llvm-project/llvm/tools/llvm-reduce/deltas/ReduceOperandsSkip.cpp
Nikita Popov 03f05a4e72 [IR] Don't include GenericDomTreeConstruction.h in header (NFC)
The whole point of the GenericDomTree.h vs
GenericDomTreeConstruction.h distinction is that the latter only
needs to be included in the source file and not the header.
2023-11-22 09:06:36 +01:00

237 lines
7.7 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ReduceOperandsSkip.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include <queue>
using namespace llvm;
/// Collect all values that are directly or indirectly referenced by @p Root,
/// including Root itself. This is a BF search such that the more steps needed
/// to get to the reference, the more behind it is found in @p Collection. Each
/// step could be its own reduction, therefore we consider later values "more
/// reduced".
static SetVector<Value *> collectReferencedValues(Value *Root) {
SetVector<Value *> Refs;
std::deque<Value *> Worklist;
Worklist.push_back(Root);
while (!Worklist.empty()) {
Value *Val = Worklist.front();
Worklist.pop_front();
if (!Refs.insert(Val))
continue;
if (auto *O = dyn_cast<Operator>(Val)) {
for (Use &Op : O->operands())
Worklist.push_back(Op.get());
}
}
return Refs;
}
static bool shouldReduceOperand(Use &Op) {
Type *Ty = Op->getType();
if (Ty->isLabelTy() || Ty->isMetadataTy())
return false;
// TODO: be more precise about which GEP operands we can reduce (e.g. array
// indexes)
if (isa<GEPOperator>(Op.getUser()))
return false;
if (auto *CB = dyn_cast<CallBase>(Op.getUser())) {
if (&CB->getCalledOperandUse() == &Op)
return false;
}
return true;
}
/// Return a reduction priority for @p V. A higher values means "more reduced".
static int classifyReductivePower(Value *V) {
if (auto *C = dyn_cast<ConstantData>(V)) {
if (isa<UndefValue>(V))
return -2;
if (C->isNullValue())
return 7;
if (C->isOneValue())
return 6;
return 5;
}
if (isa<Argument>(V))
return 3;
if (isa<GlobalValue>(V))
return 2;
if (isa<Constant>(V))
return 1;
if (isa<Instruction>(V))
return -1;
return 0;
}
/// Calls @p Callback for every reduction opportunity in @p F. Used by
/// countOperands() and extractOperandsFromModule() to ensure consistency
/// between the two.
static void
opportunities(Function &F,
function_ref<void(Use &, ArrayRef<Value *>)> Callback) {
if (F.isDeclaration())
return;
// Need DominatorTree to find out whether an SSA value can be referenced.
DominatorTree DT(F);
// Return whether @p LHS is "more reduced" that @p RHS. That is, whether
// @p RHS should be preferred over @p LHS in a reduced output. This is a
// partial order, a Value may not be preferable over another.
auto IsMoreReduced = [&DT](Value *LHS, Value *RHS) -> bool {
// A value is not more reduced than itself.
if (LHS == RHS)
return false;
int ReductivePowerDiff =
classifyReductivePower(RHS) - classifyReductivePower(LHS);
if (ReductivePowerDiff != 0)
return ReductivePowerDiff < 0;
// LHS is more reduced if it is defined further up the dominance tree. In a
// chain of definitions,
//
// %a = ..
// %b = op %a
// %c = op %b
//
// every use of %b can be replaced by %a, but not by a use of %c. That is, a
// use %c can be replaced in steps first by %b, then by %a, making %a the
// "more reduced" choice that skips over more instructions.
auto *LHSInst = dyn_cast<Instruction>(LHS);
auto *RHSInst = dyn_cast<Instruction>(RHS);
if (LHSInst && RHSInst) {
if (DT.dominates(LHSInst, RHSInst))
return true;
}
// Compress the number of used arguments by prefering the first ones. Unused
// trailing argument can be removed by the arguments pass.
auto *LHSArg = dyn_cast<Argument>(LHS);
auto *RHSArg = dyn_cast<Argument>(RHS);
if (LHSArg && RHSArg) {
if (LHSArg->getArgNo() < RHSArg->getArgNo())
return true;
}
return false;
};
for (Instruction &I : instructions(&F)) {
for (Use &Op : I.operands()) {
if (!shouldReduceOperand(Op))
continue;
Value *OpVal = Op.get();
// Collect refenced values as potential replacement candidates.
SetVector<Value *> ReferencedVals = collectReferencedValues(OpVal);
// Regardless whether referenced, add the function arguments as
// replacement possibility with the goal of reducing the number of (used)
// function arguments, possibly created by the operands-to-args.
for (Argument &Arg : F.args())
ReferencedVals.insert(&Arg);
// After all candidates have been added, it doesn't need to be a set
// anymore.
auto Candidates = ReferencedVals.takeVector();
// Remove ineligible candidates.
llvm::erase_if(Candidates, [&, OpVal](Value *V) {
// Candidate value must have the same type.
if (OpVal->getType() != V->getType())
return true;
// Do not introduce address captures of intrinsics.
if (Function *F = dyn_cast<Function>(V)) {
if (F->isIntrinsic())
return true;
}
// Only consider candidates that are "more reduced" than the original
// value. This explicitly also rules out candidates with the same
// reduction power. This is to ensure that repeated invocations of this
// pass eventually reach a fixpoint without switch back and forth
// between two opportunities with the same reductive power.
return !IsMoreReduced(V, OpVal);
});
if (Candidates.empty())
continue;
// collectReferencedValues pushed the more reductive values to the end of
// the collection, but we need them at the front.
std::reverse(Candidates.begin(), Candidates.end());
// Independency of collectReferencedValues's idea of reductive power,
// ensure the partial order of IsMoreReduced is enforced.
llvm::stable_sort(Candidates, IsMoreReduced);
Callback(Op, Candidates);
}
}
}
static void extractOperandsFromModule(Oracle &O, ReducerWorkItem &WorkItem) {
Module &Program = WorkItem.getModule();
for (Function &F : Program.functions()) {
SmallVector<std::pair<Use *, Value *>> Replacements;
opportunities(F, [&](Use &Op, ArrayRef<Value *> Candidates) {
// Only apply the candidate the Oracle selected to keep that is the most
// reduced. Candidates with less reductive power can be interpreted as an
// intermediate step that is immediately replaced with the more reduced
// one. The number of shouldKeep() calls must be independent of the result
// of previous shouldKeep() calls to keep the total number of calls
// in-sync with what countOperands() has computed.
bool AlreadyReplaced = false;
for (Value *C : Candidates) {
bool Keep = O.shouldKeep();
if (AlreadyReplaced || Keep)
continue;
// Replacing the operand value immediately would influence the candidate
// set for the following operands. Delay it until after all candidates
// have been determined.
Replacements.push_back({&Op, C});
AlreadyReplaced = true;
}
});
for (std::pair<Use *, Value *> P : Replacements) {
if (PHINode *Phi = dyn_cast<PHINode>(P.first->getUser()))
Phi->setIncomingValueForBlock(Phi->getIncomingBlock(*P.first), P.second);
else
P.first->set(P.second);
}
}
}
void llvm::reduceOperandsSkipDeltaPass(TestRunner &Test) {
runDeltaPass(Test, extractOperandsFromModule,
"Reducing operands by skipping over instructions");
}