mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 11:06:07 +00:00
280 lines
11 KiB
C++
280 lines
11 KiB
C++
//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Specializes parallel loops and for loops for easier unrolling and
|
|
// vectorization.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
using namespace mlir;
|
|
using scf::ForOp;
|
|
using scf::ParallelOp;
|
|
|
|
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
|
|
/// into 2 loops after checking if the bounds are equal to that constant. This
|
|
/// is beneficial if the loop will almost always have the constant bound and
|
|
/// that version can be fully unrolled and vectorized.
|
|
static void specializeParallelLoopForUnrolling(ParallelOp op) {
|
|
SmallVector<int64_t, 2> constantIndices;
|
|
constantIndices.reserve(op.getUpperBound().size());
|
|
for (auto bound : op.getUpperBound()) {
|
|
auto minOp = bound.getDefiningOp<AffineMinOp>();
|
|
if (!minOp)
|
|
return;
|
|
int64_t minConstant = std::numeric_limits<int64_t>::max();
|
|
for (AffineExpr expr : minOp.getMap().getResults()) {
|
|
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
|
|
minConstant = std::min(minConstant, constantIndex.getValue());
|
|
}
|
|
if (minConstant == std::numeric_limits<int64_t>::max())
|
|
return;
|
|
constantIndices.push_back(minConstant);
|
|
}
|
|
|
|
OpBuilder b(op);
|
|
BlockAndValueMapping map;
|
|
Value cond;
|
|
for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
|
|
Value constant =
|
|
b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
|
|
Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
|
|
std::get<0>(bound), constant);
|
|
cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp;
|
|
map.map(std::get<0>(bound), constant);
|
|
}
|
|
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
|
|
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
|
|
ifOp.getElseBodyBuilder().clone(*op.getOperation());
|
|
op.erase();
|
|
}
|
|
|
|
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
|
|
/// 2 loops after checking if the bounds are equal to that constant. This is
|
|
/// beneficial if the loop will almost always have the constant bound and that
|
|
/// version can be fully unrolled and vectorized.
|
|
static void specializeForLoopForUnrolling(ForOp op) {
|
|
auto bound = op.getUpperBound();
|
|
auto minOp = bound.getDefiningOp<AffineMinOp>();
|
|
if (!minOp)
|
|
return;
|
|
int64_t minConstant = std::numeric_limits<int64_t>::max();
|
|
for (AffineExpr expr : minOp.getMap().getResults()) {
|
|
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
|
|
minConstant = std::min(minConstant, constantIndex.getValue());
|
|
}
|
|
if (minConstant == std::numeric_limits<int64_t>::max())
|
|
return;
|
|
|
|
OpBuilder b(op);
|
|
BlockAndValueMapping map;
|
|
Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant);
|
|
Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
|
|
bound, constant);
|
|
map.map(bound, constant);
|
|
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
|
|
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
|
|
ifOp.getElseBodyBuilder().clone(*op.getOperation());
|
|
op.erase();
|
|
}
|
|
|
|
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
|
|
/// into a for loop where the step divides the iteration space evenly, followed
|
|
/// by an scf.if for the last (partial) iteration (if any).
|
|
///
|
|
/// This function rewrites the given scf.for loop in-place and creates a new
|
|
/// scf.if operation for the last iteration. It replaces all uses of the
|
|
/// unpeeled loop with the results of the newly generated scf.if.
|
|
///
|
|
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
|
|
/// at which the loop is split (new upper bound) is returned via `splitBound`.
|
|
/// The return value indicates whether the loop was rewritten or not.
|
|
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
|
|
ForOp &partialIteration, Value &splitBound) {
|
|
RewriterBase::InsertionGuard guard(b);
|
|
auto lbInt = getConstantIntValue(forOp.getLowerBound());
|
|
auto ubInt = getConstantIntValue(forOp.getUpperBound());
|
|
auto stepInt = getConstantIntValue(forOp.getStep());
|
|
|
|
// No specialization necessary if step already divides upper bound evenly.
|
|
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
|
|
return failure();
|
|
// No specialization necessary if step size is 1.
|
|
if (stepInt == static_cast<int64_t>(1))
|
|
return failure();
|
|
|
|
auto loc = forOp.getLoc();
|
|
AffineExpr sym0, sym1, sym2;
|
|
bindSymbols(b.getContext(), sym0, sym1, sym2);
|
|
// New upper bound: %ub - (%ub - %lb) mod %step
|
|
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
|
|
b.setInsertionPoint(forOp);
|
|
splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
|
|
ValueRange{forOp.getLowerBound(),
|
|
forOp.getUpperBound(),
|
|
forOp.getStep()});
|
|
|
|
// Create ForOp for partial iteration.
|
|
b.setInsertionPointAfter(forOp);
|
|
partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
|
|
partialIteration.getLowerBoundMutable().assign(splitBound);
|
|
forOp.replaceAllUsesWith(partialIteration->getResults());
|
|
partialIteration.getInitArgsMutable().assign(forOp->getResults());
|
|
|
|
// Set new upper loop bound.
|
|
b.updateRootInPlace(
|
|
forOp, [&]() { forOp.getUpperBoundMutable().assign(splitBound); });
|
|
|
|
return success();
|
|
}
|
|
|
|
template <typename OpTy, bool IsMin>
|
|
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
|
|
ForOp partialIteration,
|
|
Value previousUb) {
|
|
Value mainIv = forOp.getInductionVar();
|
|
Value partialIv = partialIteration.getInductionVar();
|
|
assert(forOp.getStep() == partialIteration.getStep() &&
|
|
"expected same step in main and partial loop");
|
|
Value step = forOp.getStep();
|
|
|
|
forOp.walk([&](OpTy affineOp) {
|
|
AffineMap map = affineOp.getAffineMap();
|
|
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
|
|
affineOp.operands(), IsMin, mainIv,
|
|
previousUb, step,
|
|
/*insideLoop=*/true);
|
|
});
|
|
partialIteration.walk([&](OpTy affineOp) {
|
|
AffineMap map = affineOp.getAffineMap();
|
|
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
|
|
affineOp.operands(), IsMin, partialIv,
|
|
previousUb, step, /*insideLoop=*/false);
|
|
});
|
|
}
|
|
|
|
LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
|
|
ForOp forOp,
|
|
ForOp &partialIteration) {
|
|
Value previousUb = forOp.getUpperBound();
|
|
Value splitBound;
|
|
if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
|
|
return failure();
|
|
|
|
// Rewrite affine.min and affine.max ops.
|
|
rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>(
|
|
rewriter, forOp, partialIteration, previousUb);
|
|
rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>(
|
|
rewriter, forOp, partialIteration, previousUb);
|
|
|
|
return success();
|
|
}
|
|
|
|
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
|
|
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
|
|
|
|
namespace {
|
|
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
|
|
ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial)
|
|
: OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {}
|
|
|
|
LogicalResult matchAndRewrite(ForOp forOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Do not peel already peeled loops.
|
|
if (forOp->hasAttr(kPeeledLoopLabel))
|
|
return failure();
|
|
if (skipPartial) {
|
|
// No peeling of loops inside the partial iteration of another peeled
|
|
// loop.
|
|
Operation *op = forOp.getOperation();
|
|
while ((op = op->getParentOfType<scf::ForOp>())) {
|
|
if (op->hasAttr(kPartialIterationLabel))
|
|
return failure();
|
|
}
|
|
}
|
|
// Apply loop peeling.
|
|
scf::ForOp partialIteration;
|
|
if (failed(peelAndCanonicalizeForLoop(rewriter, forOp, partialIteration)))
|
|
return failure();
|
|
// Apply label, so that the same loop is not rewritten a second time.
|
|
partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
|
|
rewriter.updateRootInPlace(forOp, [&]() {
|
|
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
|
|
});
|
|
partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
|
|
return success();
|
|
}
|
|
|
|
/// If set to true, loops inside partial iterations of another peeled loop
|
|
/// are not peeled. This reduces the size of the generated code. Partial
|
|
/// iterations are not usually performance critical.
|
|
/// Note: Takes into account the entire chain of parent operations, not just
|
|
/// the direct parent.
|
|
bool skipPartial;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
struct ParallelLoopSpecialization
|
|
: public SCFParallelLoopSpecializationBase<ParallelLoopSpecialization> {
|
|
void runOnOperation() override {
|
|
getOperation()->walk(
|
|
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
|
|
}
|
|
};
|
|
|
|
struct ForLoopSpecialization
|
|
: public SCFForLoopSpecializationBase<ForLoopSpecialization> {
|
|
void runOnOperation() override {
|
|
getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
|
|
}
|
|
};
|
|
|
|
struct ForLoopPeeling : public SCFForLoopPeelingBase<ForLoopPeeling> {
|
|
void runOnOperation() override {
|
|
auto *parentOp = getOperation();
|
|
MLIRContext *ctx = parentOp->getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
patterns.add<ForLoopPeelingPattern>(ctx, skipPartial);
|
|
(void)applyPatternsAndFoldGreedily(parentOp, std::move(patterns));
|
|
|
|
// Drop the markers.
|
|
parentOp->walk([](Operation *op) {
|
|
op->removeAttr(kPeeledLoopLabel);
|
|
op->removeAttr(kPartialIterationLabel);
|
|
});
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
|
|
return std::make_unique<ParallelLoopSpecialization>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
|
|
return std::make_unique<ForLoopSpecialization>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
|
|
return std::make_unique<ForLoopPeeling>();
|
|
}
|