llvm-project/bolt/lib/RuntimeLibs/InstrumentationRuntimeLibrary.cpp
Job Noorman 05634f7346 [BOLT] Move from RuntimeDyld to JITLink
RuntimeDyld has been deprecated in favor of JITLink. [1] This patch
replaces all uses of RuntimeDyld in BOLT with JITLink.

Care has been taken to minimize the impact on the code structure in
order to ease the inspection of this (rather large) changeset. Since
BOLT relied on the RuntimeDyld API in multiple places, this wasn't
always possible though and I'll explain the changes in code structure
first.

Design note: BOLT uses a JIT linker to perform what essentially is
static linking. No linked code is ever executed; the result of linking
is simply written back to an executable file. For this reason, I
restricted myself to the use of the core JITLink library and avoided ORC
as much as possible.

RuntimeDyld contains methods for loading objects (loadObject) and symbol
lookup (getSymbol). Since JITLink doesn't provide a class with a similar
interface, the BOLTLinker abstract class was added to implement it. It
was added to Core since both the Rewrite and RuntimeLibs libraries make
use of it. Wherever a RuntimeDyld object was used before, it was
replaced with a BOLTLinker object.

There is one major difference between the RuntimeDyld and BOLTLinker
interfaces: in JITLink, section allocation and the application of fixups
(relocation) happens in a single call (jitlink::link). That is, there is
no separate method like finalizeWithMemoryManagerLocking in RuntimeDyld.
BOLT used to remap sections between allocating (loadObject) and linking
them (finalizeWithMemoryManagerLocking). This doesn't work anymore with
JITLink. Instead, BOLTLinker::loadObject accepts a callback that is
called before fixups are applied which is used to remap sections.

The actual implementation of the BOLTLinker interface lives in the
JITLinkLinker class in the Rewrite library. It's the only part of the
BOLT code that should directly interact with the JITLink API.

For loading object, JITLinkLinker first creates a LinkGraph
(jitlink::createLinkGraphFromObject) and then links it (jitlink::link).
For the latter, it uses a custom JITLinkContext with the following
properties:
- Use BOLT's ExecutableFileMemoryManager. This one was updated to
  implement the JITLinkMemoryManager interface. Since BOLT never
  executes code, its finalization step is a no-op.
- Pass config: don't use the default target passes since they modify
  DWARF sections in a way that seems incompatible with BOLT. Also run a
  custom pre-prune pass that makes sure sections without symbols are not
  pruned by JITLink.
- Implement symbol lookup. This used to be implemented by
  BOLTSymbolResolver.
- Call the section mapper callback before the final linking step.
- Copy symbol values when the LinkGraph is resolved. Symbols are stored
  inside JITLinkLinker to ensure that later objects (i.e.,
  instrumentation libraries) can find them. This functionality used to
  be provided by RuntimeDyld but I did not find a way to use JITLink
  directly for this.

Some more minor points of interest:
- BinarySection::SectionID: JITLink doesn't have something equivalent to
  RuntimeDyld's Section IDs. Instead, sections can only be referred to
  by name. Hence, SectionID was updated to a string.
- There seem to be no tests for Mach-O. I've tested a small hello-world
  style binary but not more than that.
- On Mach-O, JITLink "normalizes" section names to include the segment
  name. I had to parse the section name back from this manually which
  feels slightly hacky.

[1] https://reviews.llvm.org/D145686#4222642

Reviewed By: rafauler

Differential Revision: https://reviews.llvm.org/D147544
2023-06-15 11:13:52 +02:00

327 lines
13 KiB
C++

//===- bolt/RuntimeLibs/InstrumentationRuntimeLibrary.cpp -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the InstrumentationRuntimeLibrary class.
//
//===----------------------------------------------------------------------===//
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/JumpTable.h"
#include "bolt/Core/Linker.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace bolt;
namespace opts {
cl::opt<std::string> RuntimeInstrumentationLib(
"runtime-instrumentation-lib",
cl::desc("specify file name of the runtime instrumentation library"),
cl::init("libbolt_rt_instr.a"), cl::cat(BoltOptCategory));
extern cl::opt<bool> InstrumentationFileAppendPID;
extern cl::opt<bool> ConservativeInstrumentation;
extern cl::opt<std::string> InstrumentationFilename;
extern cl::opt<std::string> InstrumentationBinpath;
extern cl::opt<uint32_t> InstrumentationSleepTime;
extern cl::opt<bool> InstrumentationNoCountersClear;
extern cl::opt<bool> InstrumentationWaitForks;
extern cl::opt<JumpTableSupportLevel> JumpTables;
} // namespace opts
void InstrumentationRuntimeLibrary::adjustCommandLineOptions(
const BinaryContext &BC) const {
if (!BC.HasRelocations) {
errs() << "BOLT-ERROR: instrumentation runtime libraries require "
"relocations\n";
exit(1);
}
if (opts::JumpTables != JTS_MOVE) {
opts::JumpTables = JTS_MOVE;
outs() << "BOLT-INFO: forcing -jump-tables=move for instrumentation\n";
}
if (!BC.StartFunctionAddress) {
errs() << "BOLT-ERROR: instrumentation runtime libraries require a known "
"entry point of "
"the input binary\n";
exit(1);
}
if (!BC.FiniFunctionAddress && !BC.IsStaticExecutable) {
errs() << "BOLT-ERROR: input binary lacks DT_FINI entry in the dynamic "
"section but instrumentation currently relies on patching "
"DT_FINI to write the profile\n";
exit(1);
}
}
void InstrumentationRuntimeLibrary::emitBinary(BinaryContext &BC,
MCStreamer &Streamer) {
MCSection *Section = BC.isELF()
? static_cast<MCSection *>(BC.Ctx->getELFSection(
".bolt.instr.counters", ELF::SHT_PROGBITS,
BinarySection::getFlags(/*IsReadOnly=*/false,
/*IsText=*/false,
/*IsAllocatable=*/true)
))
: static_cast<MCSection *>(BC.Ctx->getMachOSection(
"__BOLT", "__counters", MachO::S_REGULAR,
SectionKind::getData()));
if (BC.IsStaticExecutable && !opts::InstrumentationSleepTime) {
errs() << "BOLT-ERROR: instrumentation of static binary currently does not "
"support profile output on binary finalization, so it "
"requires -instrumentation-sleep-time=N (N>0) usage\n";
exit(1);
}
Section->setAlignment(llvm::Align(BC.RegularPageSize));
Streamer.switchSection(Section);
// EmitOffset is used to determine padding size for data alignment
uint64_t EmitOffset = 0;
auto emitLabel = [&Streamer](MCSymbol *Symbol, bool IsGlobal = true) {
Streamer.emitLabel(Symbol);
if (IsGlobal)
Streamer.emitSymbolAttribute(Symbol, MCSymbolAttr::MCSA_Global);
};
auto emitLabelByName = [&BC, emitLabel](StringRef Name,
bool IsGlobal = true) {
MCSymbol *Symbol = BC.Ctx->getOrCreateSymbol(Name);
emitLabel(Symbol, IsGlobal);
};
auto emitPadding = [&Streamer, &EmitOffset](unsigned Size) {
const uint64_t Padding = alignTo(EmitOffset, Size) - EmitOffset;
if (Padding) {
Streamer.emitFill(Padding, 0);
EmitOffset += Padding;
}
};
auto emitDataSize = [&EmitOffset](unsigned Size) { EmitOffset += Size; };
auto emitDataPadding = [emitPadding, emitDataSize](unsigned Size) {
emitPadding(Size);
emitDataSize(Size);
};
auto emitFill = [&Streamer, emitDataSize,
emitLabel](unsigned Size, MCSymbol *Symbol = nullptr,
uint8_t Byte = 0) {
emitDataSize(Size);
if (Symbol)
emitLabel(Symbol, /*IsGlobal*/ false);
Streamer.emitFill(Size, Byte);
};
auto emitValue = [&BC, &Streamer, emitDataPadding,
emitLabel](MCSymbol *Symbol, const MCExpr *Value) {
const unsigned Psize = BC.AsmInfo->getCodePointerSize();
emitDataPadding(Psize);
emitLabel(Symbol);
if (Value)
Streamer.emitValue(Value, Psize);
else
Streamer.emitFill(Psize, 0);
};
auto emitIntValue = [&Streamer, emitDataPadding, emitLabelByName](
StringRef Name, uint64_t Value, unsigned Size = 4) {
emitDataPadding(Size);
emitLabelByName(Name);
Streamer.emitIntValue(Value, Size);
};
auto emitString = [&Streamer, emitDataSize, emitLabelByName,
emitFill](StringRef Name, StringRef Contents) {
emitDataSize(Contents.size());
emitLabelByName(Name);
Streamer.emitBytes(Contents);
emitFill(1);
};
// All of the following symbols will be exported as globals to be used by the
// instrumentation runtime library to dump the instrumentation data to disk.
// Label marking start of the memory region containing instrumentation
// counters, total vector size is Counters.size() 8-byte counters
emitLabelByName("__bolt_instr_locations");
for (MCSymbol *const &Label : Summary->Counters)
emitFill(sizeof(uint64_t), Label);
emitPadding(BC.RegularPageSize);
emitIntValue("__bolt_instr_sleep_time", opts::InstrumentationSleepTime);
emitIntValue("__bolt_instr_no_counters_clear",
!!opts::InstrumentationNoCountersClear, 1);
emitIntValue("__bolt_instr_conservative", !!opts::ConservativeInstrumentation,
1);
emitIntValue("__bolt_instr_wait_forks", !!opts::InstrumentationWaitForks, 1);
emitIntValue("__bolt_num_counters", Summary->Counters.size());
emitValue(Summary->IndCallCounterFuncPtr, nullptr);
emitValue(Summary->IndTailCallCounterFuncPtr, nullptr);
emitIntValue("__bolt_instr_num_ind_calls",
Summary->IndCallDescriptions.size());
emitIntValue("__bolt_instr_num_ind_targets",
Summary->IndCallTargetDescriptions.size());
emitIntValue("__bolt_instr_num_funcs", Summary->FunctionDescriptions.size());
emitString("__bolt_instr_filename", opts::InstrumentationFilename);
emitString("__bolt_instr_binpath", opts::InstrumentationBinpath);
emitIntValue("__bolt_instr_use_pid", !!opts::InstrumentationFileAppendPID, 1);
if (BC.isMachO()) {
MCSection *TablesSection = BC.Ctx->getMachOSection(
"__BOLT", "__tables", MachO::S_REGULAR, SectionKind::getData());
TablesSection->setAlignment(llvm::Align(BC.RegularPageSize));
Streamer.switchSection(TablesSection);
emitString("__bolt_instr_tables", buildTables(BC));
}
}
void InstrumentationRuntimeLibrary::link(
BinaryContext &BC, StringRef ToolPath, BOLTLinker &Linker,
BOLTLinker::SectionsMapper MapSections) {
std::string LibPath = getLibPath(ToolPath, opts::RuntimeInstrumentationLib);
loadLibrary(LibPath, Linker, MapSections);
if (BC.isMachO())
return;
RuntimeFiniAddress = Linker.lookupSymbol("__bolt_instr_fini").value_or(0);
if (!RuntimeFiniAddress) {
errs() << "BOLT-ERROR: instrumentation library does not define "
"__bolt_instr_fini: "
<< LibPath << "\n";
exit(1);
}
RuntimeStartAddress = Linker.lookupSymbol("__bolt_instr_start").value_or(0);
if (!RuntimeStartAddress) {
errs() << "BOLT-ERROR: instrumentation library does not define "
"__bolt_instr_start: "
<< LibPath << "\n";
exit(1);
}
outs() << "BOLT-INFO: output linked against instrumentation runtime "
"library, lib entry point is 0x"
<< Twine::utohexstr(RuntimeFiniAddress) << "\n";
outs() << "BOLT-INFO: clear procedure is 0x"
<< Twine::utohexstr(
Linker.lookupSymbol("__bolt_instr_clear_counters").value_or(0))
<< "\n";
emitTablesAsELFNote(BC);
}
std::string InstrumentationRuntimeLibrary::buildTables(BinaryContext &BC) {
std::string TablesStr;
raw_string_ostream OS(TablesStr);
// This is sync'ed with runtime/instr.cpp:readDescriptions()
auto getOutputAddress = [](const BinaryFunction &Func,
uint64_t Offset) -> uint64_t {
return Offset == 0
? Func.getOutputAddress()
: Func.translateInputToOutputAddress(Func.getAddress() + Offset);
};
// Indirect targets need to be sorted for fast lookup during runtime
llvm::sort(Summary->IndCallTargetDescriptions,
[&](const IndCallTargetDescription &A,
const IndCallTargetDescription &B) {
return getOutputAddress(*A.Target, A.ToLoc.Offset) <
getOutputAddress(*B.Target, B.ToLoc.Offset);
});
// Start of the vector with descriptions (one CounterDescription for each
// counter), vector size is Counters.size() CounterDescription-sized elmts
const size_t IDSize =
Summary->IndCallDescriptions.size() * sizeof(IndCallDescription);
OS.write(reinterpret_cast<const char *>(&IDSize), 4);
for (const IndCallDescription &Desc : Summary->IndCallDescriptions) {
OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.Offset), 4);
}
const size_t ITDSize = Summary->IndCallTargetDescriptions.size() *
sizeof(IndCallTargetDescription);
OS.write(reinterpret_cast<const char *>(&ITDSize), 4);
for (const IndCallTargetDescription &Desc :
Summary->IndCallTargetDescriptions) {
OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.Offset), 4);
uint64_t TargetFuncAddress =
getOutputAddress(*Desc.Target, Desc.ToLoc.Offset);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
uint32_t FuncDescSize = Summary->getFDSize();
OS.write(reinterpret_cast<const char *>(&FuncDescSize), 4);
for (const FunctionDescription &Desc : Summary->FunctionDescriptions) {
const size_t LeafNum = Desc.LeafNodes.size();
OS.write(reinterpret_cast<const char *>(&LeafNum), 4);
for (const InstrumentedNode &LeafNode : Desc.LeafNodes) {
OS.write(reinterpret_cast<const char *>(&LeafNode.Node), 4);
OS.write(reinterpret_cast<const char *>(&LeafNode.Counter), 4);
}
const size_t EdgesNum = Desc.Edges.size();
OS.write(reinterpret_cast<const char *>(&EdgesNum), 4);
for (const EdgeDescription &Edge : Desc.Edges) {
OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Edge.FromNode), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToNode), 4);
OS.write(reinterpret_cast<const char *>(&Edge.Counter), 4);
}
const size_t CallsNum = Desc.Calls.size();
OS.write(reinterpret_cast<const char *>(&CallsNum), 4);
for (const CallDescription &Call : Desc.Calls) {
OS.write(reinterpret_cast<const char *>(&Call.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Call.FromLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Call.FromNode), 4);
OS.write(reinterpret_cast<const char *>(&Call.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Call.ToLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Call.Counter), 4);
uint64_t TargetFuncAddress =
getOutputAddress(*Call.Target, Call.ToLoc.Offset);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
const size_t EntryNum = Desc.EntryNodes.size();
OS.write(reinterpret_cast<const char *>(&EntryNum), 4);
for (const EntryNode &EntryNode : Desc.EntryNodes) {
OS.write(reinterpret_cast<const char *>(&EntryNode.Node), 8);
uint64_t TargetFuncAddress =
getOutputAddress(*Desc.Function, EntryNode.Address);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
}
// Our string table lives immediately after descriptions vector
OS << Summary->StringTable;
OS.flush();
return TablesStr;
}
void InstrumentationRuntimeLibrary::emitTablesAsELFNote(BinaryContext &BC) {
std::string TablesStr = buildTables(BC);
const std::string BoltInfo = BinarySection::encodeELFNote(
"BOLT", TablesStr, BinarySection::NT_BOLT_INSTRUMENTATION_TABLES);
BC.registerOrUpdateNoteSection(".bolt.instr.tables", copyByteArray(BoltInfo),
BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}