mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-28 15:26:08 +00:00

SubtargetFeature.h is currently part of MC while it doesn't depend on anything in MC. Since some LLVM components might have the need to work with target features without necessarily needing MC, it might be worthwhile to move SubtargetFeature.h to a different location. This will reduce the dependencies of said components. Note that I choose TargetParser as the destination because that's where Triple lives and SubtargetFeatures feels related to that. This issues came up during a JITLink review (D149522). JITLink would like to avoid a dependency on MC while still needing to store target features. Reviewed By: MaskRay, arsenm Differential Revision: https://reviews.llvm.org/D150549
375 lines
12 KiB
C++
375 lines
12 KiB
C++
//===- MCSubtargetInfo.cpp - Subtarget Information ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/MC/MCSchedule.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TargetParser/SubtargetFeature.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
/// Find KV in array using binary search.
|
|
template <typename T>
|
|
static const T *Find(StringRef S, ArrayRef<T> A) {
|
|
// Binary search the array
|
|
auto F = llvm::lower_bound(A, S);
|
|
// If not found then return NULL
|
|
if (F == A.end() || StringRef(F->Key) != S) return nullptr;
|
|
// Return the found array item
|
|
return F;
|
|
}
|
|
|
|
/// For each feature that is (transitively) implied by this feature, set it.
|
|
static
|
|
void SetImpliedBits(FeatureBitset &Bits, const FeatureBitset &Implies,
|
|
ArrayRef<SubtargetFeatureKV> FeatureTable) {
|
|
// OR the Implies bits in outside the loop. This allows the Implies for CPUs
|
|
// which might imply features not in FeatureTable to use this.
|
|
Bits |= Implies;
|
|
for (const SubtargetFeatureKV &FE : FeatureTable)
|
|
if (Implies.test(FE.Value))
|
|
SetImpliedBits(Bits, FE.Implies.getAsBitset(), FeatureTable);
|
|
}
|
|
|
|
/// For each feature that (transitively) implies this feature, clear it.
|
|
static
|
|
void ClearImpliedBits(FeatureBitset &Bits, unsigned Value,
|
|
ArrayRef<SubtargetFeatureKV> FeatureTable) {
|
|
for (const SubtargetFeatureKV &FE : FeatureTable) {
|
|
if (FE.Implies.getAsBitset().test(Value)) {
|
|
Bits.reset(FE.Value);
|
|
ClearImpliedBits(Bits, FE.Value, FeatureTable);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ApplyFeatureFlag(FeatureBitset &Bits, StringRef Feature,
|
|
ArrayRef<SubtargetFeatureKV> FeatureTable) {
|
|
assert(SubtargetFeatures::hasFlag(Feature) &&
|
|
"Feature flags should start with '+' or '-'");
|
|
|
|
// Find feature in table.
|
|
const SubtargetFeatureKV *FeatureEntry =
|
|
Find(SubtargetFeatures::StripFlag(Feature), FeatureTable);
|
|
// If there is a match
|
|
if (FeatureEntry) {
|
|
// Enable/disable feature in bits
|
|
if (SubtargetFeatures::isEnabled(Feature)) {
|
|
Bits.set(FeatureEntry->Value);
|
|
|
|
// For each feature that this implies, set it.
|
|
SetImpliedBits(Bits, FeatureEntry->Implies.getAsBitset(), FeatureTable);
|
|
} else {
|
|
Bits.reset(FeatureEntry->Value);
|
|
|
|
// For each feature that implies this, clear it.
|
|
ClearImpliedBits(Bits, FeatureEntry->Value, FeatureTable);
|
|
}
|
|
} else {
|
|
errs() << "'" << Feature << "' is not a recognized feature for this target"
|
|
<< " (ignoring feature)\n";
|
|
}
|
|
}
|
|
|
|
/// Return the length of the longest entry in the table.
|
|
template <typename T>
|
|
static size_t getLongestEntryLength(ArrayRef<T> Table) {
|
|
size_t MaxLen = 0;
|
|
for (auto &I : Table)
|
|
MaxLen = std::max(MaxLen, std::strlen(I.Key));
|
|
return MaxLen;
|
|
}
|
|
|
|
/// Display help for feature and mcpu choices.
|
|
static void Help(ArrayRef<SubtargetSubTypeKV> CPUTable,
|
|
ArrayRef<SubtargetFeatureKV> FeatTable) {
|
|
// the static variable ensures that the help information only gets
|
|
// printed once even though a target machine creates multiple subtargets
|
|
static bool PrintOnce = false;
|
|
if (PrintOnce) {
|
|
return;
|
|
}
|
|
|
|
// Determine the length of the longest CPU and Feature entries.
|
|
unsigned MaxCPULen = getLongestEntryLength(CPUTable);
|
|
unsigned MaxFeatLen = getLongestEntryLength(FeatTable);
|
|
|
|
// Print the CPU table.
|
|
errs() << "Available CPUs for this target:\n\n";
|
|
for (auto &CPU : CPUTable)
|
|
errs() << format(" %-*s - Select the %s processor.\n", MaxCPULen, CPU.Key,
|
|
CPU.Key);
|
|
errs() << '\n';
|
|
|
|
// Print the Feature table.
|
|
errs() << "Available features for this target:\n\n";
|
|
for (auto &Feature : FeatTable)
|
|
errs() << format(" %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
|
|
errs() << '\n';
|
|
|
|
errs() << "Use +feature to enable a feature, or -feature to disable it.\n"
|
|
"For example, llc -mcpu=mycpu -mattr=+feature1,-feature2\n";
|
|
|
|
PrintOnce = true;
|
|
}
|
|
|
|
/// Display help for mcpu choices only
|
|
static void cpuHelp(ArrayRef<SubtargetSubTypeKV> CPUTable) {
|
|
// the static variable ensures that the help information only gets
|
|
// printed once even though a target machine creates multiple subtargets
|
|
static bool PrintOnce = false;
|
|
if (PrintOnce) {
|
|
return;
|
|
}
|
|
|
|
// Print the CPU table.
|
|
errs() << "Available CPUs for this target:\n\n";
|
|
for (auto &CPU : CPUTable)
|
|
errs() << "\t" << CPU.Key << "\n";
|
|
errs() << '\n';
|
|
|
|
errs() << "Use -mcpu or -mtune to specify the target's processor.\n"
|
|
"For example, clang --target=aarch64-unknown-linux-gnu "
|
|
"-mcpu=cortex-a35\n";
|
|
|
|
PrintOnce = true;
|
|
}
|
|
|
|
static FeatureBitset getFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS,
|
|
ArrayRef<SubtargetSubTypeKV> ProcDesc,
|
|
ArrayRef<SubtargetFeatureKV> ProcFeatures) {
|
|
SubtargetFeatures Features(FS);
|
|
|
|
if (ProcDesc.empty() || ProcFeatures.empty())
|
|
return FeatureBitset();
|
|
|
|
assert(llvm::is_sorted(ProcDesc) && "CPU table is not sorted");
|
|
assert(llvm::is_sorted(ProcFeatures) && "CPU features table is not sorted");
|
|
// Resulting bits
|
|
FeatureBitset Bits;
|
|
|
|
// Check if help is needed
|
|
if (CPU == "help")
|
|
Help(ProcDesc, ProcFeatures);
|
|
|
|
// Find CPU entry if CPU name is specified.
|
|
else if (!CPU.empty()) {
|
|
const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc);
|
|
|
|
// If there is a match
|
|
if (CPUEntry) {
|
|
// Set the features implied by this CPU feature, if any.
|
|
SetImpliedBits(Bits, CPUEntry->Implies.getAsBitset(), ProcFeatures);
|
|
} else {
|
|
errs() << "'" << CPU << "' is not a recognized processor for this target"
|
|
<< " (ignoring processor)\n";
|
|
}
|
|
}
|
|
|
|
if (!TuneCPU.empty()) {
|
|
const SubtargetSubTypeKV *CPUEntry = Find(TuneCPU, ProcDesc);
|
|
|
|
// If there is a match
|
|
if (CPUEntry) {
|
|
// Set the features implied by this CPU feature, if any.
|
|
SetImpliedBits(Bits, CPUEntry->TuneImplies.getAsBitset(), ProcFeatures);
|
|
} else if (TuneCPU != CPU) {
|
|
errs() << "'" << TuneCPU << "' is not a recognized processor for this "
|
|
<< "target (ignoring processor)\n";
|
|
}
|
|
}
|
|
|
|
// Iterate through each feature
|
|
for (const std::string &Feature : Features.getFeatures()) {
|
|
// Check for help
|
|
if (Feature == "+help")
|
|
Help(ProcDesc, ProcFeatures);
|
|
else if (Feature == "+cpuhelp")
|
|
cpuHelp(ProcDesc);
|
|
else
|
|
ApplyFeatureFlag(Bits, Feature, ProcFeatures);
|
|
}
|
|
|
|
return Bits;
|
|
}
|
|
|
|
void MCSubtargetInfo::InitMCProcessorInfo(StringRef CPU, StringRef TuneCPU,
|
|
StringRef FS) {
|
|
FeatureBits = getFeatures(CPU, TuneCPU, FS, ProcDesc, ProcFeatures);
|
|
FeatureString = std::string(FS);
|
|
|
|
if (!TuneCPU.empty())
|
|
CPUSchedModel = &getSchedModelForCPU(TuneCPU);
|
|
else
|
|
CPUSchedModel = &MCSchedModel::GetDefaultSchedModel();
|
|
}
|
|
|
|
void MCSubtargetInfo::setDefaultFeatures(StringRef CPU, StringRef TuneCPU,
|
|
StringRef FS) {
|
|
FeatureBits = getFeatures(CPU, TuneCPU, FS, ProcDesc, ProcFeatures);
|
|
FeatureString = std::string(FS);
|
|
}
|
|
|
|
MCSubtargetInfo::MCSubtargetInfo(const Triple &TT, StringRef C, StringRef TC,
|
|
StringRef FS, ArrayRef<SubtargetFeatureKV> PF,
|
|
ArrayRef<SubtargetSubTypeKV> PD,
|
|
const MCWriteProcResEntry *WPR,
|
|
const MCWriteLatencyEntry *WL,
|
|
const MCReadAdvanceEntry *RA,
|
|
const InstrStage *IS, const unsigned *OC,
|
|
const unsigned *FP)
|
|
: TargetTriple(TT), CPU(std::string(C)), TuneCPU(std::string(TC)),
|
|
ProcFeatures(PF), ProcDesc(PD), WriteProcResTable(WPR),
|
|
WriteLatencyTable(WL), ReadAdvanceTable(RA), Stages(IS),
|
|
OperandCycles(OC), ForwardingPaths(FP) {
|
|
InitMCProcessorInfo(CPU, TuneCPU, FS);
|
|
}
|
|
|
|
FeatureBitset MCSubtargetInfo::ToggleFeature(uint64_t FB) {
|
|
FeatureBits.flip(FB);
|
|
return FeatureBits;
|
|
}
|
|
|
|
FeatureBitset MCSubtargetInfo::ToggleFeature(const FeatureBitset &FB) {
|
|
FeatureBits ^= FB;
|
|
return FeatureBits;
|
|
}
|
|
|
|
FeatureBitset MCSubtargetInfo::SetFeatureBitsTransitively(
|
|
const FeatureBitset &FB) {
|
|
SetImpliedBits(FeatureBits, FB, ProcFeatures);
|
|
return FeatureBits;
|
|
}
|
|
|
|
FeatureBitset MCSubtargetInfo::ClearFeatureBitsTransitively(
|
|
const FeatureBitset &FB) {
|
|
for (unsigned I = 0, E = FB.size(); I < E; I++) {
|
|
if (FB[I]) {
|
|
FeatureBits.reset(I);
|
|
ClearImpliedBits(FeatureBits, I, ProcFeatures);
|
|
}
|
|
}
|
|
return FeatureBits;
|
|
}
|
|
|
|
FeatureBitset MCSubtargetInfo::ToggleFeature(StringRef Feature) {
|
|
// Find feature in table.
|
|
const SubtargetFeatureKV *FeatureEntry =
|
|
Find(SubtargetFeatures::StripFlag(Feature), ProcFeatures);
|
|
// If there is a match
|
|
if (FeatureEntry) {
|
|
if (FeatureBits.test(FeatureEntry->Value)) {
|
|
FeatureBits.reset(FeatureEntry->Value);
|
|
// For each feature that implies this, clear it.
|
|
ClearImpliedBits(FeatureBits, FeatureEntry->Value, ProcFeatures);
|
|
} else {
|
|
FeatureBits.set(FeatureEntry->Value);
|
|
|
|
// For each feature that this implies, set it.
|
|
SetImpliedBits(FeatureBits, FeatureEntry->Implies.getAsBitset(),
|
|
ProcFeatures);
|
|
}
|
|
} else {
|
|
errs() << "'" << Feature << "' is not a recognized feature for this target"
|
|
<< " (ignoring feature)\n";
|
|
}
|
|
|
|
return FeatureBits;
|
|
}
|
|
|
|
FeatureBitset MCSubtargetInfo::ApplyFeatureFlag(StringRef FS) {
|
|
::ApplyFeatureFlag(FeatureBits, FS, ProcFeatures);
|
|
return FeatureBits;
|
|
}
|
|
|
|
bool MCSubtargetInfo::checkFeatures(StringRef FS) const {
|
|
SubtargetFeatures T(FS);
|
|
FeatureBitset Set, All;
|
|
for (std::string F : T.getFeatures()) {
|
|
::ApplyFeatureFlag(Set, F, ProcFeatures);
|
|
if (F[0] == '-')
|
|
F[0] = '+';
|
|
::ApplyFeatureFlag(All, F, ProcFeatures);
|
|
}
|
|
return (FeatureBits & All) == Set;
|
|
}
|
|
|
|
const MCSchedModel &MCSubtargetInfo::getSchedModelForCPU(StringRef CPU) const {
|
|
assert(llvm::is_sorted(ProcDesc) &&
|
|
"Processor machine model table is not sorted");
|
|
|
|
// Find entry
|
|
const SubtargetSubTypeKV *CPUEntry = Find(CPU, ProcDesc);
|
|
|
|
if (!CPUEntry) {
|
|
if (CPU != "help") // Don't error if the user asked for help.
|
|
errs() << "'" << CPU
|
|
<< "' is not a recognized processor for this target"
|
|
<< " (ignoring processor)\n";
|
|
return MCSchedModel::GetDefaultSchedModel();
|
|
}
|
|
assert(CPUEntry->SchedModel && "Missing processor SchedModel value");
|
|
return *CPUEntry->SchedModel;
|
|
}
|
|
|
|
InstrItineraryData
|
|
MCSubtargetInfo::getInstrItineraryForCPU(StringRef CPU) const {
|
|
const MCSchedModel &SchedModel = getSchedModelForCPU(CPU);
|
|
return InstrItineraryData(SchedModel, Stages, OperandCycles, ForwardingPaths);
|
|
}
|
|
|
|
void MCSubtargetInfo::initInstrItins(InstrItineraryData &InstrItins) const {
|
|
InstrItins = InstrItineraryData(getSchedModel(), Stages, OperandCycles,
|
|
ForwardingPaths);
|
|
}
|
|
|
|
std::optional<unsigned> MCSubtargetInfo::getCacheSize(unsigned Level) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
MCSubtargetInfo::getCacheAssociativity(unsigned Level) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
MCSubtargetInfo::getCacheLineSize(unsigned Level) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
unsigned MCSubtargetInfo::getPrefetchDistance() const {
|
|
return 0;
|
|
}
|
|
|
|
unsigned MCSubtargetInfo::getMaxPrefetchIterationsAhead() const {
|
|
return UINT_MAX;
|
|
}
|
|
|
|
bool MCSubtargetInfo::enableWritePrefetching() const {
|
|
return false;
|
|
}
|
|
|
|
unsigned MCSubtargetInfo::getMinPrefetchStride(unsigned NumMemAccesses,
|
|
unsigned NumStridedMemAccesses,
|
|
unsigned NumPrefetches,
|
|
bool HasCall) const {
|
|
return 1;
|
|
}
|
|
|
|
bool MCSubtargetInfo::shouldPrefetchAddressSpace(unsigned AS) const {
|
|
return !AS;
|
|
}
|