llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
Pavel Samolysov 098afdb0a0 [ArgPromotion] Make a non-byval promotion attempt first
It makes sense to make a non-byval promotion attempt first and then
fall back to the byval one. The non-byval ('usual') promotion is
generally better, for example it does promotion even when a structure
has more elements than 'MaxElements' but not all of them are actually
used in the function.

Differential Revision: https://reviews.llvm.org/D124514
2022-05-12 16:44:52 +02:00

1083 lines
40 KiB
C++

//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass promotes "by reference" arguments to be "by value" arguments. In
// practice, this means looking for internal functions that have pointer
// arguments. If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value. This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
//
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded. Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
//
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently. This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "argpromotion"
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
namespace {
struct ArgPart {
Type *Ty;
Align Alignment;
/// A representative guaranteed-executed load instruction for use by
/// metadata transfer.
LoadInst *MustExecLoad;
};
using OffsetAndArgPart = std::pair<int64_t, ArgPart>;
} // end anonymous namespace
static Value *createByteGEP(IRBuilderBase &IRB, const DataLayout &DL,
Value *Ptr, Type *ResElemTy, int64_t Offset) {
// For non-opaque pointers, try to create a "nice" GEP if possible, otherwise
// fall back to an i8 GEP to a specific offset.
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
APInt OrigOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
if (!Ptr->getType()->isOpaquePointerTy()) {
Type *OrigElemTy = Ptr->getType()->getNonOpaquePointerElementType();
if (OrigOffset == 0 && OrigElemTy == ResElemTy)
return Ptr;
if (OrigElemTy->isSized()) {
APInt TmpOffset = OrigOffset;
Type *TmpTy = OrigElemTy;
SmallVector<APInt> IntIndices =
DL.getGEPIndicesForOffset(TmpTy, TmpOffset);
if (TmpOffset == 0) {
// Try to add trailing zero indices to reach the right type.
while (TmpTy != ResElemTy) {
Type *NextTy = GetElementPtrInst::getTypeAtIndex(TmpTy, (uint64_t)0);
if (!NextTy)
break;
IntIndices.push_back(APInt::getZero(
isa<StructType>(TmpTy) ? 32 : OrigOffset.getBitWidth()));
TmpTy = NextTy;
}
SmallVector<Value *> Indices;
for (const APInt &Index : IntIndices)
Indices.push_back(IRB.getInt(Index));
if (OrigOffset != 0 || TmpTy == ResElemTy) {
Ptr = IRB.CreateGEP(OrigElemTy, Ptr, Indices);
return IRB.CreateBitCast(Ptr, ResElemTy->getPointerTo(AddrSpace));
}
}
}
}
if (OrigOffset != 0) {
Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(AddrSpace));
Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(OrigOffset));
}
return IRB.CreateBitCast(Ptr, ResElemTy->getPointerTo(AddrSpace));
}
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
static Function *doPromotion(
Function *F,
const DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>> &ArgsToPromote,
SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
ReplaceCallSite) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
FunctionType *FTy = F->getFunctionType();
std::vector<Type *> Params;
// Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeSet, 8> ArgAttrVec;
AttributeList PAL = F->getAttributes();
// First, determine the new argument list
unsigned ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgNo) {
if (ByValArgsToTransform.count(&*I)) {
// Simple byval argument? Just add all the struct element types.
Type *AgTy = I->getParamByValType();
StructType *STy = cast<StructType>(AgTy);
llvm::append_range(Params, STy->elements());
ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
AttributeSet());
++NumByValArgsPromoted;
} else if (!ArgsToPromote.count(&*I)) {
// Unchanged argument
Params.push_back(I->getType());
ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
++NumArgumentsDead;
} else {
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
for (const auto &Pair : ArgParts) {
Params.push_back(Pair.second.Ty);
ArgAttrVec.push_back(AttributeSet());
}
++NumArgumentsPromoted;
}
}
Type *RetTy = FTy->getReturnType();
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
F->getName());
NF->copyAttributesFrom(F);
NF->copyMetadata(F, 0);
// The new function will have the !dbg metadata copied from the original
// function. The original function may not be deleted, and dbg metadata need
// to be unique, so we need to drop it.
F->setSubprogram(nullptr);
LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
uint64_t LargestVectorWidth = 0;
for (auto *I : Params)
if (auto *VT = dyn_cast<llvm::VectorType>(I))
LargestVectorWidth = std::max(
LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinSize());
// Recompute the parameter attributes list based on the new arguments for
// the function.
NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
PAL.getRetAttrs(), ArgAttrVec));
AttributeFuncs::updateMinLegalVectorWidthAttr(*NF, LargestVectorWidth);
ArgAttrVec.clear();
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
NF->takeName(F);
// Loop over all of the callers of the function, transforming the call sites
// to pass in the loaded pointers.
//
SmallVector<Value *, 16> Args;
const DataLayout &DL = F->getParent()->getDataLayout();
while (!F->use_empty()) {
CallBase &CB = cast<CallBase>(*F->user_back());
assert(CB.getCalledFunction() == F);
const AttributeList &CallPAL = CB.getAttributes();
IRBuilder<NoFolder> IRB(&CB);
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
auto *AI = CB.arg_begin();
ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++AI, ++ArgNo)
if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
Args.push_back(*AI); // Unmodified argument
ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
} else if (ByValArgsToTransform.count(&*I)) {
// Emit a GEP and load for each element of the struct.
Type *AgTy = I->getParamByValType();
StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
const StructLayout *SL = DL.getStructLayout(STy);
Align StructAlign = *I->getParamAlign();
for (unsigned J = 0, Elems = STy->getNumElements(); J != Elems; ++J) {
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), J);
auto *Idx =
IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(J));
// TODO: Tell AA about the new values?
Align Alignment =
commonAlignment(StructAlign, SL->getElementOffset(J));
Args.push_back(IRB.CreateAlignedLoad(
STy->getElementType(J), Idx, Alignment, Idx->getName() + ".val"));
ArgAttrVec.push_back(AttributeSet());
}
} else if (!I->use_empty()) {
Value *V = *AI;
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
for (const auto &Pair : ArgParts) {
LoadInst *LI = IRB.CreateAlignedLoad(
Pair.second.Ty,
createByteGEP(IRB, DL, V, Pair.second.Ty, Pair.first),
Pair.second.Alignment, V->getName() + ".val");
if (Pair.second.MustExecLoad) {
LI->setAAMetadata(Pair.second.MustExecLoad->getAAMetadata());
LI->copyMetadata(*Pair.second.MustExecLoad,
{LLVMContext::MD_range, LLVMContext::MD_nonnull,
LLVMContext::MD_dereferenceable,
LLVMContext::MD_dereferenceable_or_null,
LLVMContext::MD_align, LLVMContext::MD_noundef});
}
Args.push_back(LI);
ArgAttrVec.push_back(AttributeSet());
}
}
// Push any varargs arguments on the list.
for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
Args.push_back(*AI);
ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
}
SmallVector<OperandBundleDef, 1> OpBundles;
CB.getOperandBundlesAsDefs(OpBundles);
CallBase *NewCS = nullptr;
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, OpBundles, "", &CB);
} else {
auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
NewCS = NewCall;
}
NewCS->setCallingConv(CB.getCallingConv());
NewCS->setAttributes(AttributeList::get(F->getContext(),
CallPAL.getFnAttrs(),
CallPAL.getRetAttrs(), ArgAttrVec));
NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
Args.clear();
ArgAttrVec.clear();
AttributeFuncs::updateMinLegalVectorWidthAttr(*CB.getCaller(),
LargestVectorWidth);
// Update the callgraph to know that the callsite has been transformed.
if (ReplaceCallSite)
(*ReplaceCallSite)(CB, *NewCS);
if (!CB.use_empty()) {
CB.replaceAllUsesWith(NewCS);
NewCS->takeName(&CB);
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
CB.eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well.
Function::arg_iterator I2 = NF->arg_begin();
for (Argument &Arg : F->args()) {
if (!ArgsToPromote.count(&Arg) && !ByValArgsToTransform.count(&Arg)) {
// If this is an unmodified argument, move the name and users over to the
// new version.
Arg.replaceAllUsesWith(&*I2);
I2->takeName(&Arg);
++I2;
continue;
}
if (ByValArgsToTransform.count(&Arg)) {
// In the callee, we create an alloca, and store each of the new incoming
// arguments into the alloca.
Instruction *InsertPt = &NF->begin()->front();
// Just add all the struct element types.
Type *AgTy = Arg.getParamByValType();
Align StructAlign = *Arg.getParamAlign();
Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
StructAlign, "", InsertPt);
StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
nullptr};
const StructLayout *SL = DL.getStructLayout(STy);
for (unsigned J = 0, Elems = STy->getNumElements(); J != Elems; ++J) {
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), J);
Value *Idx = GetElementPtrInst::Create(
AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(J),
InsertPt);
I2->setName(Arg.getName() + "." + Twine(J));
Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(J));
new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
}
// Anything that used the arg should now use the alloca.
Arg.replaceAllUsesWith(TheAlloca);
TheAlloca->takeName(&Arg);
continue;
}
// There potentially are metadata uses for things like llvm.dbg.value.
// Replace them with undef, after handling the other regular uses.
auto RauwUndefMetadata = make_scope_exit(
[&]() { Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); });
if (Arg.use_empty())
continue;
SmallDenseMap<int64_t, Argument *> OffsetToArg;
for (const auto &Pair : ArgsToPromote.find(&Arg)->second) {
Argument &NewArg = *I2++;
NewArg.setName(Arg.getName() + "." + Twine(Pair.first) + ".val");
OffsetToArg.insert({Pair.first, &NewArg});
}
// Otherwise, if we promoted this argument, then all users are load
// instructions (with possible casts and GEPs in between).
SmallVector<Value *, 16> Worklist;
SmallVector<Instruction *, 16> DeadInsts;
append_range(Worklist, Arg.users());
while (!Worklist.empty()) {
Value *V = Worklist.pop_back_val();
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V)) {
DeadInsts.push_back(cast<Instruction>(V));
append_range(Worklist, V->users());
continue;
}
if (auto *LI = dyn_cast<LoadInst>(V)) {
Value *Ptr = LI->getPointerOperand();
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr =
Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
/* AllowNonInbounds */ true);
assert(Ptr == &Arg && "Not constant offset from arg?");
LI->replaceAllUsesWith(OffsetToArg[Offset.getSExtValue()]);
DeadInsts.push_back(LI);
continue;
}
llvm_unreachable("Unexpected user");
}
for (Instruction *I : DeadInsts) {
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
}
return NF;
}
/// Return true if we can prove that all callees pass in a valid pointer for the
/// specified function argument.
static bool allCallersPassValidPointerForArgument(Argument *Arg,
Align NeededAlign,
uint64_t NeededDerefBytes) {
Function *Callee = Arg->getParent();
const DataLayout &DL = Callee->getParent()->getDataLayout();
APInt Bytes(64, NeededDerefBytes);
// Check if the argument itself is marked dereferenceable and aligned.
if (isDereferenceableAndAlignedPointer(Arg, NeededAlign, Bytes, DL))
return true;
// Look at all call sites of the function. At this point we know we only have
// direct callees.
return all_of(Callee->users(), [&](User *U) {
CallBase &CB = cast<CallBase>(*U);
return isDereferenceableAndAlignedPointer(
CB.getArgOperand(Arg->getArgNo()), NeededAlign, Bytes, DL);
});
}
/// Determine that this argument is safe to promote, and find the argument
/// parts it can be promoted into.
static bool findArgParts(Argument *Arg, const DataLayout &DL, AAResults &AAR,
unsigned MaxElements, bool IsRecursive,
SmallVectorImpl<OffsetAndArgPart> &ArgPartsVec) {
// Quick exit for unused arguments
if (Arg->use_empty())
return true;
// We can only promote this argument if all of the uses are loads at known
// offsets.
//
// Promoting the argument causes it to be loaded in the caller
// unconditionally. This is only safe if we can prove that either the load
// would have happened in the callee anyway (ie, there is a load in the entry
// block) or the pointer passed in at every call site is guaranteed to be
// valid.
// In the former case, invalid loads can happen, but would have happened
// anyway, in the latter case, invalid loads won't happen. This prevents us
// from introducing an invalid load that wouldn't have happened in the
// original code.
SmallDenseMap<int64_t, ArgPart, 4> ArgParts;
Align NeededAlign(1);
uint64_t NeededDerefBytes = 0;
// Returns None if this load is not based on the argument. Return true if
// we can promote the load, false otherwise.
auto HandleLoad = [&](LoadInst *LI,
bool GuaranteedToExecute) -> Optional<bool> {
// Don't promote volatile or atomic loads.
if (!LI->isSimple())
return false;
Value *Ptr = LI->getPointerOperand();
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
/* AllowNonInbounds */ true);
if (Ptr != Arg)
return None;
if (Offset.getSignificantBits() >= 64)
return false;
Type *Ty = LI->getType();
TypeSize Size = DL.getTypeStoreSize(Ty);
// Don't try to promote scalable types.
if (Size.isScalable())
return false;
// If this is a recursive function and one of the types is a pointer,
// then promoting it might lead to recursive promotion.
if (IsRecursive && Ty->isPointerTy())
return false;
int64_t Off = Offset.getSExtValue();
auto Pair = ArgParts.try_emplace(
Off, ArgPart{Ty, LI->getAlign(), GuaranteedToExecute ? LI : nullptr});
ArgPart &Part = Pair.first->second;
bool OffsetNotSeenBefore = Pair.second;
// We limit promotion to only promoting up to a fixed number of elements of
// the aggregate.
if (MaxElements > 0 && ArgParts.size() > MaxElements) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "more than " << MaxElements << " parts\n");
return false;
}
// For now, we only support loading one specific type at a given offset.
if (Part.Ty != Ty) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "loaded via both " << *Part.Ty << " and " << *Ty
<< " at offset " << Off << "\n");
return false;
}
// If this load is not guaranteed to execute, and we haven't seen a load at
// this offset before (or it had lower alignment), then we need to remember
// that requirement.
// Note that skipping loads of previously seen offsets is only correct
// because we only allow a single type for a given offset, which also means
// that the number of accessed bytes will be the same.
if (!GuaranteedToExecute &&
(OffsetNotSeenBefore || Part.Alignment < LI->getAlign())) {
// We won't be able to prove dereferenceability for negative offsets.
if (Off < 0)
return false;
// If the offset is not aligned, an aligned base pointer won't help.
if (!isAligned(LI->getAlign(), Off))
return false;
NeededDerefBytes = std::max(NeededDerefBytes, Off + Size.getFixedValue());
NeededAlign = std::max(NeededAlign, LI->getAlign());
}
Part.Alignment = std::max(Part.Alignment, LI->getAlign());
return true;
};
// Look for loads that are guaranteed to execute on entry.
for (Instruction &I : Arg->getParent()->getEntryBlock()) {
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
if (Optional<bool> Res = HandleLoad(LI, /* GuaranteedToExecute */ true))
if (!*Res)
return false;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
break;
}
// Now look at all loads of the argument. Remember the load instructions
// for the aliasing check below.
SmallVector<Value *, 16> Worklist;
SmallPtrSet<Value *, 16> Visited;
SmallVector<LoadInst *, 16> Loads;
auto AppendUsers = [&](Value *V) {
for (User *U : V->users())
if (Visited.insert(U).second)
Worklist.push_back(U);
};
AppendUsers(Arg);
while (!Worklist.empty()) {
Value *V = Worklist.pop_back_val();
if (isa<BitCastInst>(V)) {
AppendUsers(V);
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
if (!GEP->hasAllConstantIndices())
return false;
AppendUsers(V);
continue;
}
if (auto *LI = dyn_cast<LoadInst>(V)) {
if (!*HandleLoad(LI, /* GuaranteedToExecute */ false))
return false;
Loads.push_back(LI);
continue;
}
// Unknown user.
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "unknown user " << *V << "\n");
return false;
}
if (NeededDerefBytes || NeededAlign > 1) {
// Try to prove a required deref / aligned requirement.
if (!allCallersPassValidPointerForArgument(Arg, NeededAlign,
NeededDerefBytes)) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "not dereferenceable or aligned\n");
return false;
}
}
if (ArgParts.empty())
return true; // No users, this is a dead argument.
// Sort parts by offset.
append_range(ArgPartsVec, ArgParts);
sort(ArgPartsVec,
[](const auto &A, const auto &B) { return A.first < B.first; });
// Make sure the parts are non-overlapping.
// TODO: As we're doing pure load promotion here, overlap should be fine from
// a correctness perspective. Profitability is less obvious though.
int64_t Offset = ArgPartsVec[0].first;
for (const auto &Pair : ArgPartsVec) {
if (Pair.first < Offset)
return false; // Overlap with previous part.
Offset = Pair.first + DL.getTypeStoreSize(Pair.second.Ty);
}
// Okay, now we know that the argument is only used by load instructions, and
// it is safe to unconditionally perform all of them. Use alias analysis to
// check to see if the pointer is guaranteed to not be modified from entry of
// the function to each of the load instructions.
// Because there could be several/many load instructions, remember which
// blocks we know to be transparent to the load.
df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
for (LoadInst *Load : Loads) {
// Check to see if the load is invalidated from the start of the block to
// the load itself.
BasicBlock *BB = Load->getParent();
MemoryLocation Loc = MemoryLocation::get(Load);
if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
// To do this, we perform a depth first search on the inverse CFG from the
// loading block.
for (BasicBlock *P : predecessors(BB)) {
for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
if (AAR.canBasicBlockModify(*TranspBB, Loc))
return false;
}
}
// If the path from the entry of the function to each load is free of
// instructions that potentially invalidate the load, we can make the
// transformation!
return true;
}
bool ArgumentPromotionPass::isDenselyPacked(Type *Ty, const DataLayout &DL) {
// There is no size information, so be conservative.
if (!Ty->isSized())
return false;
// If the alloc size is not equal to the storage size, then there are padding
// bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
return false;
// FIXME: This isn't the right way to check for padding in vectors with
// non-byte-size elements.
if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
return isDenselyPacked(SeqTy->getElementType(), DL);
// For array types, check for padding within members.
if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
return isDenselyPacked(SeqTy->getElementType(), DL);
if (!isa<StructType>(Ty))
return true;
// Check for padding within and between elements of a struct.
StructType *StructTy = cast<StructType>(Ty);
const StructLayout *Layout = DL.getStructLayout(StructTy);
uint64_t StartPos = 0;
for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
Type *ElTy = StructTy->getElementType(I);
if (!isDenselyPacked(ElTy, DL))
return false;
if (StartPos != Layout->getElementOffsetInBits(I))
return false;
StartPos += DL.getTypeAllocSizeInBits(ElTy);
}
return true;
}
/// Checks if the padding bytes of an argument could be accessed.
static bool canPaddingBeAccessed(Argument *Arg) {
assert(Arg->hasByValAttr());
// Track all the pointers to the argument to make sure they are not captured.
SmallPtrSet<Value *, 16> PtrValues;
PtrValues.insert(Arg);
// Track all of the stores.
SmallVector<StoreInst *, 16> Stores;
// Scan through the uses recursively to make sure the pointer is always used
// sanely.
SmallVector<Value *, 16> WorkList(Arg->users());
while (!WorkList.empty()) {
Value *V = WorkList.pop_back_val();
if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
if (PtrValues.insert(V).second)
append_range(WorkList, V->users());
} else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
Stores.push_back(Store);
} else if (!isa<LoadInst>(V)) {
return true;
}
}
// Check to make sure the pointers aren't captured
for (StoreInst *Store : Stores)
if (PtrValues.count(Store->getValueOperand()))
return true;
return false;
}
/// Check if callers and callee agree on how promoted arguments would be
/// passed.
static bool areTypesABICompatible(ArrayRef<Type *> Types, const Function &F,
const TargetTransformInfo &TTI) {
return all_of(F.uses(), [&](const Use &U) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
if (!CB)
return false;
const Function *Caller = CB->getCaller();
const Function *Callee = CB->getCalledFunction();
return TTI.areTypesABICompatible(Caller, Callee, Types);
});
}
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
/// calls the DoPromotion method.
static Function *
promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
unsigned MaxElements,
Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
ReplaceCallSite,
const TargetTransformInfo &TTI, bool IsRecursive) {
// Don't perform argument promotion for naked functions; otherwise we can end
// up removing parameters that are seemingly 'not used' as they are referred
// to in the assembly.
if(F->hasFnAttribute(Attribute::Naked))
return nullptr;
// Make sure that it is local to this module.
if (!F->hasLocalLinkage())
return nullptr;
// Don't promote arguments for variadic functions. Adding, removing, or
// changing non-pack parameters can change the classification of pack
// parameters. Frontends encode that classification at the call site in the
// IR, while in the callee the classification is determined dynamically based
// on the number of registers consumed so far.
if (F->isVarArg())
return nullptr;
// Don't transform functions that receive inallocas, as the transformation may
// not be safe depending on calling convention.
if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
return nullptr;
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<Argument *, 16> PointerArgs;
for (Argument &I : F->args())
if (I.getType()->isPointerTy())
PointerArgs.push_back(&I);
if (PointerArgs.empty())
return nullptr;
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers. Also see if the function
// is self-recursive.
for (Use &U : F->uses()) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
// Must be a direct call.
if (CB == nullptr || !CB->isCallee(&U) ||
CB->getFunctionType() != F->getFunctionType())
return nullptr;
// Can't change signature of musttail callee
if (CB->isMustTailCall())
return nullptr;
if (CB->getFunction() == F)
IsRecursive = true;
}
// Can't change signature of musttail caller
// FIXME: Support promoting whole chain of musttail functions
for (BasicBlock &BB : *F)
if (BB.getTerminatingMustTailCall())
return nullptr;
const DataLayout &DL = F->getParent()->getDataLayout();
AAResults &AAR = AARGetter(*F);
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>> ArgsToPromote;
SmallPtrSet<Argument *, 8> ByValArgsToTransform;
for (Argument *PtrArg : PointerArgs) {
// Replace sret attribute with noalias. This reduces register pressure by
// avoiding a register copy.
if (PtrArg->hasStructRetAttr()) {
unsigned ArgNo = PtrArg->getArgNo();
F->removeParamAttr(ArgNo, Attribute::StructRet);
F->addParamAttr(ArgNo, Attribute::NoAlias);
for (Use &U : F->uses()) {
CallBase &CB = cast<CallBase>(*U.getUser());
CB.removeParamAttr(ArgNo, Attribute::StructRet);
CB.addParamAttr(ArgNo, Attribute::NoAlias);
}
}
// If we can promote the pointer to its value.
SmallVector<OffsetAndArgPart, 4> ArgParts;
if (findArgParts(PtrArg, DL, AAR, MaxElements, IsRecursive, ArgParts)) {
SmallVector<Type *, 4> Types;
for (const auto &Pair : ArgParts)
Types.push_back(Pair.second.Ty);
if (areTypesABICompatible(Types, *F, TTI)) {
ArgsToPromote.insert({PtrArg, std::move(ArgParts)});
continue;
}
}
// Otherwise, if this is a byval argument, and if the aggregate type is
// small, just pass the elements, which is always safe, if the passed value
// is densely packed or if we can prove the padding bytes are never
// accessed.
//
// Only handle arguments with specified alignment; if it's unspecified, the
// actual alignment of the argument is target-specific.
Type *ByValTy = PtrArg->getParamByValType();
bool IsSafeToPromote =
ByValTy && PtrArg->getParamAlign() &&
(ArgumentPromotionPass::isDenselyPacked(ByValTy, DL) ||
!canPaddingBeAccessed(PtrArg));
if (!IsSafeToPromote) {
LLVM_DEBUG(dbgs() << "ArgPromotion disables passing the elements of"
<< " the argument '" << PtrArg->getName()
<< "' because it is not safe.\n");
continue;
}
if (StructType *STy = dyn_cast<StructType>(ByValTy)) {
if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
LLVM_DEBUG(dbgs() << "ArgPromotion disables passing the elements of"
<< " the argument '" << PtrArg->getName()
<< "' because it would require adding more"
<< " than " << MaxElements
<< " arguments to the function.\n");
continue;
}
SmallVector<Type *, 4> Types;
append_range(Types, STy->elements());
// If all the elements are single-value types, we can promote it.
bool AllSimple =
all_of(Types, [](Type *Ty) { return Ty->isSingleValueType(); });
// Safe to transform. Passing the elements as a scalar will allow sroa to
// hack on the new alloca we introduce.
if (AllSimple && areTypesABICompatible(Types, *F, TTI))
ByValArgsToTransform.insert(PtrArg);
}
}
// No promotable pointer arguments.
if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
return nullptr;
return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
}
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
bool Changed = false, LocalChange;
// Iterate until we stop promoting from this SCC.
do {
LocalChange = false;
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
bool IsRecursive = C.size() > 1;
for (LazyCallGraph::Node &N : C) {
Function &OldF = N.getFunction();
// FIXME: This lambda must only be used with this function. We should
// skip the lambda and just get the AA results directly.
auto AARGetter = [&](Function &F) -> AAResults & {
assert(&F == &OldF && "Called with an unexpected function!");
return FAM.getResult<AAManager>(F);
};
const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None,
TTI, IsRecursive);
if (!NewF)
continue;
LocalChange = true;
// Directly substitute the functions in the call graph. Note that this
// requires the old function to be completely dead and completely
// replaced by the new function. It does no call graph updates, it merely
// swaps out the particular function mapped to a particular node in the
// graph.
C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
FAM.clear(OldF, OldF.getName());
OldF.eraseFromParent();
PreservedAnalyses FuncPA;
FuncPA.preserveSet<CFGAnalyses>();
for (auto *U : NewF->users()) {
auto *UserF = cast<CallBase>(U)->getFunction();
FAM.invalidate(*UserF, FuncPA);
}
}
Changed |= LocalChange;
} while (LocalChange);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
// We've cleared out analyses for deleted functions.
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
// We've manually invalidated analyses for functions we've modified.
PA.preserveSet<AllAnalysesOn<Function>>();
return PA;
}
namespace {
/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
struct ArgPromotion : public CallGraphSCCPass {
// Pass identification, replacement for typeid
static char ID;
explicit ArgPromotion(unsigned MaxElements = 3)
: CallGraphSCCPass(ID), MaxElements(MaxElements) {
initializeArgPromotionPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
getAAResultsAnalysisUsage(AU);
CallGraphSCCPass::getAnalysisUsage(AU);
}
bool runOnSCC(CallGraphSCC &SCC) override;
private:
using llvm::Pass::doInitialization;
bool doInitialization(CallGraph &CG) override;
/// The maximum number of elements to expand, or 0 for unlimited.
unsigned MaxElements;
};
} // end anonymous namespace
char ArgPromotion::ID = 0;
INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
"Promote 'by reference' arguments to scalars", false,
false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
"Promote 'by reference' arguments to scalars", false, false)
Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
return new ArgPromotion(MaxElements);
}
bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
if (skipSCC(SCC))
return false;
// Get the callgraph information that we need to update to reflect our
// changes.
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
LegacyAARGetter AARGetter(*this);
bool Changed = false, LocalChange;
// Iterate until we stop promoting from this SCC.
do {
LocalChange = false;
// Attempt to promote arguments from all functions in this SCC.
bool IsRecursive = SCC.size() > 1;
for (CallGraphNode *OldNode : SCC) {
Function *OldF = OldNode->getFunction();
if (!OldF)
continue;
auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
Function *Caller = OldCS.getParent()->getParent();
CallGraphNode *NewCalleeNode =
CG.getOrInsertFunction(NewCS.getCalledFunction());
CallGraphNode *CallerNode = CG[Caller];
CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
cast<CallBase>(NewCS), NewCalleeNode);
};
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
if (Function *NewF =
promoteArguments(OldF, AARGetter, MaxElements, {ReplaceCallSite},
TTI, IsRecursive)) {
LocalChange = true;
// Update the call graph for the newly promoted function.
CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
NewNode->stealCalledFunctionsFrom(OldNode);
if (OldNode->getNumReferences() == 0)
delete CG.removeFunctionFromModule(OldNode);
else
OldF->setLinkage(Function::ExternalLinkage);
// And update the SCC we're iterating as well.
SCC.ReplaceNode(OldNode, NewNode);
}
}
// Remember that we changed something.
Changed |= LocalChange;
} while (LocalChange);
return Changed;
}
bool ArgPromotion::doInitialization(CallGraph &CG) {
return CallGraphSCCPass::doInitialization(CG);
}