llvm-project/llvm/lib/CodeGen/StackFrameLayoutAnalysisPass.cpp
Felipe de Azevedo Piovezan 3db7d0dffb [MachineFunction][DebugInfo][nfc] Introduce EntryValue variable kind
MachineFunction keeps a table of variables whose addresses never change
throughout the function. Today, the only kinds of locations it can
handle are stack slots.

However, we could expand this for variables whose address is derived
from the value a register had upon function entry. One case where this
happens is with variables alive across coroutine funclets: these can
be placed in a coroutine frame object whose pointer is placed in a
register that is an argument to coroutine funclets.

```
define @foo(ptr %frame_ptr) {
  dbg.declare(%frame_ptr, !some_var,
              !DIExpression(EntryValue, <ptr_arithmetic>))
```

This is a patch in a series that aims to improve the debug information
generated by the CoroSplit pass in the context of `swiftasync`
arguments. Variables stored in the coroutine frame _must_ be described
the entry_value of the ABI-defined register containing a pointer to the
coroutine frame. Since these variables have a single location throughout
their lifetime, they are candidates for being stored in the
MachineFunction table.

Differential Revision: https://reviews.llvm.org/D149879
2023-05-11 07:29:57 -04:00

255 lines
8.8 KiB
C++

//===-- StackFrameLayoutAnalysisPass.cpp
//------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// StackFrameLayoutAnalysisPass implementation. Outputs information about the
// layout of the stack frame, using the remarks interface. On the CLI it prints
// a textual representation of the stack frame. When possible it prints the
// values that occupy a stack slot using any available debug information. Since
// output is remarks based, it is also available in a machine readable file
// format, such as YAML.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/PrintPasses.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <sstream>
using namespace llvm;
#define DEBUG_TYPE "stack-frame-layout"
namespace {
/// StackFrameLayoutAnalysisPass - This is a pass to dump the stack frame of a
/// MachineFunction.
///
struct StackFrameLayoutAnalysisPass : public MachineFunctionPass {
using SlotDbgMap = SmallDenseMap<int, SetVector<const DILocalVariable *>>;
static char ID;
enum SlotType {
Spill, // a Spill slot
StackProtector, // Stack Protector slot
Variable, // a slot used to store a local data (could be a tmp)
Invalid // It's an error for a slot to have this type
};
struct SlotData {
int Slot;
int Size;
int Align;
int Offset;
SlotType SlotTy;
SlotData(const MachineFrameInfo &MFI, const int ValOffset, const int Idx)
: Slot(Idx), Size(MFI.getObjectSize(Idx)),
Align(MFI.getObjectAlign(Idx).value()),
Offset(MFI.getObjectOffset(Idx) - ValOffset), SlotTy(Invalid) {
if (MFI.isSpillSlotObjectIndex(Idx))
SlotTy = SlotType::Spill;
else if (Idx == MFI.getStackProtectorIndex())
SlotTy = SlotType::StackProtector;
else
SlotTy = SlotType::Variable;
}
// we use this to sort in reverse order, so that the layout is displayed
// correctly
bool operator<(const SlotData &Rhs) const { return Offset > Rhs.Offset; }
};
StackFrameLayoutAnalysisPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "Stack Frame Layout Analysis";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
}
bool runOnMachineFunction(MachineFunction &MF) override {
// TODO: We should implement a similar filter for remarks:
// -Rpass-func-filter=<regex>
if (!isFunctionInPrintList(MF.getName()))
return false;
LLVMContext &Ctx = MF.getFunction().getContext();
if (!Ctx.getDiagHandlerPtr()->isAnalysisRemarkEnabled(DEBUG_TYPE))
return false;
MachineOptimizationRemarkAnalysis Rem(DEBUG_TYPE, "StackLayout",
MF.getFunction().getSubprogram(),
&MF.front());
Rem << ("\nFunction: " + MF.getName()).str();
emitStackFrameLayoutRemarks(MF, Rem);
getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE().emit(Rem);
return false;
}
std::string getTypeString(SlotType Ty) {
switch (Ty) {
case SlotType::Spill:
return "Spill";
case SlotType::StackProtector:
return "Protector";
case SlotType::Variable:
return "Variable";
default:
llvm_unreachable("bad slot type for stack layout");
}
}
void emitStackSlotRemark(const MachineFunction &MF, const SlotData &D,
MachineOptimizationRemarkAnalysis &Rem) {
// To make it easy to understand the stack layout from the CLI, we want to
// print each slot like the following:
//
// Offset: [SP+8], Type: Spill, Align: 8, Size: 16
// foo @ /path/to/file.c:25
// bar @ /path/to/file.c:35
//
// Which prints the size, alignment, and offset from the SP at function
// entry.
//
// But we also want the machine readable remarks data to be nicely
// organized. So we print some additional data as strings for the CLI
// output, but maintain more structured data for the YAML.
//
// For example we store the Offset in YAML as:
// ...
// - Offset: -8
//
// But we print it to the CLI as
// Offset: [SP-8]
// Negative offsets will print a leading `-`, so only add `+`
std::string Prefix =
formatv("\nOffset: [SP{0}", (D.Offset < 0) ? "" : "+").str();
Rem << Prefix << ore::NV("Offset", D.Offset)
<< "], Type: " << ore::NV("Type", getTypeString(D.SlotTy))
<< ", Align: " << ore::NV("Align", D.Align)
<< ", Size: " << ore::NV("Size", D.Size);
}
void emitSourceLocRemark(const MachineFunction &MF, const DILocalVariable *N,
MachineOptimizationRemarkAnalysis &Rem) {
std::string Loc =
formatv("{0} @ {1}:{2}", N->getName(), N->getFilename(), N->getLine())
.str();
Rem << "\n " << ore::NV("DataLoc", Loc);
}
void emitStackFrameLayoutRemarks(MachineFunction &MF,
MachineOptimizationRemarkAnalysis &Rem) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.hasStackObjects())
return;
// ValOffset is the offset to the local area from the SP at function entry.
// To display the true offset from SP, we need to subtract ValOffset from
// MFI's ObjectOffset.
const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
const int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
LLVM_DEBUG(dbgs() << "getStackProtectorIndex =="
<< MFI.getStackProtectorIndex() << "\n");
std::vector<SlotData> SlotInfo;
const unsigned int NumObj = MFI.getNumObjects();
SlotInfo.reserve(NumObj);
// initialize slot info
for (int Idx = MFI.getObjectIndexBegin(), EndIdx = MFI.getObjectIndexEnd();
Idx != EndIdx; ++Idx) {
if (MFI.isDeadObjectIndex(Idx))
continue;
SlotInfo.emplace_back(MFI, ValOffset, Idx);
}
// sort the ordering, to match the actual layout in memory
llvm::sort(SlotInfo);
SlotDbgMap SlotMap = genSlotDbgMapping(MF);
for (const SlotData &Info : SlotInfo) {
emitStackSlotRemark(MF, Info, Rem);
for (const DILocalVariable *N : SlotMap[Info.Slot])
emitSourceLocRemark(MF, N, Rem);
}
}
// We need to generate a mapping of slots to the values that are stored to
// them. This information is lost by the time we need to print out the frame,
// so we reconstruct it here by walking the CFG, and generating the mapping.
SlotDbgMap genSlotDbgMapping(MachineFunction &MF) {
SlotDbgMap SlotDebugMap;
// add variables to the map
for (MachineFunction::VariableDbgInfo &DI :
MF.getInStackSlotVariableDbgInfo())
SlotDebugMap[DI.getStackSlot()].insert(DI.Var);
// Then add all the spills that have debug data
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
for (MachineMemOperand *MO : MI.memoperands()) {
if (!MO->isStore())
continue;
auto *FI = dyn_cast_or_null<FixedStackPseudoSourceValue>(
MO->getPseudoValue());
if (!FI)
continue;
int FrameIdx = FI->getFrameIndex();
SmallVector<MachineInstr *> Dbg;
MI.collectDebugValues(Dbg);
for (MachineInstr *MI : Dbg)
SlotDebugMap[FrameIdx].insert(MI->getDebugVariable());
}
}
}
return SlotDebugMap;
}
};
char StackFrameLayoutAnalysisPass::ID = 0;
} // namespace
char &llvm::StackFrameLayoutAnalysisPassID = StackFrameLayoutAnalysisPass::ID;
INITIALIZE_PASS(StackFrameLayoutAnalysisPass, "stack-frame-layout",
"Stack Frame Layout", false, false)
namespace llvm {
/// Returns a newly-created StackFrameLayout pass.
MachineFunctionPass *createStackFrameLayoutAnalysisPass() {
return new StackFrameLayoutAnalysisPass();
}
} // namespace llvm