llvm-project/mlir/lib/Dialect/SCF/Transforms/LoopSpecialization.cpp
Jacques Pienaar 04235d07ad [mlir] Update flipped accessors (NFC)
Follow up with memref flipped and flipping any intermediate changes
made.
2022-06-28 13:11:26 -07:00

280 lines
11 KiB
C++

//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Specializes parallel loops and for loops for easier unrolling and
// vectorization.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
using scf::ForOp;
using scf::ParallelOp;
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
/// into 2 loops after checking if the bounds are equal to that constant. This
/// is beneficial if the loop will almost always have the constant bound and
/// that version can be fully unrolled and vectorized.
static void specializeParallelLoopForUnrolling(ParallelOp op) {
SmallVector<int64_t, 2> constantIndices;
constantIndices.reserve(op.getUpperBound().size());
for (auto bound : op.getUpperBound()) {
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
constantIndices.push_back(minConstant);
}
OpBuilder b(op);
BlockAndValueMapping map;
Value cond;
for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
Value constant =
b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
std::get<0>(bound), constant);
cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp;
map.map(std::get<0>(bound), constant);
}
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
/// 2 loops after checking if the bounds are equal to that constant. This is
/// beneficial if the loop will almost always have the constant bound and that
/// version can be fully unrolled and vectorized.
static void specializeForLoopForUnrolling(ForOp op) {
auto bound = op.getUpperBound();
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
OpBuilder b(op);
BlockAndValueMapping map;
Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant);
Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
bound, constant);
map.map(bound, constant);
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
/// into a for loop where the step divides the iteration space evenly, followed
/// by an scf.if for the last (partial) iteration (if any).
///
/// This function rewrites the given scf.for loop in-place and creates a new
/// scf.if operation for the last iteration. It replaces all uses of the
/// unpeeled loop with the results of the newly generated scf.if.
///
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
/// at which the loop is split (new upper bound) is returned via `splitBound`.
/// The return value indicates whether the loop was rewritten or not.
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
ForOp &partialIteration, Value &splitBound) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// No specialization necessary if step already divides upper bound evenly.
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
return failure();
// No specialization necessary if step size is 1.
if (stepInt == static_cast<int64_t>(1))
return failure();
auto loc = forOp.getLoc();
AffineExpr sym0, sym1, sym2;
bindSymbols(b.getContext(), sym0, sym1, sym2);
// New upper bound: %ub - (%ub - %lb) mod %step
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
b.setInsertionPoint(forOp);
splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
ValueRange{forOp.getLowerBound(),
forOp.getUpperBound(),
forOp.getStep()});
// Create ForOp for partial iteration.
b.setInsertionPointAfter(forOp);
partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
partialIteration.getLowerBoundMutable().assign(splitBound);
forOp.replaceAllUsesWith(partialIteration->getResults());
partialIteration.getInitArgsMutable().assign(forOp->getResults());
// Set new upper loop bound.
b.updateRootInPlace(
forOp, [&]() { forOp.getUpperBoundMutable().assign(splitBound); });
return success();
}
template <typename OpTy, bool IsMin>
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
ForOp partialIteration,
Value previousUb) {
Value mainIv = forOp.getInductionVar();
Value partialIv = partialIteration.getInductionVar();
assert(forOp.getStep() == partialIteration.getStep() &&
"expected same step in main and partial loop");
Value step = forOp.getStep();
forOp.walk([&](OpTy affineOp) {
AffineMap map = affineOp.getAffineMap();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
affineOp.operands(), IsMin, mainIv,
previousUb, step,
/*insideLoop=*/true);
});
partialIteration.walk([&](OpTy affineOp) {
AffineMap map = affineOp.getAffineMap();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
affineOp.operands(), IsMin, partialIv,
previousUb, step, /*insideLoop=*/false);
});
}
LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
ForOp forOp,
ForOp &partialIteration) {
Value previousUb = forOp.getUpperBound();
Value splitBound;
if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
return failure();
// Rewrite affine.min and affine.max ops.
rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>(
rewriter, forOp, partialIteration, previousUb);
rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>(
rewriter, forOp, partialIteration, previousUb);
return success();
}
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
namespace {
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial)
: OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {}
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
// Do not peel already peeled loops.
if (forOp->hasAttr(kPeeledLoopLabel))
return failure();
if (skipPartial) {
// No peeling of loops inside the partial iteration of another peeled
// loop.
Operation *op = forOp.getOperation();
while ((op = op->getParentOfType<scf::ForOp>())) {
if (op->hasAttr(kPartialIterationLabel))
return failure();
}
}
// Apply loop peeling.
scf::ForOp partialIteration;
if (failed(peelAndCanonicalizeForLoop(rewriter, forOp, partialIteration)))
return failure();
// Apply label, so that the same loop is not rewritten a second time.
partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
rewriter.updateRootInPlace(forOp, [&]() {
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
});
partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
return success();
}
/// If set to true, loops inside partial iterations of another peeled loop
/// are not peeled. This reduces the size of the generated code. Partial
/// iterations are not usually performance critical.
/// Note: Takes into account the entire chain of parent operations, not just
/// the direct parent.
bool skipPartial;
};
} // namespace
namespace {
struct ParallelLoopSpecialization
: public SCFParallelLoopSpecializationBase<ParallelLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk(
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
}
};
struct ForLoopSpecialization
: public SCFForLoopSpecializationBase<ForLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
}
};
struct ForLoopPeeling : public SCFForLoopPeelingBase<ForLoopPeeling> {
void runOnOperation() override {
auto *parentOp = getOperation();
MLIRContext *ctx = parentOp->getContext();
RewritePatternSet patterns(ctx);
patterns.add<ForLoopPeelingPattern>(ctx, skipPartial);
(void)applyPatternsAndFoldGreedily(parentOp, std::move(patterns));
// Drop the markers.
parentOp->walk([](Operation *op) {
op->removeAttr(kPeeledLoopLabel);
op->removeAttr(kPartialIterationLabel);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
return std::make_unique<ParallelLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
return std::make_unique<ForLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
return std::make_unique<ForLoopPeeling>();
}