|
|
|
// Parse attributes.
|
|
SmallVector<Attribute, 4> iterTypes, distributionTypes;
|
|
auto parseAttr = [&](StringRef keyword, SmallVector<Attribute, 4> *attrs) {
|
|
if (succeeded(parser.parseOptionalKeyword(keyword))) {
|
|
StringAttr attr;
|
|
|
|
if (parser.parseLSquare() || parser.parseAttribute(attr))
|
|
return failure();
|
|
attrs->push_back(attr);
|
|
for (int i = 1, e = ivs.size(); i < e; ++i) {
|
|
if (parser.parseComma() || parser.parseAttribute(attr))
|
|
return failure();
|
|
attrs->push_back(attr);
|
|
}
|
|
if (parser.parseRSquare())
|
|
return failure();
|
|
}
|
|
return success();
|
|
};
|
|
if (failed(parseAttr("iterators", &iterTypes)) ||
|
|
failed(parseAttr("distribution", &distributionTypes)))
|
|
return failure();
|
|
|
|
// Set all loop iterator types to "parallel" if they are not printed in IR.
|
|
if (iterTypes.empty()) {
|
|
auto parallelIter = builder.getStringAttr(getParallelIteratorTypeName());
|
|
iterTypes = SmallVector<Attribute, 4>(ivs.size(), parallelIter);
|
|
}
|
|
result.addAttribute(getIteratorTypesAttrName(),
|
|
builder.getArrayAttr(iterTypes));
|
|
if (!distributionTypes.empty())
|
|
result.addAttribute(getDistributionTypesAttrName(),
|
|
builder.getArrayAttr(distributionTypes));
|
|
result.addAttribute(
|
|
TiledLoopOp::getOperandSegmentSizeAttr(),
|
|
builder.getI32VectorAttr({static_cast<int32_t>(lower.size()),
|
|
static_cast<int32_t>(upper.size()),
|
|
static_cast<int32_t>(steps.size()),
|
|
static_cast<int32_t>(inputs.size()),
|
|
static_cast<int32_t>(outputs.size())}));
|
|
|
|
// Parse the body.
|
|
Region *body = result.addRegion();
|
|
|
|
SmallVector<Type, 4> regionTypes(ivs.size(), builder.getIndexType());
|
|
regionTypes.append(inputTypes);
|
|
regionTypes.append(outputTypes);
|
|
|
|
SmallVector<OpAsmParser::OperandType, 4> regionArgs(ivs);
|
|
regionArgs.append(inputRegionArgs);
|
|
regionArgs.append(outputRegionArgs);
|
|
|
|
if (parser.parseRegion(*body, regionArgs, regionTypes))
|
|
return failure();
|
|
|
|
// Parse optional attributes.
|
|
parser.parseOptionalAttrDict(result.attributes);
|
|
|
|
return success();
|
|
}
|
|
|
|
Region &TiledLoopOp::getLoopBody() { return region(); }
|
|
|
|
LogicalResult TiledLoopOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
|
|
for (auto *op : ops)
|
|
op->moveBefore(*this);
|
|
return success();
|
|
}
|
|
|
|
bool TiledLoopOp::isDefinedOutsideOfLoop(Value value) {
|
|
return !region().isAncestor(value.getParentRegion());
|
|
}
|
|
|
|
static LogicalResult verify(TiledLoopOp op) {
|
|
// Check if iterator types are provided for every loop dimension.
|
|
if (op.iterator_types().size() != op.getNumLoops())
|
|
return op.emitOpError("expected iterator types array attribute size = ")
|
|
<< op.iterator_types().size()
|
|
<< " to match the number of loops = " << op.getNumLoops();
|
|
|
|
// Check if types of input arguments match region args types.
|
|
for (auto &item :
|
|
llvm::enumerate(llvm::zip(op.inputs(), op.getRegionInputArgs()))) {
|
|
Value input, inputRegionArg;
|
|
unsigned index = item.index();
|
|
std::tie(input, inputRegionArg) = item.value();
|
|
if (input.getType() != inputRegionArg.getType())
|
|
return op.emitOpError("expected input arg ")
|
|
<< index << " with type = " << input.getType()
|
|
<< " to match region arg " << index + op.getNumLoops()
|
|
<< " type = " << inputRegionArg.getType();
|
|
}
|
|
|
|
// Check if types of input arguments match region args types.
|
|
for (auto &item :
|
|
llvm::enumerate(llvm::zip(op.outputs(), op.getRegionOutputArgs()))) {
|
|
Value output, outputRegionArg;
|
|
unsigned index = item.index();
|
|
std::tie(output, outputRegionArg) = item.value();
|
|
if (output.getType() != outputRegionArg.getType())
|
|
return op.emitOpError("expected output arg ")
|
|
<< index << " with type = " << output.getType()
|
|
<< " to match region arg "
|
|
<< index + op.getNumLoops() + op.inputs().size()
|
|
<< " type = " << outputRegionArg.getType();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
static constexpr int64_t kNoMatch = -1;
|
|
|
|
// Folds away TiledLoopOp inputs if they have no uses within the body.
|
|
//
|
|
// Example:
|
|
//
|
|
// %0 = linalg.tiled_loop ... ins (%in_ = %in: tensor<...>,
|
|
// %in_buf_ = %in_buf: memref<...>) {...}
|
|
// Becomes
|
|
//
|
|
// linalg.tiled_loop ... ins (%in_buf_ = %in_buf: memref<...>) {...}
|
|
struct TiledLoopInputsFolder : public OpRewritePattern<linalg::TiledLoopOp> {
|
|
using OpRewritePattern<linalg::TiledLoopOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(linalg::TiledLoopOp tiledLoop,
|
|
PatternRewriter &rewriter) const final {
|
|
SmallVector<Value, 2> newInputs, regionInputTensorArgs;
|
|
// Store ids of the corresponding old and new input operands.
|
|
SmallVector<int64_t, 2> oldInputIdToNew(tiledLoop.inputs().size(),
|
|
kNoMatch);
|
|
for (auto en : llvm::enumerate(
|
|
llvm::zip(tiledLoop.inputs(), tiledLoop.getRegionInputArgs()))) {
|
|
Value in, bbArg;
|
|
size_t index = en.index();
|
|
std::tie(in, bbArg) = en.value();
|
|
if (!bbArg.use_empty()) {
|
|
oldInputIdToNew[index] = newInputs.size();
|
|
newInputs.push_back(in);
|
|
}
|
|
}
|
|
if (newInputs.size() == tiledLoop.inputs().size())
|
|
return failure();
|
|
Location loc = tiledLoop.getLoc();
|
|
auto newTiledLoop = rewriter.create<TiledLoopOp>(
|
|
loc, tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(),
|
|
newInputs, tiledLoop.outputs(), tiledLoop.iterator_types(),
|
|
tiledLoop.distribution_types());
|
|
|
|
// Clone the region.
|
|
BlockAndValueMapping bvm;
|
|
bvm.map(tiledLoop.getInductionVars(), newTiledLoop.getInductionVars());
|
|
bvm.map(tiledLoop.getRegionOutputArgs(),
|
|
newTiledLoop.getRegionOutputArgs());
|
|
for (const auto &en : llvm::enumerate(oldInputIdToNew))
|
|
if (en.value() != kNoMatch)
|
|
bvm.map(tiledLoop.getRegionInputArgs()[en.index()],
|
|
newTiledLoop.getRegionInputArgs()[en.value()]);
|
|
OpBuilder innerBuilder =
|
|
OpBuilder::atBlockEnd(newTiledLoop.getBody(), rewriter.getListener());
|
|
for (auto &op : *tiledLoop.getBody())
|
|
innerBuilder.clone(op, bvm);
|
|
rewriter.replaceOp(tiledLoop, newTiledLoop.getResults());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// A simple, conservative analysis to determine if the loop is shape
|
|
/// conserving. I.e., the type of the arg-th yielded value is the same as the
|
|
/// type of the corresponding basic block argument of the loop.
|
|
/// Note: This function handles only simple cases. Expand as needed.
|
|
static bool isShapePreserving(TiledLoopOp loopOp, int64_t arg) {
|
|
auto yieldOp = cast<YieldOp>(loopOp.getLoopBody().front().getTerminator());
|
|
if (yieldOp.values().empty())
|
|
// Tiled loop either has no outputs or is a "memref-based version". In
|
|
// either case, the loop is shape conserving.
|
|
return true;
|
|
assert(arg < static_cast<int64_t>(yieldOp.values().size()) &&
|
|
"arg is out of bounds");
|
|
Value value = yieldOp.values()[arg];
|
|
while (value) {
|
|
if (value == loopOp.getRegionOutputArgs()[arg])
|
|
return true;
|
|
OpResult opResult = value.dyn_cast<OpResult>();
|
|
if (!opResult)
|
|
return false;
|
|
|
|
using tensor::InsertSliceOp;
|
|
value = llvm::TypeSwitch<Operation *, Value>(opResult.getOwner())
|
|
.template Case<InsertSliceOp>(
|
|
[&](InsertSliceOp op) { return op.dest(); })
|
|
.template Case<TiledLoopOp>([&](TiledLoopOp loopOp) {
|
|
return isShapePreserving(loopOp, opResult.getResultNumber())
|
|
? loopOp.outputs()[opResult.getResultNumber()]
|
|
: Value();
|
|
})
|
|
.Default([&](auto op) { return Value(); });
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Fold dim(x) where `x` is an input/output argument of a TiledLoopOp block
|
|
/// to dim(y) where `y` is the initial input/output value of the argument.
|
|
///
|
|
/// E.g.:
|
|
/// %y = ... : tensor<...>
|
|
/// linalg.tiled_loop ... ins(%x = %y : tensor<...>) {
|
|
/// tensor.dim %x, %c0 : tensor<...>
|
|
/// }
|
|
///
|
|
/// is folded to:
|
|
/// %y = ... : tensor<...>
|
|
/// linalg.tiled_loop ... ins(%x = %y : tensor<...>) {
|
|
/// tensor.dim %y, %c0 : tensor<...>
|
|
/// }
|
|
///
|
|
/// Note: Dim ops are folded only if it can be proven that the runtime type of
|
|
/// the yielded value (in case of outputs) does not change with loop iterations.
|
|
template <typename OpTy>
|
|
struct DimOfTiledLoopInsOutsFolder : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy dimOp,
|
|
PatternRewriter &rewriter) const final {
|
|
auto src = dimOp.source().template dyn_cast<BlockArgument>();
|
|
if (!src)
|
|
return failure();
|
|
auto loopOp =
|
|
dyn_cast<TiledLoopOp>(src.getOwner()->getParent()->getParentOp());
|
|
if (!loopOp)
|
|
return failure();
|
|
unsigned numLoops = loopOp.getNumLoops();
|
|
unsigned numInputArgs = loopOp.getRegionInputArgs().size();
|
|
if (src.getArgNumber() >= numInputArgs + numLoops &&
|
|
!isShapePreserving(loopOp,
|
|
src.getArgNumber() - numInputArgs - numLoops))
|
|
return failure();
|
|
|
|
auto inputArgs = loopOp.getRegionInputArgs();
|
|
auto it1 = llvm::find(inputArgs, src);
|
|
if (it1 != inputArgs.end()) {
|
|
rewriter.updateRootInPlace(dimOp, [&] {
|
|
dimOp.sourceMutable().assign(loopOp.inputs()[it1 - inputArgs.begin()]);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
auto outputArgs = loopOp.getRegionOutputArgs();
|
|
auto it2 = llvm::find(outputArgs, src);
|
|
if (it2 != outputArgs.end()) {
|
|
rewriter.updateRootInPlace(dimOp, [&] {
|
|
dimOp.sourceMutable().assign(
|
|
loopOp.outputs()[it2 - outputArgs.begin()]);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
/// Fold dim(r) where `r` is the result of a TiledLoopOp to dim(y) where `y`
|
|
/// is the initial output value of the loop.
|
|
///
|
|
/// E.g.:
|
|
/// %y = ... : tensor<...>
|
|
/// %r = linalg.tiled_loop ... outs(%i = %y : tensor<...>) {
|
|
/// ...
|
|
/// }
|
|
/// %0 = tensor.dim %r, %c0 : tensor<...>
|
|
///
|
|
/// is folded to:
|
|
/// %y = ... : tensor<...>
|
|
/// linalg.tiled_loop ... outs(%i = %y : tensor<...>) {
|
|
/// ...
|
|
/// }
|
|
/// %0 = tensor.dim %y, %c0 : tensor<...>
|
|
///
|
|
/// Note: Dim ops are folded only if it can be proven that the runtime type of
|
|
/// the yielded value (in case of outputs) does not change with loop iterations.
|
|
template <typename OpTy>
|
|
struct DimOfTiledLoopResultFolder : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy dimOp,
|
|
PatternRewriter &rewriter) const final {
|
|
auto loopOp = dimOp.source().template getDefiningOp<TiledLoopOp>();
|
|
if (!loopOp)
|
|
return failure();
|
|
auto opResult = dimOp.source().template cast<OpResult>();
|
|
unsigned resultNumber = opResult.getResultNumber();
|
|
if (!isShapePreserving(loopOp, resultNumber))
|
|
return failure();
|
|
rewriter.updateRootInPlace(dimOp, [&]() {
|
|
dimOp.sourceMutable().assign(loopOp.outputs()[resultNumber]);
|
|
});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Folds away TiledLoopOp output tensors when the following conditions are met:
|
|
// * result of `linalg.tiled_loop` has no uses
|
|
// * output tensor is the argument of `linalg.yield`
|
|
//
|
|
// Example:
|
|
//
|
|
// %0 = linalg.tiled_loop ... outs (%o_ = %out: tensor<...>,
|
|
// %obuf_ = %out_buf: memref<...>) {
|
|
// ...
|
|
// linalg.yield %o_ : tensor ...
|
|
// }
|
|
//
|
|
// Becomes
|
|
//
|
|
// linalg.tiled_loop ... outs (%obuf_ = %out_buf: memref<...>) {
|
|
// ...
|
|
// linalg.yield
|
|
// }
|
|
struct TiledLoopResultsFolder : public OpRewritePattern<linalg::TiledLoopOp> {
|
|
using OpRewritePattern<linalg::TiledLoopOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(linalg::TiledLoopOp tiledLoop,
|
|
PatternRewriter &rewriter) const final {
|
|
if (tiledLoop.getNumResults() == 0)
|
|
return failure();
|
|
|
|
Block *block = tiledLoop.getBody();
|
|
auto yieldOp = cast<linalg::YieldOp>(block->getTerminator());
|
|
|
|
// Match the pattern and collect output buffers that will replace the output
|
|
// tensors and also the ops that will be ignored when cloning the body.
|
|
SmallVector<Value, 2> newOutputOperands, newYieldArgs;
|
|
int resultId = 0;
|
|
// Store ids of the corresponding old and new output operands.
|
|
SmallVector<int64_t, 2> oldOutputIdToNew(tiledLoop.outputs().size(),
|
|
kNoMatch);
|
|
// Store ids of the corresponding old and new results.
|
|
SmallVector<int64_t, 2> oldResultIdToNew(tiledLoop.getNumResults(),
|
|
kNoMatch);
|
|
SmallVector<Value, 2> resultReplacement(tiledLoop.getNumResults());
|
|
for (auto en : llvm::enumerate(
|
|
llvm::zip(tiledLoop.outputs(), tiledLoop.getRegionOutputArgs()))) {
|
|
size_t index = en.index();
|
|
Value out = std::get<0>(en.value());
|
|
Value outRegionArg = std::get<1>(en.value());
|
|
|
|
if (!out.getType().isa<RankedTensorType>()) {
|
|
oldOutputIdToNew[index] = newOutputOperands.size();
|
|
newOutputOperands.push_back(out);
|
|
continue;
|
|
}
|
|
Value result = tiledLoop.getResult(resultId);
|
|
Value yieldArg = yieldOp.getOperand(resultId);
|
|
if (yieldArg != outRegionArg || !result.use_empty()) {
|
|
oldOutputIdToNew[index] = newOutputOperands.size();
|
|
oldResultIdToNew[resultId] = newYieldArgs.size();
|
|
resultReplacement[resultId] = out;
|
|
newOutputOperands.push_back(out);
|
|
newYieldArgs.push_back(yieldArg);
|
|
}
|
|
++resultId;
|
|
}
|
|
if (newOutputOperands.size() == tiledLoop.outputs().size())
|
|
return failure();
|
|
|
|
Location loc = tiledLoop.getLoc();
|
|
auto newTiledLoop = rewriter.create<TiledLoopOp>(
|
|
loc, tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(),
|
|
tiledLoop.inputs(), newOutputOperands, tiledLoop.iterator_types(),
|
|
tiledLoop.distribution_types());
|
|
|
|
// Clone the region.
|
|
BlockAndValueMapping bvm;
|
|
bvm.map(tiledLoop.getInductionVars(), newTiledLoop.getInductionVars());
|
|
bvm.map(tiledLoop.getRegionInputArgs(), newTiledLoop.getRegionInputArgs());
|
|
for (const auto &en : llvm::enumerate(oldOutputIdToNew)) {
|
|
if (en.value() != kNoMatch)
|
|
bvm.map(tiledLoop.getRegionOutputArgs()[en.index()],
|
|
newTiledLoop.getRegionOutputArgs()[en.value()]);
|
|
else
|
|
bvm.map(tiledLoop.getRegionOutputArgs()[en.index()],
|
|
tiledLoop.outputs()[en.index()]);
|
|
}
|
|
OpBuilder innerBuilder =
|
|
OpBuilder::atBlockEnd(newTiledLoop.getBody(), rewriter.getListener());
|
|
for (auto &op : tiledLoop.getBody()->without_terminator())
|
|
innerBuilder.clone(op, bvm);
|
|
innerBuilder.create<linalg::YieldOp>(
|
|
loc, llvm::to_vector<2>(llvm::map_range(
|
|
newYieldArgs, [&](Value arg) { return bvm.lookup(arg); })));
|
|
|
|
for (const auto &en : llvm::enumerate(oldResultIdToNew))
|
|
if (en.value() != kNoMatch)
|
|
resultReplacement[en.index()] = newTiledLoop.getResult(en.value());
|
|
rewriter.replaceOp(tiledLoop, resultReplacement);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void TiledLoopOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
|
MLIRContext *context) {
|
|
results.insert<TiledLoopInputsFolder, TiledLoopResultsFolder,
|
|
DimOfTiledLoopInsOutsFolder<tensor::DimOp>,
|
|
DimOfTiledLoopInsOutsFolder<memref::DimOp>,
|
|
DimOfTiledLoopResultFolder<tensor::DimOp>,
|
|
DimOfTiledLoopResultFolder<memref::DimOp>>(context);
|
|
}
|
|
|
|
LogicalResult TiledLoopOp::fold(ArrayRef<Attribute>,
|
|
SmallVectorImpl<OpFoldResult> &) {
|
|
return foldMemRefCastInTiledLoopOp(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndexOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(IndexOp op) {
|
|
auto linalgOp = dyn_cast<LinalgOp>(op->getParentOp());
|
|
if (!linalgOp)
|
|
return op.emitOpError("expected parent op with LinalgOp interface");
|
|
if (linalgOp.getNumLoops() <= op.dim())
|
|
return op.emitOpError("expected dim (")
|
|
<< op.dim() << ") to be lower than the number of loops ("
|
|
<< linalgOp.getNumLoops() << ") of the enclosing LinalgOp";
|
|
return success();
|
|
}
|
|
|
|
/////// Operations corresponding to library calls defined with Tablegen ////////
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yamlgen.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
|
|
/// Return the dims that are `iteratorTypeName` loops in the LinalgOp `op`.
|
|
/// Assumes `op` is a LinalgOp.
|
|
void mlir::linalg::getDimsOfType(Operation *op, StringRef iteratorTypeName,
|
|
SmallVectorImpl<AffineExpr> &res) {
|
|
if (!cast<LinalgOp>(op).iterator_types())
|
|
return;
|
|
|
|
unsigned dim = 0;
|
|
MLIRContext *ctx = op->getContext();
|
|
for (auto tn :
|
|
cast<LinalgOp>(op).iterator_types().getAsValueRange<StringAttr>()) {
|
|
if (tn == iteratorTypeName)
|
|
res.push_back(getAffineDimExpr(dim, ctx));
|
|
++dim;
|
|
}
|
|
}
|
|
|
|
AffineMap mlir::linalg::extractOrIdentityMap(Optional<AffineMap> maybeMap,
|
|
unsigned rank,
|
|
MLIRContext *context) {
|
|
if (maybeMap)
|
|
return maybeMap.getValue();
|
|
if (rank == 0)
|
|
return AffineMap::get(context);
|
|
return AffineMap::getMultiDimIdentityMap(rank, context);
|
|
}
|
|
|
|
SmallVector<AffineExpr, 4>
|
|
mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx,
|
|
MLIRContext *context) {
|
|
SmallVector<AffineExpr, 4> res;
|
|
res.reserve(num);
|
|
for (unsigned i = 0; i < num; ++i)
|
|
res.push_back(getAffineDimExpr(startIdx++, context));
|
|
return res;
|
|
}
|
|
|
|
SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a,
|
|
ArrayRef<AffineExpr> b) {
|
|
auto rangeA = llvm::make_range(a.begin(), a.end());
|
|
auto rangeB = llvm::make_range(b.begin(), b.end());
|
|
auto concatRanges = llvm::concat<const AffineExpr>(rangeA, rangeB);
|
|
return llvm::to_vector<4>(concatRanges);
|
|
}
|
|
|
|
static void appendMangledType(llvm::raw_string_ostream &ss, Type t) {
|
|
if (auto memref = t.dyn_cast<MemRefType>()) {
|
|
ss << "view";
|
|
for (auto size : memref.getShape())
|
|
if (size < 0)
|
|
ss << "sx";
|
|
else
|
|
ss << size << "x";
|
|
appendMangledType(ss, memref.getElementType());
|
|
} else if (auto vec = t.dyn_cast<VectorType>()) {
|
|
ss << "vector";
|
|
llvm::interleave(
|
|
vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x"; });
|
|
appendMangledType(ss, vec.getElementType());
|
|
} else if (t.isSignlessIntOrIndexOrFloat()) {
|
|
ss << t;
|
|
} else {
|
|
llvm_unreachable("Invalid type for linalg library name mangling");
|
|
}
|
|
}
|
|
|
|
std::string mlir::linalg::generateLibraryCallName(Operation *op) {
|
|
assert(isa<LinalgOp>(op));
|
|
std::string name(op->getName().getStringRef().str());
|
|
name.reserve(128);
|
|
std::replace(name.begin(), name.end(), '.', '_');
|
|
llvm::raw_string_ostream ss(name);
|
|
ss << "_";
|
|
auto types = op->getOperandTypes();
|
|
llvm::interleave(
|
|
types.begin(), types.end(), [&](Type t) { appendMangledType(ss, t); },
|
|
[&]() { ss << "_"; });
|
|
return ss.str();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Support for named Linalg ops defined in ods-gen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Generic entry point to create the block for the region of a LinalgOp.
|
|
/// This is used by both named structured ops created by ods-gen and by manually
|
|
/// defined C++ ops.
|
|
/// This is used by both builders and parsers.
|
|
/// This function creates the block in the region with arguments corresponding
|
|
/// to the elemental types of `inputTypes` and `outputTypes`, which are asserted
|
|
/// to be ShapedType.
|
|
template <typename NamedStructuredOpType>
|
|
static void
|
|
fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
|
|
TypeRange inputTypes, TypeRange outputTypes,
|
|
std::function<void(unsigned, unsigned)> errorHandler) {
|
|
assert(llvm::all_of(outputTypes, [](Type t) { return t.isa<ShapedType>(); }));
|
|
|
|
// TODO: atm all operands go through getElementTypeOrSelf,
|
|
// reconsider when we have evidence we need to.
|
|
SmallVector<Type, 8> argTypes;
|
|
for (auto containers : {inputTypes, outputTypes})
|
|
for (auto t : containers)
|
|
argTypes.push_back(getElementTypeOrSelf(t));
|
|
|
|
// RAII.
|
|
OpBuilder::InsertionGuard guard(opBuilder);
|
|
Block *body = opBuilder.createBlock(®ion, /*insertPt=*/{}, argTypes);
|
|
unsigned actual = body->getNumArguments();
|
|
unsigned expected = NamedStructuredOpType::getNumRegionArgs();
|
|
if (expected != actual) {
|
|
if (errorHandler)
|
|
errorHandler(expected, actual);
|
|
return;
|
|
}
|
|
|
|
opBuilder.setInsertionPointToStart(body);
|
|
ImplicitLocOpBuilder b(opBuilder.getUnknownLoc(), opBuilder);
|
|
NamedStructuredOpType::regionBuilder(b, *body);
|
|
|
|
// indexing_maps is an auto-generated method.
|
|
|
|
// iterator_types is an auto-generated method.
|
|
}
|
|
|
|
/// Generic entry point to create both the region and the block of a LinalgOp.
|
|
template <typename NamedStructuredOpType>
|
|
void createAndFillStructuredOpRegion(OpBuilder &opBuilder,
|
|
OperationState &result,
|
|
TypeRange inputTypes,
|
|
TypeRange outputTypes) {
|
|
Region ®ion = *result.addRegion();
|
|
fillStructuredOpRegion<NamedStructuredOpType>(
|
|
opBuilder, region, inputTypes, outputTypes,
|
|
[&](unsigned expected, unsigned actual) {
|
|
assert(expected != actual && "incorrect number of arguments");
|
|
});
|
|
}
|
|
|
|
/// Common parsing used for both named structured ops created by ods-gen and by
|
|
/// manually defined C++ ops. Does not handle regions.
|
|
static ParseResult
|
|
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
|
|
SmallVectorImpl<Type> &inputTypes,
|
|
SmallVectorImpl<Type> &outputTypes) {
|
|
llvm::SMLoc inputsOperandsLoc, outputsOperandsLoc;
|
|
SmallVector<OpAsmParser::OperandType, 4> inputsOperands, outputsOperands;
|
|
|
|
parser.parseOptionalAttrDict(result.attributes);
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("ins"))) {
|
|
if (parser.parseLParen())
|
|
return failure();
|
|
|
|
inputsOperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseOperandList(inputsOperands) ||
|
|
parser.parseColonTypeList(inputTypes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("outs"))) {
|
|
outputsOperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseLParen() || parser.parseOperandList(outputsOperands) ||
|
|
parser.parseColonTypeList(outputTypes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
|
|
if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
|
|
result.operands) ||
|
|
parser.resolveOperands(outputsOperands, outputTypes, outputsOperandsLoc,
|
|
result.operands))
|
|
return failure();
|
|
|
|
result.addAttribute("operand_segment_sizes",
|
|
parser.getBuilder().getI32VectorAttr(
|
|
{static_cast<int32_t>(inputsOperands.size()),
|
|
static_cast<int32_t>(outputsOperands.size())}));
|
|
return success();
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printCommonStructuredOpParts(OpAsmPrinter &p,
|
|
NamedStructuredOpType op) {
|
|
if (!op.inputs().empty())
|
|
p << " ins(" << op.inputs() << " : " << op.inputs().getTypes() << ")";
|
|
if (!op.outputs().empty())
|
|
p << " outs(" << op.outputs() << " : " << op.outputs().getTypes() << ")";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Specific parsing and printing for named structured ops created by ods-gen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult
|
|
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
|
|
TypeRange inputTypes, TypeRange outputTypes) {
|
|
ParseResult res = success();
|
|
OpBuilder opBuilder(parser.getContext());
|
|
// Resolve `captures` into `capturedValues` at parse time so we can build the
|
|
// region with captures.
|
|
SmallVector<Value> capturedValues;
|
|
fillStructuredOpRegion<NamedStructuredOpType>(
|
|
opBuilder, region, inputTypes, outputTypes,
|
|
[&](unsigned expected, unsigned actual) {
|
|
res = parser.emitError(
|
|
parser.getCurrentLocation(),
|
|
llvm::formatv("[parseNamedStructuredOpRegion] ods-gen generated "
|
|
"region expects {0} args, got {1}",
|
|
expected, actual));
|
|
region.front().dump();
|
|
});
|
|
return res;
|
|
}
|
|
|
|
static ParseResult
|
|
parseNamedStructuredOpResults(OpAsmParser &parser,
|
|
SmallVectorImpl<Type> &resultTypes) {
|
|
if (parser.parseOptionalArrowTypeList(resultTypes))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
// TODO: Enable when ods-gen supports captures.
|
|
SmallVector<Type, 1> inputTypes, outputTypes;
|
|
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
|
|
return failure();
|
|
|
|
// TODO: consider merging results parsing into region parsing.
|
|
// Need to wait for declarative assembly resolution to decide.
|
|
SmallVector<Type, 1> outputTensorsTypes;
|
|
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
|
|
return failure();
|
|
result.addTypes(outputTensorsTypes);
|
|
|
|
std::unique_ptr<Region> region = std::make_unique<Region>();
|
|
if (parseNamedStructuredOpRegion<NamedStructuredOpType>(
|
|
parser, *region, inputTypes, outputTypes))
|
|
return failure();
|
|
result.addRegion(std::move(region));
|
|
|
|
return success();
|
|
}
|
|
|
|
static void printNamedStructuredOpResults(OpAsmPrinter &p,
|
|
TypeRange resultTypes) {
|
|
if (resultTypes.empty())
|
|
return;
|
|
p.printOptionalArrowTypeList(resultTypes);
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op) {
|
|
p.printOptionalAttrDict(
|
|
op->getAttrs(),
|
|
/*elidedAttrs=*/{"operand_segment_sizes",
|
|
// See generated code in mlir-linalg-yaml-gen.cpp
|
|
"linalg.memoized_indexing_maps"});
|
|
|
|
// Printing is shared with generic ops, except for the region and
|
|
// attributes.
|
|
printCommonStructuredOpParts(p, op);
|
|
|
|
// Results printing.
|
|
printNamedStructuredOpResults(p, op.result_tensors().getTypes());
|
|
|
|
// Region is elided.
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op) {
|
|
return verifyGenericOp<NamedStructuredOpType>(op);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Canonicalizers and Folders.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct EraseDeadLinalgOp : public OpInterfaceRewritePattern<LinalgOp> {
|
|
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(LinalgOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
|
|
// Linalg "inputs" may be either tensor or memref type.
|
|
// tensor<0xelt_type> is a convention that may not always mean
|
|
// "0 iterations". Only erase in cases we see memref<...x0x...>.
|
|
auto mt = opOperand->get().getType().dyn_cast<MemRefType>();
|
|
if (!mt)
|
|
continue;
|
|
if (llvm::is_contained(op.getShape(opOperand), 0)) {
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
struct FoldTensorCastOp : public OpInterfaceRewritePattern<LinalgOp> {
|
|
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(LinalgOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// If no operand comes from a tensor::CastOp and can be folded then fail.
|
|
bool hasTensorCastOperand =
|
|
llvm::any_of(op.getInputAndOutputOperands(), [&](OpOperand *opOperand) {
|
|
if (opOperand->get().isa<BlockArgument>())
|
|
return false;
|
|
auto castOp = opOperand->get().getDefiningOp<tensor::CastOp>();
|
|
return castOp && canFoldIntoConsumerOp(castOp);
|
|
});
|
|
if (!hasTensorCastOperand)
|
|
return failure();
|
|
|
|
SmallVector<Type, 4> newResultTypes;
|
|
newResultTypes.reserve(op->getNumResults());
|
|
SmallVector<Value, 4> newOperands;
|
|
newOperands.reserve(op->getNumOperands());
|
|
// Inputs may fold.
|
|
for (OpOperand *opOperand : op.getInputOperands()) {
|
|
auto tensorCastOp = opOperand->get().getDefiningOp<tensor::CastOp>();
|
|
newOperands.push_back(canFoldIntoConsumerOp(tensorCastOp)
|
|
? tensorCastOp.source()
|
|
: opOperand->get());
|
|
}
|
|
// Init tensors may fold, in which case the resultType must also change.
|
|
for (OpOperand *opOperand : op.getOutputOperands()) {
|
|
auto tensorCastOp = opOperand->get().getDefiningOp<tensor::CastOp>();
|
|
bool fold = canFoldIntoConsumerOp(tensorCastOp);
|
|
newOperands.push_back(fold ? tensorCastOp.getOperand()
|
|
: opOperand->get());
|
|
newResultTypes.push_back(newOperands.back().getType());
|
|
}
|
|
// Clone op.
|
|
Operation *newOp =
|
|
op.clone(rewriter, op->getLoc(), newResultTypes, newOperands);
|
|
SmallVector<Value, 4> replacements;
|
|
replacements.reserve(newOp->getNumResults());
|
|
for (auto result : llvm::zip(op->getResults(), newOp->getResults())) {
|
|
Value oldResult = std::get<0>(result);
|
|
Value newResult = std::get<1>(result);
|
|
if (newResult.getType() != oldResult.getType()) {
|
|
replacements.push_back(rewriter.create<tensor::CastOp>(
|
|
op->getLoc(), oldResult.getType(), newResult));
|
|
} else {
|
|
replacements.push_back(newResult);
|
|
}
|
|
}
|
|
rewriter.replaceOp(op, replacements);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
#define LINALGOP_FOLDERS(XXX) \
|
|
LogicalResult XXX::fold(ArrayRef<Attribute>, \
|
|
SmallVectorImpl<OpFoldResult> &) { \
|
|
return foldMemRefCast(*this); \
|
|
}
|
|
|
|
LINALGOP_FOLDERS(CopyOp)
|
|
LINALGOP_FOLDERS(FillOp)
|
|
LINALGOP_FOLDERS(GenericOp)
|
|
|
|
// All named ops canonicalizers and folders are auto-generated in the
|
|
// .cpp.inc.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LinalgDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LinalgDialect::getCanonicalizationPatterns(
|
|
RewritePatternSet &results) const {
|
|
results.add<EraseDeadLinalgOp, FoldTensorCastOp>(getContext());
|
|
}
|
|
|
|
Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
|
|
Attribute value, Type type,
|
|
Location loc) {
|
|
return builder.create<arith::ConstantOp>(loc, type, value);
|
|
}
|