mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 03:46:07 +00:00

This relands https://github.com/llvm/llvm-project/pull/135119, after fixing crashes seen in LLDB CI reported here: https://github.com/llvm/llvm-project/pull/135119#issuecomment-2794910840 Fixes https://github.com/llvm/llvm-project/pull/135119 This changes the TemplateArgument representation to hold a flag indicating whether a tempalte argument of expression type is supposed to be canonical or not. This gets one step closer to solving https://github.com/llvm/llvm-project/issues/92292 This still doesn't try to unique as-written TSTs. While this would increase the amount of memory savings and make code dealing with the AST more well-behaved, profiling template argument lists is still too expensive for this to be worthwhile, at least for now. This also fixes the context creation of TSTs, so that they don't in some cases get incorrectly flagged as sugar over their own canonical form. This is captured in the test expectation change of some AST dumps. This fixes some places which were unnecessarily canonicalizing these TSTs.
11416 lines
452 KiB
C++
11416 lines
452 KiB
C++
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for C++ templates.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TreeTransform.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclFriend.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DynamicRecursiveASTVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/TypeVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/DiagnosticSema.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/EnterExpressionEvaluationContext.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Overload.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/SemaCUDA.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
#include <optional>
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
// Exported for use by Parser.
|
|
SourceRange
|
|
clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
|
|
unsigned N) {
|
|
if (!N) return SourceRange();
|
|
return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
|
|
}
|
|
|
|
unsigned Sema::getTemplateDepth(Scope *S) const {
|
|
unsigned Depth = 0;
|
|
|
|
// Each template parameter scope represents one level of template parameter
|
|
// depth.
|
|
for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
|
|
TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
|
|
++Depth;
|
|
}
|
|
|
|
// Note that there are template parameters with the given depth.
|
|
auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
|
|
|
|
// Look for parameters of an enclosing generic lambda. We don't create a
|
|
// template parameter scope for these.
|
|
for (FunctionScopeInfo *FSI : getFunctionScopes()) {
|
|
if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
|
|
if (!LSI->TemplateParams.empty()) {
|
|
ParamsAtDepth(LSI->AutoTemplateParameterDepth);
|
|
break;
|
|
}
|
|
if (LSI->GLTemplateParameterList) {
|
|
ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for parameters of an enclosing terse function template. We don't
|
|
// create a template parameter scope for these either.
|
|
for (const InventedTemplateParameterInfo &Info :
|
|
getInventedParameterInfos()) {
|
|
if (!Info.TemplateParams.empty()) {
|
|
ParamsAtDepth(Info.AutoTemplateParameterDepth);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Depth;
|
|
}
|
|
|
|
/// \brief Determine whether the declaration found is acceptable as the name
|
|
/// of a template and, if so, return that template declaration. Otherwise,
|
|
/// returns null.
|
|
///
|
|
/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
|
|
/// is true. In all other cases it will return a TemplateDecl (or null).
|
|
NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
|
|
bool AllowFunctionTemplates,
|
|
bool AllowDependent) {
|
|
D = D->getUnderlyingDecl();
|
|
|
|
if (isa<TemplateDecl>(D)) {
|
|
if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
|
|
return nullptr;
|
|
|
|
return D;
|
|
}
|
|
|
|
if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
|
|
// C++ [temp.local]p1:
|
|
// Like normal (non-template) classes, class templates have an
|
|
// injected-class-name (Clause 9). The injected-class-name
|
|
// can be used with or without a template-argument-list. When
|
|
// it is used without a template-argument-list, it is
|
|
// equivalent to the injected-class-name followed by the
|
|
// template-parameters of the class template enclosed in
|
|
// <>. When it is used with a template-argument-list, it
|
|
// refers to the specified class template specialization,
|
|
// which could be the current specialization or another
|
|
// specialization.
|
|
if (Record->isInjectedClassName()) {
|
|
Record = cast<CXXRecordDecl>(Record->getDeclContext());
|
|
if (Record->getDescribedClassTemplate())
|
|
return Record->getDescribedClassTemplate();
|
|
|
|
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// 'using Dependent::foo;' can resolve to a template name.
|
|
// 'using typename Dependent::foo;' cannot (not even if 'foo' is an
|
|
// injected-class-name).
|
|
if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
|
|
return D;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void Sema::FilterAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates,
|
|
bool AllowDependent) {
|
|
LookupResult::Filter filter = R.makeFilter();
|
|
while (filter.hasNext()) {
|
|
NamedDecl *Orig = filter.next();
|
|
if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
|
|
filter.erase();
|
|
}
|
|
filter.done();
|
|
}
|
|
|
|
bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates,
|
|
bool AllowDependent,
|
|
bool AllowNonTemplateFunctions) {
|
|
for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
|
|
if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
|
|
return true;
|
|
if (AllowNonTemplateFunctions &&
|
|
isa<FunctionDecl>((*I)->getUnderlyingDecl()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
TemplateNameKind Sema::isTemplateName(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
bool hasTemplateKeyword,
|
|
const UnqualifiedId &Name,
|
|
ParsedType ObjectTypePtr,
|
|
bool EnteringContext,
|
|
TemplateTy &TemplateResult,
|
|
bool &MemberOfUnknownSpecialization,
|
|
bool Disambiguation) {
|
|
assert(getLangOpts().CPlusPlus && "No template names in C!");
|
|
|
|
DeclarationName TName;
|
|
MemberOfUnknownSpecialization = false;
|
|
|
|
switch (Name.getKind()) {
|
|
case UnqualifiedIdKind::IK_Identifier:
|
|
TName = DeclarationName(Name.Identifier);
|
|
break;
|
|
|
|
case UnqualifiedIdKind::IK_OperatorFunctionId:
|
|
TName = Context.DeclarationNames.getCXXOperatorName(
|
|
Name.OperatorFunctionId.Operator);
|
|
break;
|
|
|
|
case UnqualifiedIdKind::IK_LiteralOperatorId:
|
|
TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
|
|
break;
|
|
|
|
default:
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
QualType ObjectType = ObjectTypePtr.get();
|
|
|
|
AssumedTemplateKind AssumedTemplate;
|
|
LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
|
|
if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
|
|
/*RequiredTemplate=*/SourceLocation(),
|
|
&AssumedTemplate,
|
|
/*AllowTypoCorrection=*/!Disambiguation))
|
|
return TNK_Non_template;
|
|
MemberOfUnknownSpecialization = R.wasNotFoundInCurrentInstantiation();
|
|
|
|
if (AssumedTemplate != AssumedTemplateKind::None) {
|
|
TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
|
|
// Let the parser know whether we found nothing or found functions; if we
|
|
// found nothing, we want to more carefully check whether this is actually
|
|
// a function template name versus some other kind of undeclared identifier.
|
|
return AssumedTemplate == AssumedTemplateKind::FoundNothing
|
|
? TNK_Undeclared_template
|
|
: TNK_Function_template;
|
|
}
|
|
|
|
if (R.empty())
|
|
return TNK_Non_template;
|
|
|
|
NamedDecl *D = nullptr;
|
|
UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
|
|
if (R.isAmbiguous()) {
|
|
// If we got an ambiguity involving a non-function template, treat this
|
|
// as a template name, and pick an arbitrary template for error recovery.
|
|
bool AnyFunctionTemplates = false;
|
|
for (NamedDecl *FoundD : R) {
|
|
if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
|
|
if (isa<FunctionTemplateDecl>(FoundTemplate))
|
|
AnyFunctionTemplates = true;
|
|
else {
|
|
D = FoundTemplate;
|
|
FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't find any templates at all, this isn't a template name.
|
|
// Leave the ambiguity for a later lookup to diagnose.
|
|
if (!D && !AnyFunctionTemplates) {
|
|
R.suppressDiagnostics();
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
// If the only templates were function templates, filter out the rest.
|
|
// We'll diagnose the ambiguity later.
|
|
if (!D)
|
|
FilterAcceptableTemplateNames(R);
|
|
}
|
|
|
|
// At this point, we have either picked a single template name declaration D
|
|
// or we have a non-empty set of results R containing either one template name
|
|
// declaration or a set of function templates.
|
|
|
|
TemplateName Template;
|
|
TemplateNameKind TemplateKind;
|
|
|
|
unsigned ResultCount = R.end() - R.begin();
|
|
if (!D && ResultCount > 1) {
|
|
// We assume that we'll preserve the qualifier from a function
|
|
// template name in other ways.
|
|
Template = Context.getOverloadedTemplateName(R.begin(), R.end());
|
|
TemplateKind = TNK_Function_template;
|
|
|
|
// We'll do this lookup again later.
|
|
R.suppressDiagnostics();
|
|
} else {
|
|
if (!D) {
|
|
D = getAsTemplateNameDecl(*R.begin());
|
|
assert(D && "unambiguous result is not a template name");
|
|
}
|
|
|
|
if (isa<UnresolvedUsingValueDecl>(D)) {
|
|
// We don't yet know whether this is a template-name or not.
|
|
MemberOfUnknownSpecialization = true;
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
TemplateDecl *TD = cast<TemplateDecl>(D);
|
|
Template =
|
|
FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
|
|
assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
|
|
if (!SS.isInvalid()) {
|
|
NestedNameSpecifier *Qualifier = SS.getScopeRep();
|
|
Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
|
|
Template);
|
|
}
|
|
|
|
if (isa<FunctionTemplateDecl>(TD)) {
|
|
TemplateKind = TNK_Function_template;
|
|
|
|
// We'll do this lookup again later.
|
|
R.suppressDiagnostics();
|
|
} else {
|
|
assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
|
|
isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
|
|
isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
|
|
TemplateKind =
|
|
isa<VarTemplateDecl>(TD) ? TNK_Var_template :
|
|
isa<ConceptDecl>(TD) ? TNK_Concept_template :
|
|
TNK_Type_template;
|
|
}
|
|
}
|
|
|
|
TemplateResult = TemplateTy::make(Template);
|
|
return TemplateKind;
|
|
}
|
|
|
|
bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
|
|
SourceLocation NameLoc, CXXScopeSpec &SS,
|
|
ParsedTemplateTy *Template /*=nullptr*/) {
|
|
// We could use redeclaration lookup here, but we don't need to: the
|
|
// syntactic form of a deduction guide is enough to identify it even
|
|
// if we can't look up the template name at all.
|
|
LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
|
|
if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
|
|
/*EnteringContext*/ false))
|
|
return false;
|
|
|
|
if (R.empty()) return false;
|
|
if (R.isAmbiguous()) {
|
|
// FIXME: Diagnose an ambiguity if we find at least one template.
|
|
R.suppressDiagnostics();
|
|
return false;
|
|
}
|
|
|
|
// We only treat template-names that name type templates as valid deduction
|
|
// guide names.
|
|
TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
|
|
if (!TD || !getAsTypeTemplateDecl(TD))
|
|
return false;
|
|
|
|
if (Template) {
|
|
TemplateName Name = Context.getQualifiedTemplateName(
|
|
SS.getScopeRep(), /*TemplateKeyword=*/false, TemplateName(TD));
|
|
*Template = TemplateTy::make(Name);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
|
|
SourceLocation IILoc,
|
|
Scope *S,
|
|
const CXXScopeSpec *SS,
|
|
TemplateTy &SuggestedTemplate,
|
|
TemplateNameKind &SuggestedKind) {
|
|
// We can't recover unless there's a dependent scope specifier preceding the
|
|
// template name.
|
|
// FIXME: Typo correction?
|
|
if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
|
|
computeDeclContext(*SS))
|
|
return false;
|
|
|
|
// The code is missing a 'template' keyword prior to the dependent template
|
|
// name.
|
|
NestedNameSpecifier *Qualifier = (NestedNameSpecifier *)SS->getScopeRep();
|
|
SuggestedTemplate = TemplateTy::make(Context.getDependentTemplateName(
|
|
{Qualifier, &II, /*HasTemplateKeyword=*/false}));
|
|
Diag(IILoc, diag::err_template_kw_missing)
|
|
<< SuggestedTemplate.get()
|
|
<< FixItHint::CreateInsertion(IILoc, "template ");
|
|
SuggestedKind = TNK_Dependent_template_name;
|
|
return true;
|
|
}
|
|
|
|
bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS,
|
|
QualType ObjectType, bool EnteringContext,
|
|
RequiredTemplateKind RequiredTemplate,
|
|
AssumedTemplateKind *ATK,
|
|
bool AllowTypoCorrection) {
|
|
if (ATK)
|
|
*ATK = AssumedTemplateKind::None;
|
|
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
Found.setTemplateNameLookup(true);
|
|
|
|
// Determine where to perform name lookup
|
|
DeclContext *LookupCtx = nullptr;
|
|
bool IsDependent = false;
|
|
if (!ObjectType.isNull()) {
|
|
// This nested-name-specifier occurs in a member access expression, e.g.,
|
|
// x->B::f, and we are looking into the type of the object.
|
|
assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
|
|
LookupCtx = computeDeclContext(ObjectType);
|
|
IsDependent = !LookupCtx && ObjectType->isDependentType();
|
|
assert((IsDependent || !ObjectType->isIncompleteType() ||
|
|
!ObjectType->getAs<TagType>() ||
|
|
ObjectType->castAs<TagType>()->isBeingDefined()) &&
|
|
"Caller should have completed object type");
|
|
|
|
// Template names cannot appear inside an Objective-C class or object type
|
|
// or a vector type.
|
|
//
|
|
// FIXME: This is wrong. For example:
|
|
//
|
|
// template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
|
|
// Vec<int> vi;
|
|
// vi.Vec<int>::~Vec<int>();
|
|
//
|
|
// ... should be accepted but we will not treat 'Vec' as a template name
|
|
// here. The right thing to do would be to check if the name is a valid
|
|
// vector component name, and look up a template name if not. And similarly
|
|
// for lookups into Objective-C class and object types, where the same
|
|
// problem can arise.
|
|
if (ObjectType->isObjCObjectOrInterfaceType() ||
|
|
ObjectType->isVectorType()) {
|
|
Found.clear();
|
|
return false;
|
|
}
|
|
} else if (SS.isNotEmpty()) {
|
|
// This nested-name-specifier occurs after another nested-name-specifier,
|
|
// so long into the context associated with the prior nested-name-specifier.
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
|
IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
|
|
|
|
// The declaration context must be complete.
|
|
if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
|
|
return true;
|
|
}
|
|
|
|
bool ObjectTypeSearchedInScope = false;
|
|
bool AllowFunctionTemplatesInLookup = true;
|
|
if (LookupCtx) {
|
|
// Perform "qualified" name lookup into the declaration context we
|
|
// computed, which is either the type of the base of a member access
|
|
// expression or the declaration context associated with a prior
|
|
// nested-name-specifier.
|
|
LookupQualifiedName(Found, LookupCtx);
|
|
|
|
// FIXME: The C++ standard does not clearly specify what happens in the
|
|
// case where the object type is dependent, and implementations vary. In
|
|
// Clang, we treat a name after a . or -> as a template-name if lookup
|
|
// finds a non-dependent member or member of the current instantiation that
|
|
// is a type template, or finds no such members and lookup in the context
|
|
// of the postfix-expression finds a type template. In the latter case, the
|
|
// name is nonetheless dependent, and we may resolve it to a member of an
|
|
// unknown specialization when we come to instantiate the template.
|
|
IsDependent |= Found.wasNotFoundInCurrentInstantiation();
|
|
}
|
|
|
|
if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
|
|
// C++ [basic.lookup.classref]p1:
|
|
// In a class member access expression (5.2.5), if the . or -> token is
|
|
// immediately followed by an identifier followed by a <, the
|
|
// identifier must be looked up to determine whether the < is the
|
|
// beginning of a template argument list (14.2) or a less-than operator.
|
|
// The identifier is first looked up in the class of the object
|
|
// expression. If the identifier is not found, it is then looked up in
|
|
// the context of the entire postfix-expression and shall name a class
|
|
// template.
|
|
if (S)
|
|
LookupName(Found, S);
|
|
|
|
if (!ObjectType.isNull()) {
|
|
// FIXME: We should filter out all non-type templates here, particularly
|
|
// variable templates and concepts. But the exclusion of alias templates
|
|
// and template template parameters is a wording defect.
|
|
AllowFunctionTemplatesInLookup = false;
|
|
ObjectTypeSearchedInScope = true;
|
|
}
|
|
|
|
IsDependent |= Found.wasNotFoundInCurrentInstantiation();
|
|
}
|
|
|
|
if (Found.isAmbiguous())
|
|
return false;
|
|
|
|
if (ATK && SS.isEmpty() && ObjectType.isNull() &&
|
|
!RequiredTemplate.hasTemplateKeyword()) {
|
|
// C++2a [temp.names]p2:
|
|
// A name is also considered to refer to a template if it is an
|
|
// unqualified-id followed by a < and name lookup finds either one or more
|
|
// functions or finds nothing.
|
|
//
|
|
// To keep our behavior consistent, we apply the "finds nothing" part in
|
|
// all language modes, and diagnose the empty lookup in ActOnCallExpr if we
|
|
// successfully form a call to an undeclared template-id.
|
|
bool AllFunctions =
|
|
getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
|
|
return isa<FunctionDecl>(ND->getUnderlyingDecl());
|
|
});
|
|
if (AllFunctions || (Found.empty() && !IsDependent)) {
|
|
// If lookup found any functions, or if this is a name that can only be
|
|
// used for a function, then strongly assume this is a function
|
|
// template-id.
|
|
*ATK = (Found.empty() && Found.getLookupName().isIdentifier())
|
|
? AssumedTemplateKind::FoundNothing
|
|
: AssumedTemplateKind::FoundFunctions;
|
|
Found.clear();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Found.empty() && !IsDependent && AllowTypoCorrection) {
|
|
// If we did not find any names, and this is not a disambiguation, attempt
|
|
// to correct any typos.
|
|
DeclarationName Name = Found.getLookupName();
|
|
Found.clear();
|
|
// Simple filter callback that, for keywords, only accepts the C++ *_cast
|
|
DefaultFilterCCC FilterCCC{};
|
|
FilterCCC.WantTypeSpecifiers = false;
|
|
FilterCCC.WantExpressionKeywords = false;
|
|
FilterCCC.WantRemainingKeywords = false;
|
|
FilterCCC.WantCXXNamedCasts = true;
|
|
if (TypoCorrection Corrected =
|
|
CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
|
|
&SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
|
|
if (auto *ND = Corrected.getFoundDecl())
|
|
Found.addDecl(ND);
|
|
FilterAcceptableTemplateNames(Found);
|
|
if (Found.isAmbiguous()) {
|
|
Found.clear();
|
|
} else if (!Found.empty()) {
|
|
Found.setLookupName(Corrected.getCorrection());
|
|
if (LookupCtx) {
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
|
|
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
|
|
Name.getAsString() == CorrectedStr;
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
|
|
<< Name << LookupCtx << DroppedSpecifier
|
|
<< SS.getRange());
|
|
} else {
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
NamedDecl *ExampleLookupResult =
|
|
Found.empty() ? nullptr : Found.getRepresentativeDecl();
|
|
FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
|
|
if (Found.empty()) {
|
|
if (IsDependent) {
|
|
Found.setNotFoundInCurrentInstantiation();
|
|
return false;
|
|
}
|
|
|
|
// If a 'template' keyword was used, a lookup that finds only non-template
|
|
// names is an error.
|
|
if (ExampleLookupResult && RequiredTemplate) {
|
|
Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
|
|
<< Found.getLookupName() << SS.getRange()
|
|
<< RequiredTemplate.hasTemplateKeyword()
|
|
<< RequiredTemplate.getTemplateKeywordLoc();
|
|
Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
|
|
diag::note_template_kw_refers_to_non_template)
|
|
<< Found.getLookupName();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
|
|
!getLangOpts().CPlusPlus11) {
|
|
// C++03 [basic.lookup.classref]p1:
|
|
// [...] If the lookup in the class of the object expression finds a
|
|
// template, the name is also looked up in the context of the entire
|
|
// postfix-expression and [...]
|
|
//
|
|
// Note: C++11 does not perform this second lookup.
|
|
LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
|
|
LookupOrdinaryName);
|
|
FoundOuter.setTemplateNameLookup(true);
|
|
LookupName(FoundOuter, S);
|
|
// FIXME: We silently accept an ambiguous lookup here, in violation of
|
|
// [basic.lookup]/1.
|
|
FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
|
|
|
|
NamedDecl *OuterTemplate;
|
|
if (FoundOuter.empty()) {
|
|
// - if the name is not found, the name found in the class of the
|
|
// object expression is used, otherwise
|
|
} else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
|
|
!(OuterTemplate =
|
|
getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
|
|
// - if the name is found in the context of the entire
|
|
// postfix-expression and does not name a class template, the name
|
|
// found in the class of the object expression is used, otherwise
|
|
FoundOuter.clear();
|
|
} else if (!Found.isSuppressingAmbiguousDiagnostics()) {
|
|
// - if the name found is a class template, it must refer to the same
|
|
// entity as the one found in the class of the object expression,
|
|
// otherwise the program is ill-formed.
|
|
if (!Found.isSingleResult() ||
|
|
getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
|
|
OuterTemplate->getCanonicalDecl()) {
|
|
Diag(Found.getNameLoc(),
|
|
diag::ext_nested_name_member_ref_lookup_ambiguous)
|
|
<< Found.getLookupName()
|
|
<< ObjectType;
|
|
Diag(Found.getRepresentativeDecl()->getLocation(),
|
|
diag::note_ambig_member_ref_object_type)
|
|
<< ObjectType;
|
|
Diag(FoundOuter.getFoundDecl()->getLocation(),
|
|
diag::note_ambig_member_ref_scope);
|
|
|
|
// Recover by taking the template that we found in the object
|
|
// expression's type.
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
|
|
SourceLocation Less,
|
|
SourceLocation Greater) {
|
|
if (TemplateName.isInvalid())
|
|
return;
|
|
|
|
DeclarationNameInfo NameInfo;
|
|
CXXScopeSpec SS;
|
|
LookupNameKind LookupKind;
|
|
|
|
DeclContext *LookupCtx = nullptr;
|
|
NamedDecl *Found = nullptr;
|
|
bool MissingTemplateKeyword = false;
|
|
|
|
// Figure out what name we looked up.
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
|
|
NameInfo = DRE->getNameInfo();
|
|
SS.Adopt(DRE->getQualifierLoc());
|
|
LookupKind = LookupOrdinaryName;
|
|
Found = DRE->getFoundDecl();
|
|
} else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
|
|
NameInfo = ME->getMemberNameInfo();
|
|
SS.Adopt(ME->getQualifierLoc());
|
|
LookupKind = LookupMemberName;
|
|
LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
|
|
Found = ME->getMemberDecl();
|
|
} else if (auto *DSDRE =
|
|
dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
|
|
NameInfo = DSDRE->getNameInfo();
|
|
SS.Adopt(DSDRE->getQualifierLoc());
|
|
MissingTemplateKeyword = true;
|
|
} else if (auto *DSME =
|
|
dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
|
|
NameInfo = DSME->getMemberNameInfo();
|
|
SS.Adopt(DSME->getQualifierLoc());
|
|
MissingTemplateKeyword = true;
|
|
} else {
|
|
llvm_unreachable("unexpected kind of potential template name");
|
|
}
|
|
|
|
// If this is a dependent-scope lookup, diagnose that the 'template' keyword
|
|
// was missing.
|
|
if (MissingTemplateKeyword) {
|
|
Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
|
|
<< NameInfo.getName() << SourceRange(Less, Greater);
|
|
return;
|
|
}
|
|
|
|
// Try to correct the name by looking for templates and C++ named casts.
|
|
struct TemplateCandidateFilter : CorrectionCandidateCallback {
|
|
Sema &S;
|
|
TemplateCandidateFilter(Sema &S) : S(S) {
|
|
WantTypeSpecifiers = false;
|
|
WantExpressionKeywords = false;
|
|
WantRemainingKeywords = false;
|
|
WantCXXNamedCasts = true;
|
|
};
|
|
bool ValidateCandidate(const TypoCorrection &Candidate) override {
|
|
if (auto *ND = Candidate.getCorrectionDecl())
|
|
return S.getAsTemplateNameDecl(ND);
|
|
return Candidate.isKeyword();
|
|
}
|
|
|
|
std::unique_ptr<CorrectionCandidateCallback> clone() override {
|
|
return std::make_unique<TemplateCandidateFilter>(*this);
|
|
}
|
|
};
|
|
|
|
DeclarationName Name = NameInfo.getName();
|
|
TemplateCandidateFilter CCC(*this);
|
|
if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
|
|
CTK_ErrorRecovery, LookupCtx)) {
|
|
auto *ND = Corrected.getFoundDecl();
|
|
if (ND)
|
|
ND = getAsTemplateNameDecl(ND);
|
|
if (ND || Corrected.isKeyword()) {
|
|
if (LookupCtx) {
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
|
|
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
|
|
Name.getAsString() == CorrectedStr;
|
|
diagnoseTypo(Corrected,
|
|
PDiag(diag::err_non_template_in_member_template_id_suggest)
|
|
<< Name << LookupCtx << DroppedSpecifier
|
|
<< SS.getRange(), false);
|
|
} else {
|
|
diagnoseTypo(Corrected,
|
|
PDiag(diag::err_non_template_in_template_id_suggest)
|
|
<< Name, false);
|
|
}
|
|
if (Found)
|
|
Diag(Found->getLocation(),
|
|
diag::note_non_template_in_template_id_found);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
|
|
<< Name << SourceRange(Less, Greater);
|
|
if (Found)
|
|
Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool isAddressOfOperand,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
if (SS.isEmpty()) {
|
|
// FIXME: This codepath is only used by dependent unqualified names
|
|
// (e.g. a dependent conversion-function-id, or operator= once we support
|
|
// it). It doesn't quite do the right thing, and it will silently fail if
|
|
// getCurrentThisType() returns null.
|
|
QualType ThisType = getCurrentThisType();
|
|
if (ThisType.isNull())
|
|
return ExprError();
|
|
|
|
return CXXDependentScopeMemberExpr::Create(
|
|
Context, /*Base=*/nullptr, ThisType,
|
|
/*IsArrow=*/!Context.getLangOpts().HLSL,
|
|
/*OperatorLoc=*/SourceLocation(),
|
|
/*QualifierLoc=*/NestedNameSpecifierLoc(), TemplateKWLoc,
|
|
/*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
|
|
}
|
|
return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// DependentScopeDeclRefExpr::Create requires a valid NestedNameSpecifierLoc
|
|
if (!SS.isValid())
|
|
return CreateRecoveryExpr(
|
|
SS.getBeginLoc(),
|
|
TemplateArgs ? TemplateArgs->getRAngleLoc() : NameInfo.getEndLoc(), {});
|
|
|
|
return DependentScopeDeclRefExpr::Create(
|
|
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
|
|
TemplateArgs);
|
|
}
|
|
|
|
bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
|
|
NamedDecl *Instantiation,
|
|
bool InstantiatedFromMember,
|
|
const NamedDecl *Pattern,
|
|
const NamedDecl *PatternDef,
|
|
TemplateSpecializationKind TSK,
|
|
bool Complain, bool *Unreachable) {
|
|
assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
|
|
isa<VarDecl>(Instantiation));
|
|
|
|
bool IsEntityBeingDefined = false;
|
|
if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
|
|
IsEntityBeingDefined = TD->isBeingDefined();
|
|
|
|
if (PatternDef && !IsEntityBeingDefined) {
|
|
NamedDecl *SuggestedDef = nullptr;
|
|
if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
|
|
&SuggestedDef,
|
|
/*OnlyNeedComplete*/ false)) {
|
|
if (Unreachable)
|
|
*Unreachable = true;
|
|
// If we're allowed to diagnose this and recover, do so.
|
|
bool Recover = Complain && !isSFINAEContext();
|
|
if (Complain)
|
|
diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
|
|
Sema::MissingImportKind::Definition, Recover);
|
|
return !Recover;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
|
|
return true;
|
|
|
|
QualType InstantiationTy;
|
|
if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
|
|
InstantiationTy = Context.getTypeDeclType(TD);
|
|
if (PatternDef) {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_template_instantiate_within_definition)
|
|
<< /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
|
|
<< InstantiationTy;
|
|
// Not much point in noting the template declaration here, since
|
|
// we're lexically inside it.
|
|
Instantiation->setInvalidDecl();
|
|
} else if (InstantiatedFromMember) {
|
|
if (isa<FunctionDecl>(Instantiation)) {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_explicit_instantiation_undefined_member)
|
|
<< /*member function*/ 1 << Instantiation->getDeclName()
|
|
<< Instantiation->getDeclContext();
|
|
Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
|
|
} else {
|
|
assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
|
|
Diag(PointOfInstantiation,
|
|
diag::err_implicit_instantiate_member_undefined)
|
|
<< InstantiationTy;
|
|
Diag(Pattern->getLocation(), diag::note_member_declared_at);
|
|
}
|
|
} else {
|
|
if (isa<FunctionDecl>(Instantiation)) {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_explicit_instantiation_undefined_func_template)
|
|
<< Pattern;
|
|
Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
|
|
} else if (isa<TagDecl>(Instantiation)) {
|
|
Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
|
|
<< (TSK != TSK_ImplicitInstantiation)
|
|
<< InstantiationTy;
|
|
NoteTemplateLocation(*Pattern);
|
|
} else {
|
|
assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
|
|
if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_explicit_instantiation_undefined_var_template)
|
|
<< Instantiation;
|
|
Instantiation->setInvalidDecl();
|
|
} else
|
|
Diag(PointOfInstantiation,
|
|
diag::err_explicit_instantiation_undefined_member)
|
|
<< /*static data member*/ 2 << Instantiation->getDeclName()
|
|
<< Instantiation->getDeclContext();
|
|
Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
|
|
}
|
|
}
|
|
|
|
// In general, Instantiation isn't marked invalid to get more than one
|
|
// error for multiple undefined instantiations. But the code that does
|
|
// explicit declaration -> explicit definition conversion can't handle
|
|
// invalid declarations, so mark as invalid in that case.
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration)
|
|
Instantiation->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl,
|
|
bool SupportedForCompatibility) {
|
|
assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
|
|
|
|
// C++23 [temp.local]p6:
|
|
// The name of a template-parameter shall not be bound to any following.
|
|
// declaration whose locus is contained by the scope to which the
|
|
// template-parameter belongs.
|
|
//
|
|
// When MSVC compatibility is enabled, the diagnostic is always a warning
|
|
// by default. Otherwise, it an error unless SupportedForCompatibility is
|
|
// true, in which case it is a default-to-error warning.
|
|
unsigned DiagId =
|
|
getLangOpts().MSVCCompat
|
|
? diag::ext_template_param_shadow
|
|
: (SupportedForCompatibility ? diag::ext_compat_template_param_shadow
|
|
: diag::err_template_param_shadow);
|
|
const auto *ND = cast<NamedDecl>(PrevDecl);
|
|
Diag(Loc, DiagId) << ND->getDeclName();
|
|
NoteTemplateParameterLocation(*ND);
|
|
}
|
|
|
|
TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
|
|
if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
|
|
D = Temp->getTemplatedDecl();
|
|
return Temp;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
|
|
SourceLocation EllipsisLoc) const {
|
|
assert(Kind == Template &&
|
|
"Only template template arguments can be pack expansions here");
|
|
assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
|
|
"Template template argument pack expansion without packs");
|
|
ParsedTemplateArgument Result(*this);
|
|
Result.EllipsisLoc = EllipsisLoc;
|
|
return Result;
|
|
}
|
|
|
|
static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
|
|
const ParsedTemplateArgument &Arg) {
|
|
|
|
switch (Arg.getKind()) {
|
|
case ParsedTemplateArgument::Type: {
|
|
TypeSourceInfo *DI;
|
|
QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
|
|
if (!DI)
|
|
DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
|
|
return TemplateArgumentLoc(TemplateArgument(T), DI);
|
|
}
|
|
|
|
case ParsedTemplateArgument::NonType: {
|
|
Expr *E = static_cast<Expr *>(Arg.getAsExpr());
|
|
return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
|
|
}
|
|
|
|
case ParsedTemplateArgument::Template: {
|
|
TemplateName Template = Arg.getAsTemplate().get();
|
|
TemplateArgument TArg;
|
|
if (Arg.getEllipsisLoc().isValid())
|
|
TArg = TemplateArgument(Template, /*NumExpansions=*/std::nullopt);
|
|
else
|
|
TArg = Template;
|
|
return TemplateArgumentLoc(
|
|
SemaRef.Context, TArg,
|
|
Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
|
|
Arg.getLocation(), Arg.getEllipsisLoc());
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled parsed template argument");
|
|
}
|
|
|
|
void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
|
|
TemplateArgs.addArgument(translateTemplateArgument(*this,
|
|
TemplateArgsIn[I]));
|
|
}
|
|
|
|
static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
|
|
SourceLocation Loc,
|
|
const IdentifierInfo *Name) {
|
|
NamedDecl *PrevDecl =
|
|
SemaRef.LookupSingleName(S, Name, Loc, Sema::LookupOrdinaryName,
|
|
RedeclarationKind::ForVisibleRedeclaration);
|
|
if (PrevDecl && PrevDecl->isTemplateParameter())
|
|
SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
|
|
}
|
|
|
|
ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
|
|
TypeSourceInfo *TInfo;
|
|
QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
|
|
if (T.isNull())
|
|
return ParsedTemplateArgument();
|
|
assert(TInfo && "template argument with no location");
|
|
|
|
// If we might have formed a deduced template specialization type, convert
|
|
// it to a template template argument.
|
|
if (getLangOpts().CPlusPlus17) {
|
|
TypeLoc TL = TInfo->getTypeLoc();
|
|
SourceLocation EllipsisLoc;
|
|
if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
|
|
EllipsisLoc = PET.getEllipsisLoc();
|
|
TL = PET.getPatternLoc();
|
|
}
|
|
|
|
CXXScopeSpec SS;
|
|
if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
|
|
SS.Adopt(ET.getQualifierLoc());
|
|
TL = ET.getNamedTypeLoc();
|
|
}
|
|
|
|
if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
|
|
TemplateName Name = DTST.getTypePtr()->getTemplateName();
|
|
ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
|
|
DTST.getTemplateNameLoc());
|
|
if (EllipsisLoc.isValid())
|
|
Result = Result.getTemplatePackExpansion(EllipsisLoc);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// This is a normal type template argument. Note, if the type template
|
|
// argument is an injected-class-name for a template, it has a dual nature
|
|
// and can be used as either a type or a template. We handle that in
|
|
// convertTypeTemplateArgumentToTemplate.
|
|
return ParsedTemplateArgument(ParsedTemplateArgument::Type,
|
|
ParsedType.get().getAsOpaquePtr(),
|
|
TInfo->getTypeLoc().getBeginLoc());
|
|
}
|
|
|
|
NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
|
|
SourceLocation EllipsisLoc,
|
|
SourceLocation KeyLoc,
|
|
IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc,
|
|
unsigned Depth, unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
ParsedType DefaultArg,
|
|
bool HasTypeConstraint) {
|
|
assert(S->isTemplateParamScope() &&
|
|
"Template type parameter not in template parameter scope!");
|
|
|
|
bool IsParameterPack = EllipsisLoc.isValid();
|
|
TemplateTypeParmDecl *Param
|
|
= TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
|
|
KeyLoc, ParamNameLoc, Depth, Position,
|
|
ParamName, Typename, IsParameterPack,
|
|
HasTypeConstraint);
|
|
Param->setAccess(AS_public);
|
|
|
|
if (Param->isParameterPack())
|
|
if (auto *CSI = getEnclosingLambdaOrBlock())
|
|
CSI->LocalPacks.push_back(Param);
|
|
|
|
if (ParamName) {
|
|
maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
|
|
|
|
// Add the template parameter into the current scope.
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument may be specified for any kind of
|
|
// template-parameter that is not a template parameter pack.
|
|
if (DefaultArg && IsParameterPack) {
|
|
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
|
|
DefaultArg = nullptr;
|
|
}
|
|
|
|
// Handle the default argument, if provided.
|
|
if (DefaultArg) {
|
|
TypeSourceInfo *DefaultTInfo;
|
|
GetTypeFromParser(DefaultArg, &DefaultTInfo);
|
|
|
|
assert(DefaultTInfo && "expected source information for type");
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
|
|
UPPC_DefaultArgument))
|
|
return Param;
|
|
|
|
// Check the template argument itself.
|
|
if (CheckTemplateArgument(DefaultTInfo)) {
|
|
Param->setInvalidDecl();
|
|
return Param;
|
|
}
|
|
|
|
Param->setDefaultArgument(
|
|
Context, TemplateArgumentLoc(DefaultTInfo->getType(), DefaultTInfo));
|
|
}
|
|
|
|
return Param;
|
|
}
|
|
|
|
/// Convert the parser's template argument list representation into our form.
|
|
static TemplateArgumentListInfo
|
|
makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
|
|
TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
|
|
TemplateId.RAngleLoc);
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
|
|
TemplateId.NumArgs);
|
|
S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
|
|
return TemplateArgs;
|
|
}
|
|
|
|
bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
|
|
|
|
TemplateName TN = TypeConstr->Template.get();
|
|
ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
|
|
|
|
// C++2a [temp.param]p4:
|
|
// [...] The concept designated by a type-constraint shall be a type
|
|
// concept ([temp.concept]).
|
|
if (!CD->isTypeConcept()) {
|
|
Diag(TypeConstr->TemplateNameLoc,
|
|
diag::err_type_constraint_non_type_concept);
|
|
return true;
|
|
}
|
|
|
|
if (CheckConceptUseInDefinition(CD, TypeConstr->TemplateNameLoc))
|
|
return true;
|
|
|
|
bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
|
|
|
|
if (!WereArgsSpecified &&
|
|
CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
|
|
Diag(TypeConstr->TemplateNameLoc,
|
|
diag::err_type_constraint_missing_arguments)
|
|
<< CD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TypeConstr,
|
|
TemplateTypeParmDecl *ConstrainedParameter,
|
|
SourceLocation EllipsisLoc) {
|
|
return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
|
|
false);
|
|
}
|
|
|
|
bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TypeConstr,
|
|
TemplateTypeParmDecl *ConstrainedParameter,
|
|
SourceLocation EllipsisLoc,
|
|
bool AllowUnexpandedPack) {
|
|
|
|
if (CheckTypeConstraint(TypeConstr))
|
|
return true;
|
|
|
|
TemplateName TN = TypeConstr->Template.get();
|
|
ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
|
|
UsingShadowDecl *USD = TN.getAsUsingShadowDecl();
|
|
|
|
DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
|
|
TypeConstr->TemplateNameLoc);
|
|
|
|
TemplateArgumentListInfo TemplateArgs;
|
|
if (TypeConstr->LAngleLoc.isValid()) {
|
|
TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, *TypeConstr);
|
|
|
|
if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
|
|
for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
|
|
if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return AttachTypeConstraint(
|
|
SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
|
|
ConceptName, CD, /*FoundDecl=*/USD ? cast<NamedDecl>(USD) : CD,
|
|
TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
|
|
ConstrainedParameter, EllipsisLoc);
|
|
}
|
|
|
|
template <typename ArgumentLocAppender>
|
|
static ExprResult formImmediatelyDeclaredConstraint(
|
|
Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
|
|
ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc,
|
|
SourceLocation RAngleLoc, QualType ConstrainedType,
|
|
SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
|
|
SourceLocation EllipsisLoc) {
|
|
|
|
TemplateArgumentListInfo ConstraintArgs;
|
|
ConstraintArgs.addArgument(
|
|
S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
|
|
/*NTTPType=*/QualType(), ParamNameLoc));
|
|
|
|
ConstraintArgs.setRAngleLoc(RAngleLoc);
|
|
ConstraintArgs.setLAngleLoc(LAngleLoc);
|
|
Appender(ConstraintArgs);
|
|
|
|
// C++2a [temp.param]p4:
|
|
// [...] This constraint-expression E is called the immediately-declared
|
|
// constraint of T. [...]
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(NS);
|
|
ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
|
|
SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
|
|
/*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept,
|
|
&ConstraintArgs);
|
|
if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
|
|
return ImmediatelyDeclaredConstraint;
|
|
|
|
// C++2a [temp.param]p4:
|
|
// [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
|
|
//
|
|
// We have the following case:
|
|
//
|
|
// template<typename T> concept C1 = true;
|
|
// template<C1... T> struct s1;
|
|
//
|
|
// The constraint: (C1<T> && ...)
|
|
//
|
|
// Note that the type of C1<T> is known to be 'bool', so we don't need to do
|
|
// any unqualified lookups for 'operator&&' here.
|
|
return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
|
|
/*LParenLoc=*/SourceLocation(),
|
|
ImmediatelyDeclaredConstraint.get(), BO_LAnd,
|
|
EllipsisLoc, /*RHS=*/nullptr,
|
|
/*RParenLoc=*/SourceLocation(),
|
|
/*NumExpansions=*/std::nullopt);
|
|
}
|
|
|
|
bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
|
|
DeclarationNameInfo NameInfo,
|
|
ConceptDecl *NamedConcept, NamedDecl *FoundDecl,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
TemplateTypeParmDecl *ConstrainedParameter,
|
|
SourceLocation EllipsisLoc) {
|
|
// C++2a [temp.param]p4:
|
|
// [...] If Q is of the form C<A1, ..., An>, then let E' be
|
|
// C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
|
|
const ASTTemplateArgumentListInfo *ArgsAsWritten =
|
|
TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
|
|
*TemplateArgs) : nullptr;
|
|
|
|
QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
|
|
|
|
ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
|
|
*this, NS, NameInfo, NamedConcept, FoundDecl,
|
|
TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
|
|
TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
|
|
ParamAsArgument, ConstrainedParameter->getLocation(),
|
|
[&](TemplateArgumentListInfo &ConstraintArgs) {
|
|
if (TemplateArgs)
|
|
for (const auto &ArgLoc : TemplateArgs->arguments())
|
|
ConstraintArgs.addArgument(ArgLoc);
|
|
},
|
|
EllipsisLoc);
|
|
if (ImmediatelyDeclaredConstraint.isInvalid())
|
|
return true;
|
|
|
|
auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
|
|
/*TemplateKWLoc=*/SourceLocation{},
|
|
/*ConceptNameInfo=*/NameInfo,
|
|
/*FoundDecl=*/FoundDecl,
|
|
/*NamedConcept=*/NamedConcept,
|
|
/*ArgsWritten=*/ArgsAsWritten);
|
|
ConstrainedParameter->setTypeConstraint(
|
|
CL, ImmediatelyDeclaredConstraint.get(), std::nullopt);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
|
|
NonTypeTemplateParmDecl *NewConstrainedParm,
|
|
NonTypeTemplateParmDecl *OrigConstrainedParm,
|
|
SourceLocation EllipsisLoc) {
|
|
if (NewConstrainedParm->getType().getNonPackExpansionType() != TL.getType() ||
|
|
TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
|
|
Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
|
|
diag::err_unsupported_placeholder_constraint)
|
|
<< NewConstrainedParm->getTypeSourceInfo()
|
|
->getTypeLoc()
|
|
.getSourceRange();
|
|
return true;
|
|
}
|
|
// FIXME: Concepts: This should be the type of the placeholder, but this is
|
|
// unclear in the wording right now.
|
|
DeclRefExpr *Ref =
|
|
BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
|
|
VK_PRValue, OrigConstrainedParm->getLocation());
|
|
if (!Ref)
|
|
return true;
|
|
ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
|
|
*this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
|
|
TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), TL.getLAngleLoc(),
|
|
TL.getRAngleLoc(), BuildDecltypeType(Ref),
|
|
OrigConstrainedParm->getLocation(),
|
|
[&](TemplateArgumentListInfo &ConstraintArgs) {
|
|
for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
|
|
ConstraintArgs.addArgument(TL.getArgLoc(I));
|
|
},
|
|
EllipsisLoc);
|
|
if (ImmediatelyDeclaredConstraint.isInvalid() ||
|
|
!ImmediatelyDeclaredConstraint.isUsable())
|
|
return true;
|
|
|
|
NewConstrainedParm->setPlaceholderTypeConstraint(
|
|
ImmediatelyDeclaredConstraint.get());
|
|
return false;
|
|
}
|
|
|
|
QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
|
|
SourceLocation Loc) {
|
|
if (TSI->getType()->isUndeducedType()) {
|
|
// C++17 [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains
|
|
// - an identifier associated by name lookup with a non-type
|
|
// template-parameter declared with a type that contains a
|
|
// placeholder type (7.1.7.4),
|
|
TSI = SubstAutoTypeSourceInfoDependent(TSI);
|
|
}
|
|
|
|
return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
|
|
}
|
|
|
|
bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
|
|
if (T->isDependentType())
|
|
return false;
|
|
|
|
if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
|
|
return true;
|
|
|
|
if (T->isStructuralType())
|
|
return false;
|
|
|
|
// Structural types are required to be object types or lvalue references.
|
|
if (T->isRValueReferenceType()) {
|
|
Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
|
|
return true;
|
|
}
|
|
|
|
// Don't mention structural types in our diagnostic prior to C++20. Also,
|
|
// there's not much more we can say about non-scalar non-class types --
|
|
// because we can't see functions or arrays here, those can only be language
|
|
// extensions.
|
|
if (!getLangOpts().CPlusPlus20 ||
|
|
(!T->isScalarType() && !T->isRecordType())) {
|
|
Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
|
|
return true;
|
|
}
|
|
|
|
// Structural types are required to be literal types.
|
|
if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
|
|
return true;
|
|
|
|
Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
|
|
|
|
// Drill down into the reason why the class is non-structural.
|
|
while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
|
|
// All members are required to be public and non-mutable, and can't be of
|
|
// rvalue reference type. Check these conditions first to prefer a "local"
|
|
// reason over a more distant one.
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
if (FD->getAccess() != AS_public) {
|
|
Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
|
|
return true;
|
|
}
|
|
if (FD->isMutable()) {
|
|
Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
|
|
return true;
|
|
}
|
|
if (FD->getType()->isRValueReferenceType()) {
|
|
Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
|
|
<< T;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// All bases are required to be public.
|
|
for (const auto &BaseSpec : RD->bases()) {
|
|
if (BaseSpec.getAccessSpecifier() != AS_public) {
|
|
Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
|
|
<< T << 1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// All subobjects are required to be of structural types.
|
|
SourceLocation SubLoc;
|
|
QualType SubType;
|
|
int Kind = -1;
|
|
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
QualType T = Context.getBaseElementType(FD->getType());
|
|
if (!T->isStructuralType()) {
|
|
SubLoc = FD->getLocation();
|
|
SubType = T;
|
|
Kind = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Kind == -1) {
|
|
for (const auto &BaseSpec : RD->bases()) {
|
|
QualType T = BaseSpec.getType();
|
|
if (!T->isStructuralType()) {
|
|
SubLoc = BaseSpec.getBaseTypeLoc();
|
|
SubType = T;
|
|
Kind = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(Kind != -1 && "couldn't find reason why type is not structural");
|
|
Diag(SubLoc, diag::note_not_structural_subobject)
|
|
<< T << Kind << SubType;
|
|
T = SubType;
|
|
RD = T->getAsCXXRecordDecl();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
|
|
SourceLocation Loc) {
|
|
// We don't allow variably-modified types as the type of non-type template
|
|
// parameters.
|
|
if (T->isVariablyModifiedType()) {
|
|
Diag(Loc, diag::err_variably_modified_nontype_template_param)
|
|
<< T;
|
|
return QualType();
|
|
}
|
|
|
|
// C++ [temp.param]p4:
|
|
//
|
|
// A non-type template-parameter shall have one of the following
|
|
// (optionally cv-qualified) types:
|
|
//
|
|
// -- integral or enumeration type,
|
|
if (T->isIntegralOrEnumerationType() ||
|
|
// -- pointer to object or pointer to function,
|
|
T->isPointerType() ||
|
|
// -- lvalue reference to object or lvalue reference to function,
|
|
T->isLValueReferenceType() ||
|
|
// -- pointer to member,
|
|
T->isMemberPointerType() ||
|
|
// -- std::nullptr_t, or
|
|
T->isNullPtrType() ||
|
|
// -- a type that contains a placeholder type.
|
|
T->isUndeducedType()) {
|
|
// C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
|
|
// are ignored when determining its type.
|
|
return T.getUnqualifiedType();
|
|
}
|
|
|
|
// C++ [temp.param]p8:
|
|
//
|
|
// A non-type template-parameter of type "array of T" or
|
|
// "function returning T" is adjusted to be of type "pointer to
|
|
// T" or "pointer to function returning T", respectively.
|
|
if (T->isArrayType() || T->isFunctionType())
|
|
return Context.getDecayedType(T);
|
|
|
|
// If T is a dependent type, we can't do the check now, so we
|
|
// assume that it is well-formed. Note that stripping off the
|
|
// qualifiers here is not really correct if T turns out to be
|
|
// an array type, but we'll recompute the type everywhere it's
|
|
// used during instantiation, so that should be OK. (Using the
|
|
// qualified type is equally wrong.)
|
|
if (T->isDependentType())
|
|
return T.getUnqualifiedType();
|
|
|
|
// C++20 [temp.param]p6:
|
|
// -- a structural type
|
|
if (RequireStructuralType(T, Loc))
|
|
return QualType();
|
|
|
|
if (!getLangOpts().CPlusPlus20) {
|
|
// FIXME: Consider allowing structural types as an extension in C++17. (In
|
|
// earlier language modes, the template argument evaluation rules are too
|
|
// inflexible.)
|
|
Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
|
|
return T.getUnqualifiedType();
|
|
}
|
|
|
|
NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
|
|
unsigned Depth,
|
|
unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
Expr *Default) {
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
|
|
|
|
// Check that we have valid decl-specifiers specified.
|
|
auto CheckValidDeclSpecifiers = [this, &D] {
|
|
// C++ [temp.param]
|
|
// p1
|
|
// template-parameter:
|
|
// ...
|
|
// parameter-declaration
|
|
// p2
|
|
// ... A storage class shall not be specified in a template-parameter
|
|
// declaration.
|
|
// [dcl.typedef]p1:
|
|
// The typedef specifier [...] shall not be used in the decl-specifier-seq
|
|
// of a parameter-declaration
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
auto EmitDiag = [this](SourceLocation Loc) {
|
|
Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
|
|
<< FixItHint::CreateRemoval(Loc);
|
|
};
|
|
if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
|
|
EmitDiag(DS.getStorageClassSpecLoc());
|
|
|
|
if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
|
|
EmitDiag(DS.getThreadStorageClassSpecLoc());
|
|
|
|
// [dcl.inline]p1:
|
|
// The inline specifier can be applied only to the declaration or
|
|
// definition of a variable or function.
|
|
|
|
if (DS.isInlineSpecified())
|
|
EmitDiag(DS.getInlineSpecLoc());
|
|
|
|
// [dcl.constexpr]p1:
|
|
// The constexpr specifier shall be applied only to the definition of a
|
|
// variable or variable template or the declaration of a function or
|
|
// function template.
|
|
|
|
if (DS.hasConstexprSpecifier())
|
|
EmitDiag(DS.getConstexprSpecLoc());
|
|
|
|
// [dcl.fct.spec]p1:
|
|
// Function-specifiers can be used only in function declarations.
|
|
|
|
if (DS.isVirtualSpecified())
|
|
EmitDiag(DS.getVirtualSpecLoc());
|
|
|
|
if (DS.hasExplicitSpecifier())
|
|
EmitDiag(DS.getExplicitSpecLoc());
|
|
|
|
if (DS.isNoreturnSpecified())
|
|
EmitDiag(DS.getNoreturnSpecLoc());
|
|
};
|
|
|
|
CheckValidDeclSpecifiers();
|
|
|
|
if (const auto *T = TInfo->getType()->getContainedDeducedType())
|
|
if (isa<AutoType>(T))
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::warn_cxx14_compat_template_nontype_parm_auto_type)
|
|
<< QualType(TInfo->getType()->getContainedAutoType(), 0);
|
|
|
|
assert(S->isTemplateParamScope() &&
|
|
"Non-type template parameter not in template parameter scope!");
|
|
bool Invalid = false;
|
|
|
|
QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy; // Recover with an 'int' type.
|
|
Invalid = true;
|
|
}
|
|
|
|
CheckFunctionOrTemplateParamDeclarator(S, D);
|
|
|
|
const IdentifierInfo *ParamName = D.getIdentifier();
|
|
bool IsParameterPack = D.hasEllipsis();
|
|
NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
|
|
Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
|
|
D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
|
|
TInfo);
|
|
Param->setAccess(AS_public);
|
|
|
|
if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
|
|
if (TL.isConstrained()) {
|
|
if (D.getEllipsisLoc().isInvalid() &&
|
|
T->containsUnexpandedParameterPack()) {
|
|
assert(TL.getConceptReference()->getTemplateArgsAsWritten());
|
|
for (auto &Loc :
|
|
TL.getConceptReference()->getTemplateArgsAsWritten()->arguments())
|
|
Invalid |= DiagnoseUnexpandedParameterPack(
|
|
Loc, UnexpandedParameterPackContext::UPPC_TypeConstraint);
|
|
}
|
|
if (!Invalid &&
|
|
AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
|
|
Invalid = true;
|
|
}
|
|
|
|
if (Invalid)
|
|
Param->setInvalidDecl();
|
|
|
|
if (Param->isParameterPack())
|
|
if (auto *CSI = getEnclosingLambdaOrBlock())
|
|
CSI->LocalPacks.push_back(Param);
|
|
|
|
if (ParamName) {
|
|
maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
|
|
ParamName);
|
|
|
|
// Add the template parameter into the current scope.
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument may be specified for any kind of
|
|
// template-parameter that is not a template parameter pack.
|
|
if (Default && IsParameterPack) {
|
|
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
|
|
Default = nullptr;
|
|
}
|
|
|
|
// Check the well-formedness of the default template argument, if provided.
|
|
if (Default) {
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
|
|
return Param;
|
|
|
|
Param->setDefaultArgument(
|
|
Context, getTrivialTemplateArgumentLoc(
|
|
TemplateArgument(Default, /*IsCanonical=*/false),
|
|
QualType(), SourceLocation()));
|
|
}
|
|
|
|
return Param;
|
|
}
|
|
|
|
NamedDecl *Sema::ActOnTemplateTemplateParameter(
|
|
Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params,
|
|
bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name,
|
|
SourceLocation NameLoc, unsigned Depth, unsigned Position,
|
|
SourceLocation EqualLoc, ParsedTemplateArgument Default) {
|
|
assert(S->isTemplateParamScope() &&
|
|
"Template template parameter not in template parameter scope!");
|
|
|
|
bool IsParameterPack = EllipsisLoc.isValid();
|
|
|
|
bool Invalid = false;
|
|
if (CheckTemplateParameterList(
|
|
Params,
|
|
/*OldParams=*/nullptr,
|
|
IsParameterPack ? TPC_TemplateTemplateParameterPack : TPC_Other))
|
|
Invalid = true;
|
|
|
|
// Construct the parameter object.
|
|
TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create(
|
|
Context, Context.getTranslationUnitDecl(),
|
|
NameLoc.isInvalid() ? TmpLoc : NameLoc, Depth, Position, IsParameterPack,
|
|
Name, Typename, Params);
|
|
Param->setAccess(AS_public);
|
|
|
|
if (Param->isParameterPack())
|
|
if (auto *LSI = getEnclosingLambdaOrBlock())
|
|
LSI->LocalPacks.push_back(Param);
|
|
|
|
// If the template template parameter has a name, then link the identifier
|
|
// into the scope and lookup mechanisms.
|
|
if (Name) {
|
|
maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
|
|
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
if (Params->size() == 0) {
|
|
Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
|
|
<< SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
|
|
Invalid = true;
|
|
}
|
|
|
|
if (Invalid)
|
|
Param->setInvalidDecl();
|
|
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument may be specified for any kind of
|
|
// template-parameter that is not a template parameter pack.
|
|
if (IsParameterPack && !Default.isInvalid()) {
|
|
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
|
|
Default = ParsedTemplateArgument();
|
|
}
|
|
|
|
if (!Default.isInvalid()) {
|
|
// Check only that we have a template template argument. We don't want to
|
|
// try to check well-formedness now, because our template template parameter
|
|
// might have dependent types in its template parameters, which we wouldn't
|
|
// be able to match now.
|
|
//
|
|
// If none of the template template parameter's template arguments mention
|
|
// other template parameters, we could actually perform more checking here.
|
|
// However, it isn't worth doing.
|
|
TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
|
|
if (DefaultArg.getArgument().getAsTemplate().isNull()) {
|
|
Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
|
|
<< DefaultArg.getSourceRange();
|
|
return Param;
|
|
}
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
|
|
DefaultArg.getArgument().getAsTemplate(),
|
|
UPPC_DefaultArgument))
|
|
return Param;
|
|
|
|
Param->setDefaultArgument(Context, DefaultArg);
|
|
}
|
|
|
|
return Param;
|
|
}
|
|
|
|
namespace {
|
|
class ConstraintRefersToContainingTemplateChecker
|
|
: public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
|
|
bool Result = false;
|
|
const FunctionDecl *Friend = nullptr;
|
|
unsigned TemplateDepth = 0;
|
|
|
|
// Check a record-decl that we've seen to see if it is a lexical parent of the
|
|
// Friend, likely because it was referred to without its template arguments.
|
|
void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
|
|
CheckingRD = CheckingRD->getMostRecentDecl();
|
|
if (!CheckingRD->isTemplated())
|
|
return;
|
|
|
|
for (const DeclContext *DC = Friend->getLexicalDeclContext();
|
|
DC && !DC->isFileContext(); DC = DC->getParent())
|
|
if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
|
|
if (CheckingRD == RD->getMostRecentDecl())
|
|
Result = true;
|
|
}
|
|
|
|
void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
|
|
if (D->getDepth() < TemplateDepth)
|
|
Result = true;
|
|
|
|
// Necessary because the type of the NTTP might be what refers to the parent
|
|
// constriant.
|
|
TransformType(D->getType());
|
|
}
|
|
|
|
public:
|
|
using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
|
|
|
|
ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
|
|
const FunctionDecl *Friend,
|
|
unsigned TemplateDepth)
|
|
: inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
|
|
bool getResult() const { return Result; }
|
|
|
|
// This should be the only template parm type that we have to deal with.
|
|
// SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
|
|
// FunctionParmPackExpr are all partially substituted, which cannot happen
|
|
// with concepts at this point in translation.
|
|
using inherited::TransformTemplateTypeParmType;
|
|
QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
|
|
TemplateTypeParmTypeLoc TL, bool) {
|
|
if (TL.getDecl()->getDepth() < TemplateDepth)
|
|
Result = true;
|
|
return inherited::TransformTemplateTypeParmType(
|
|
TLB, TL,
|
|
/*SuppressObjCLifetime=*/false);
|
|
}
|
|
|
|
Decl *TransformDecl(SourceLocation Loc, Decl *D) {
|
|
if (!D)
|
|
return D;
|
|
// FIXME : This is possibly an incomplete list, but it is unclear what other
|
|
// Decl kinds could be used to refer to the template parameters. This is a
|
|
// best guess so far based on examples currently available, but the
|
|
// unreachable should catch future instances/cases.
|
|
if (auto *TD = dyn_cast<TypedefNameDecl>(D))
|
|
TransformType(TD->getUnderlyingType());
|
|
else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
|
|
CheckNonTypeTemplateParmDecl(NTTPD);
|
|
else if (auto *VD = dyn_cast<ValueDecl>(D))
|
|
TransformType(VD->getType());
|
|
else if (auto *TD = dyn_cast<TemplateDecl>(D))
|
|
TransformTemplateParameterList(TD->getTemplateParameters());
|
|
else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
|
|
CheckIfContainingRecord(RD);
|
|
else if (isa<NamedDecl>(D)) {
|
|
// No direct types to visit here I believe.
|
|
} else
|
|
llvm_unreachable("Don't know how to handle this declaration type yet");
|
|
return D;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
|
|
const FunctionDecl *Friend, unsigned TemplateDepth,
|
|
const Expr *Constraint) {
|
|
assert(Friend->getFriendObjectKind() && "Only works on a friend");
|
|
ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
|
|
TemplateDepth);
|
|
Checker.TransformExpr(const_cast<Expr *>(Constraint));
|
|
return Checker.getResult();
|
|
}
|
|
|
|
TemplateParameterList *
|
|
Sema::ActOnTemplateParameterList(unsigned Depth,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ArrayRef<NamedDecl *> Params,
|
|
SourceLocation RAngleLoc,
|
|
Expr *RequiresClause) {
|
|
if (ExportLoc.isValid())
|
|
Diag(ExportLoc, diag::warn_template_export_unsupported);
|
|
|
|
for (NamedDecl *P : Params)
|
|
warnOnReservedIdentifier(P);
|
|
|
|
return TemplateParameterList::Create(
|
|
Context, TemplateLoc, LAngleLoc,
|
|
llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
|
|
}
|
|
|
|
static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
|
|
const CXXScopeSpec &SS) {
|
|
if (SS.isSet())
|
|
T->setQualifierInfo(SS.getWithLocInContext(S.Context));
|
|
}
|
|
|
|
// Returns the template parameter list with all default template argument
|
|
// information.
|
|
TemplateParameterList *Sema::GetTemplateParameterList(TemplateDecl *TD) {
|
|
// Make sure we get the template parameter list from the most
|
|
// recent declaration, since that is the only one that is guaranteed to
|
|
// have all the default template argument information.
|
|
Decl *D = TD->getMostRecentDecl();
|
|
// C++11 N3337 [temp.param]p12:
|
|
// A default template argument shall not be specified in a friend class
|
|
// template declaration.
|
|
//
|
|
// Skip past friend *declarations* because they are not supposed to contain
|
|
// default template arguments. Moreover, these declarations may introduce
|
|
// template parameters living in different template depths than the
|
|
// corresponding template parameters in TD, causing unmatched constraint
|
|
// substitution.
|
|
//
|
|
// FIXME: Diagnose such cases within a class template:
|
|
// template <class T>
|
|
// struct S {
|
|
// template <class = void> friend struct C;
|
|
// };
|
|
// template struct S<int>;
|
|
while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None &&
|
|
D->getPreviousDecl())
|
|
D = D->getPreviousDecl();
|
|
return cast<TemplateDecl>(D)->getTemplateParameters();
|
|
}
|
|
|
|
DeclResult Sema::CheckClassTemplate(
|
|
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
|
|
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
|
|
SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
|
|
TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
|
|
assert(TemplateParams && TemplateParams->size() > 0 &&
|
|
"No template parameters");
|
|
assert(TUK != TagUseKind::Reference &&
|
|
"Can only declare or define class templates");
|
|
bool Invalid = false;
|
|
|
|
// Check that we can declare a template here.
|
|
if (CheckTemplateDeclScope(S, TemplateParams))
|
|
return true;
|
|
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
assert(Kind != TagTypeKind::Enum &&
|
|
"can't build template of enumerated type");
|
|
|
|
// There is no such thing as an unnamed class template.
|
|
if (!Name) {
|
|
Diag(KWLoc, diag::err_template_unnamed_class);
|
|
return true;
|
|
}
|
|
|
|
// Find any previous declaration with this name. For a friend with no
|
|
// scope explicitly specified, we only look for tag declarations (per
|
|
// C++11 [basic.lookup.elab]p2).
|
|
DeclContext *SemanticContext;
|
|
LookupResult Previous(*this, Name, NameLoc,
|
|
(SS.isEmpty() && TUK == TagUseKind::Friend)
|
|
? LookupTagName
|
|
: LookupOrdinaryName,
|
|
forRedeclarationInCurContext());
|
|
if (SS.isNotEmpty() && !SS.isInvalid()) {
|
|
SemanticContext = computeDeclContext(SS, true);
|
|
if (!SemanticContext) {
|
|
// FIXME: Horrible, horrible hack! We can't currently represent this
|
|
// in the AST, and historically we have just ignored such friend
|
|
// class templates, so don't complain here.
|
|
Diag(NameLoc, TUK == TagUseKind::Friend
|
|
? diag::warn_template_qualified_friend_ignored
|
|
: diag::err_template_qualified_declarator_no_match)
|
|
<< SS.getScopeRep() << SS.getRange();
|
|
return TUK != TagUseKind::Friend;
|
|
}
|
|
|
|
if (RequireCompleteDeclContext(SS, SemanticContext))
|
|
return true;
|
|
|
|
// If we're adding a template to a dependent context, we may need to
|
|
// rebuilding some of the types used within the template parameter list,
|
|
// now that we know what the current instantiation is.
|
|
if (SemanticContext->isDependentContext()) {
|
|
ContextRAII SavedContext(*this, SemanticContext);
|
|
if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
|
|
Invalid = true;
|
|
}
|
|
|
|
if (TUK != TagUseKind::Friend && TUK != TagUseKind::Reference)
|
|
diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc,
|
|
/*TemplateId-*/ nullptr,
|
|
/*IsMemberSpecialization*/ false);
|
|
|
|
LookupQualifiedName(Previous, SemanticContext);
|
|
} else {
|
|
SemanticContext = CurContext;
|
|
|
|
// C++14 [class.mem]p14:
|
|
// If T is the name of a class, then each of the following shall have a
|
|
// name different from T:
|
|
// -- every member template of class T
|
|
if (TUK != TagUseKind::Friend &&
|
|
DiagnoseClassNameShadow(SemanticContext,
|
|
DeclarationNameInfo(Name, NameLoc)))
|
|
return true;
|
|
|
|
LookupName(Previous, S);
|
|
}
|
|
|
|
if (Previous.isAmbiguous())
|
|
return true;
|
|
|
|
// Let the template parameter scope enter the lookup chain of the current
|
|
// class template. For example, given
|
|
//
|
|
// namespace ns {
|
|
// template <class> bool Param = false;
|
|
// template <class T> struct N;
|
|
// }
|
|
//
|
|
// template <class Param> struct ns::N { void foo(Param); };
|
|
//
|
|
// When we reference Param inside the function parameter list, our name lookup
|
|
// chain for it should be like:
|
|
// FunctionScope foo
|
|
// -> RecordScope N
|
|
// -> TemplateParamScope (where we will find Param)
|
|
// -> NamespaceScope ns
|
|
//
|
|
// See also CppLookupName().
|
|
if (S->isTemplateParamScope())
|
|
EnterTemplatedContext(S, SemanticContext);
|
|
|
|
NamedDecl *PrevDecl = nullptr;
|
|
if (Previous.begin() != Previous.end())
|
|
PrevDecl = (*Previous.begin())->getUnderlyingDecl();
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
// If there is a previous declaration with the same name, check
|
|
// whether this is a valid redeclaration.
|
|
ClassTemplateDecl *PrevClassTemplate =
|
|
dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
|
|
|
|
// We may have found the injected-class-name of a class template,
|
|
// class template partial specialization, or class template specialization.
|
|
// In these cases, grab the template that is being defined or specialized.
|
|
if (!PrevClassTemplate && isa_and_nonnull<CXXRecordDecl>(PrevDecl) &&
|
|
cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
|
|
PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
|
|
PrevClassTemplate
|
|
= cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
|
|
if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
|
|
PrevClassTemplate
|
|
= cast<ClassTemplateSpecializationDecl>(PrevDecl)
|
|
->getSpecializedTemplate();
|
|
}
|
|
}
|
|
|
|
if (TUK == TagUseKind::Friend) {
|
|
// C++ [namespace.memdef]p3:
|
|
// [...] When looking for a prior declaration of a class or a function
|
|
// declared as a friend, and when the name of the friend class or
|
|
// function is neither a qualified name nor a template-id, scopes outside
|
|
// the innermost enclosing namespace scope are not considered.
|
|
if (!SS.isSet()) {
|
|
DeclContext *OutermostContext = CurContext;
|
|
while (!OutermostContext->isFileContext())
|
|
OutermostContext = OutermostContext->getLookupParent();
|
|
|
|
if (PrevDecl &&
|
|
(OutermostContext->Equals(PrevDecl->getDeclContext()) ||
|
|
OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
|
|
SemanticContext = PrevDecl->getDeclContext();
|
|
} else {
|
|
// Declarations in outer scopes don't matter. However, the outermost
|
|
// context we computed is the semantic context for our new
|
|
// declaration.
|
|
PrevDecl = PrevClassTemplate = nullptr;
|
|
SemanticContext = OutermostContext;
|
|
|
|
// Check that the chosen semantic context doesn't already contain a
|
|
// declaration of this name as a non-tag type.
|
|
Previous.clear(LookupOrdinaryName);
|
|
DeclContext *LookupContext = SemanticContext;
|
|
while (LookupContext->isTransparentContext())
|
|
LookupContext = LookupContext->getLookupParent();
|
|
LookupQualifiedName(Previous, LookupContext);
|
|
|
|
if (Previous.isAmbiguous())
|
|
return true;
|
|
|
|
if (Previous.begin() != Previous.end())
|
|
PrevDecl = (*Previous.begin())->getUnderlyingDecl();
|
|
}
|
|
}
|
|
} else if (PrevDecl && !isDeclInScope(Previous.getRepresentativeDecl(),
|
|
SemanticContext, S, SS.isValid()))
|
|
PrevDecl = PrevClassTemplate = nullptr;
|
|
|
|
if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
|
|
PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
|
|
if (SS.isEmpty() &&
|
|
!(PrevClassTemplate &&
|
|
PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
|
|
SemanticContext->getRedeclContext()))) {
|
|
Diag(KWLoc, diag::err_using_decl_conflict_reverse);
|
|
Diag(Shadow->getTargetDecl()->getLocation(),
|
|
diag::note_using_decl_target);
|
|
Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
|
|
// Recover by ignoring the old declaration.
|
|
PrevDecl = PrevClassTemplate = nullptr;
|
|
}
|
|
}
|
|
|
|
if (PrevClassTemplate) {
|
|
// Ensure that the template parameter lists are compatible. Skip this check
|
|
// for a friend in a dependent context: the template parameter list itself
|
|
// could be dependent.
|
|
if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) &&
|
|
!TemplateParameterListsAreEqual(
|
|
TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
|
|
: CurContext,
|
|
CurContext, KWLoc),
|
|
TemplateParams, PrevClassTemplate,
|
|
PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
|
|
TPL_TemplateMatch))
|
|
return true;
|
|
|
|
// C++ [temp.class]p4:
|
|
// In a redeclaration, partial specialization, explicit
|
|
// specialization or explicit instantiation of a class template,
|
|
// the class-key shall agree in kind with the original class
|
|
// template declaration (7.1.5.3).
|
|
RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
|
|
if (!isAcceptableTagRedeclaration(
|
|
PrevRecordDecl, Kind, TUK == TagUseKind::Definition, KWLoc, Name)) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< Name
|
|
<< FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
|
|
Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
|
|
Kind = PrevRecordDecl->getTagKind();
|
|
}
|
|
|
|
// Check for redefinition of this class template.
|
|
if (TUK == TagUseKind::Definition) {
|
|
if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
|
|
// If we have a prior definition that is not visible, treat this as
|
|
// simply making that previous definition visible.
|
|
NamedDecl *Hidden = nullptr;
|
|
if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
|
|
SkipBody->ShouldSkip = true;
|
|
SkipBody->Previous = Def;
|
|
auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
|
|
assert(Tmpl && "original definition of a class template is not a "
|
|
"class template?");
|
|
makeMergedDefinitionVisible(Hidden);
|
|
makeMergedDefinitionVisible(Tmpl);
|
|
} else {
|
|
Diag(NameLoc, diag::err_redefinition) << Name;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
// FIXME: Would it make sense to try to "forget" the previous
|
|
// definition, as part of error recovery?
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
} else if (PrevDecl) {
|
|
// C++ [temp]p5:
|
|
// A class template shall not have the same name as any other
|
|
// template, class, function, object, enumeration, enumerator,
|
|
// namespace, or type in the same scope (3.3), except as specified
|
|
// in (14.5.4).
|
|
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
// Check the template parameter list of this declaration, possibly
|
|
// merging in the template parameter list from the previous class
|
|
// template declaration. Skip this check for a friend in a dependent
|
|
// context, because the template parameter list might be dependent.
|
|
if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) &&
|
|
CheckTemplateParameterList(
|
|
TemplateParams,
|
|
PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate)
|
|
: nullptr,
|
|
(SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
|
|
SemanticContext->isDependentContext())
|
|
? TPC_ClassTemplateMember
|
|
: TUK == TagUseKind::Friend ? TPC_FriendClassTemplate
|
|
: TPC_Other,
|
|
SkipBody))
|
|
Invalid = true;
|
|
|
|
if (SS.isSet()) {
|
|
// If the name of the template was qualified, we must be defining the
|
|
// template out-of-line.
|
|
if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
|
|
Diag(NameLoc, TUK == TagUseKind::Friend
|
|
? diag::err_friend_decl_does_not_match
|
|
: diag::err_member_decl_does_not_match)
|
|
<< Name << SemanticContext << /*IsDefinition*/ true << SS.getRange();
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
// If this is a templated friend in a dependent context we should not put it
|
|
// on the redecl chain. In some cases, the templated friend can be the most
|
|
// recent declaration tricking the template instantiator to make substitutions
|
|
// there.
|
|
// FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
|
|
bool ShouldAddRedecl =
|
|
!(TUK == TagUseKind::Friend && CurContext->isDependentContext());
|
|
|
|
CXXRecordDecl *NewClass =
|
|
CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
|
|
PrevClassTemplate && ShouldAddRedecl ?
|
|
PrevClassTemplate->getTemplatedDecl() : nullptr,
|
|
/*DelayTypeCreation=*/true);
|
|
SetNestedNameSpecifier(*this, NewClass, SS);
|
|
if (NumOuterTemplateParamLists > 0)
|
|
NewClass->setTemplateParameterListsInfo(
|
|
Context,
|
|
llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
|
|
|
|
// Add alignment attributes if necessary; these attributes are checked when
|
|
// the ASTContext lays out the structure.
|
|
if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
|
|
AddAlignmentAttributesForRecord(NewClass);
|
|
AddMsStructLayoutForRecord(NewClass);
|
|
}
|
|
|
|
ClassTemplateDecl *NewTemplate
|
|
= ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
|
|
DeclarationName(Name), TemplateParams,
|
|
NewClass);
|
|
|
|
if (ShouldAddRedecl)
|
|
NewTemplate->setPreviousDecl(PrevClassTemplate);
|
|
|
|
NewClass->setDescribedClassTemplate(NewTemplate);
|
|
|
|
if (ModulePrivateLoc.isValid())
|
|
NewTemplate->setModulePrivate();
|
|
|
|
// Build the type for the class template declaration now.
|
|
QualType T = NewTemplate->getInjectedClassNameSpecialization();
|
|
T = Context.getInjectedClassNameType(NewClass, T);
|
|
assert(T->isDependentType() && "Class template type is not dependent?");
|
|
(void)T;
|
|
|
|
// If we are providing an explicit specialization of a member that is a
|
|
// class template, make a note of that.
|
|
if (PrevClassTemplate &&
|
|
PrevClassTemplate->getInstantiatedFromMemberTemplate())
|
|
PrevClassTemplate->setMemberSpecialization();
|
|
|
|
// Set the access specifier.
|
|
if (!Invalid && TUK != TagUseKind::Friend &&
|
|
NewTemplate->getDeclContext()->isRecord())
|
|
SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
|
|
|
|
// Set the lexical context of these templates
|
|
NewClass->setLexicalDeclContext(CurContext);
|
|
NewTemplate->setLexicalDeclContext(CurContext);
|
|
|
|
if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip))
|
|
NewClass->startDefinition();
|
|
|
|
ProcessDeclAttributeList(S, NewClass, Attr);
|
|
|
|
if (PrevClassTemplate)
|
|
mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
|
|
|
|
AddPushedVisibilityAttribute(NewClass);
|
|
inferGslOwnerPointerAttribute(NewClass);
|
|
inferNullableClassAttribute(NewClass);
|
|
|
|
if (TUK != TagUseKind::Friend) {
|
|
// Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
|
|
Scope *Outer = S;
|
|
while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
|
|
Outer = Outer->getParent();
|
|
PushOnScopeChains(NewTemplate, Outer);
|
|
} else {
|
|
if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
|
|
NewTemplate->setAccess(PrevClassTemplate->getAccess());
|
|
NewClass->setAccess(PrevClassTemplate->getAccess());
|
|
}
|
|
|
|
NewTemplate->setObjectOfFriendDecl();
|
|
|
|
// Friend templates are visible in fairly strange ways.
|
|
if (!CurContext->isDependentContext()) {
|
|
DeclContext *DC = SemanticContext->getRedeclContext();
|
|
DC->makeDeclVisibleInContext(NewTemplate);
|
|
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
|
|
PushOnScopeChains(NewTemplate, EnclosingScope,
|
|
/* AddToContext = */ false);
|
|
}
|
|
|
|
FriendDecl *Friend = FriendDecl::Create(
|
|
Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
|
|
Friend->setAccess(AS_public);
|
|
CurContext->addDecl(Friend);
|
|
}
|
|
|
|
if (PrevClassTemplate)
|
|
CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
|
|
|
|
if (Invalid) {
|
|
NewTemplate->setInvalidDecl();
|
|
NewClass->setInvalidDecl();
|
|
}
|
|
|
|
ActOnDocumentableDecl(NewTemplate);
|
|
|
|
if (SkipBody && SkipBody->ShouldSkip)
|
|
return SkipBody->Previous;
|
|
|
|
return NewTemplate;
|
|
}
|
|
|
|
/// Diagnose the presence of a default template argument on a
|
|
/// template parameter, which is ill-formed in certain contexts.
|
|
///
|
|
/// \returns true if the default template argument should be dropped.
|
|
static bool DiagnoseDefaultTemplateArgument(Sema &S,
|
|
Sema::TemplateParamListContext TPC,
|
|
SourceLocation ParamLoc,
|
|
SourceRange DefArgRange) {
|
|
switch (TPC) {
|
|
case Sema::TPC_Other:
|
|
case Sema::TPC_TemplateTemplateParameterPack:
|
|
return false;
|
|
|
|
case Sema::TPC_FunctionTemplate:
|
|
case Sema::TPC_FriendFunctionTemplateDefinition:
|
|
// C++ [temp.param]p9:
|
|
// A default template-argument shall not be specified in a
|
|
// function template declaration or a function template
|
|
// definition [...]
|
|
// If a friend function template declaration specifies a default
|
|
// template-argument, that declaration shall be a definition and shall be
|
|
// the only declaration of the function template in the translation unit.
|
|
// (C++98/03 doesn't have this wording; see DR226).
|
|
S.DiagCompat(ParamLoc, diag_compat::templ_default_in_function_templ)
|
|
<< DefArgRange;
|
|
return false;
|
|
|
|
case Sema::TPC_ClassTemplateMember:
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument shall not be specified in the
|
|
// template-parameter-lists of the definition of a member of a
|
|
// class template that appears outside of the member's class.
|
|
S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
|
|
<< DefArgRange;
|
|
return true;
|
|
|
|
case Sema::TPC_FriendClassTemplate:
|
|
case Sema::TPC_FriendFunctionTemplate:
|
|
// C++ [temp.param]p9:
|
|
// A default template-argument shall not be specified in a
|
|
// friend template declaration.
|
|
S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
|
|
<< DefArgRange;
|
|
return true;
|
|
|
|
// FIXME: C++0x [temp.param]p9 allows default template-arguments
|
|
// for friend function templates if there is only a single
|
|
// declaration (and it is a definition). Strange!
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateParamListContext!");
|
|
}
|
|
|
|
/// Check for unexpanded parameter packs within the template parameters
|
|
/// of a template template parameter, recursively.
|
|
static bool DiagnoseUnexpandedParameterPacks(Sema &S,
|
|
TemplateTemplateParmDecl *TTP) {
|
|
// A template template parameter which is a parameter pack is also a pack
|
|
// expansion.
|
|
if (TTP->isParameterPack())
|
|
return false;
|
|
|
|
TemplateParameterList *Params = TTP->getTemplateParameters();
|
|
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
|
|
NamedDecl *P = Params->getParam(I);
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
|
|
if (!TTP->isParameterPack())
|
|
if (const TypeConstraint *TC = TTP->getTypeConstraint())
|
|
if (TC->hasExplicitTemplateArgs())
|
|
for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
|
|
if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
|
|
Sema::UPPC_TypeConstraint))
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
|
|
if (!NTTP->isParameterPack() &&
|
|
S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
|
|
NTTP->getTypeSourceInfo(),
|
|
Sema::UPPC_NonTypeTemplateParameterType))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (TemplateTemplateParmDecl *InnerTTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(P))
|
|
if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
|
|
TemplateParameterList *OldParams,
|
|
TemplateParamListContext TPC,
|
|
SkipBodyInfo *SkipBody) {
|
|
bool Invalid = false;
|
|
|
|
// C++ [temp.param]p10:
|
|
// The set of default template-arguments available for use with a
|
|
// template declaration or definition is obtained by merging the
|
|
// default arguments from the definition (if in scope) and all
|
|
// declarations in scope in the same way default function
|
|
// arguments are (8.3.6).
|
|
bool SawDefaultArgument = false;
|
|
SourceLocation PreviousDefaultArgLoc;
|
|
|
|
// Dummy initialization to avoid warnings.
|
|
TemplateParameterList::iterator OldParam = NewParams->end();
|
|
if (OldParams)
|
|
OldParam = OldParams->begin();
|
|
|
|
bool RemoveDefaultArguments = false;
|
|
for (TemplateParameterList::iterator NewParam = NewParams->begin(),
|
|
NewParamEnd = NewParams->end();
|
|
NewParam != NewParamEnd; ++NewParam) {
|
|
// Whether we've seen a duplicate default argument in the same translation
|
|
// unit.
|
|
bool RedundantDefaultArg = false;
|
|
// Whether we've found inconsis inconsitent default arguments in different
|
|
// translation unit.
|
|
bool InconsistentDefaultArg = false;
|
|
// The name of the module which contains the inconsistent default argument.
|
|
std::string PrevModuleName;
|
|
|
|
SourceLocation OldDefaultLoc;
|
|
SourceLocation NewDefaultLoc;
|
|
|
|
// Variable used to diagnose missing default arguments
|
|
bool MissingDefaultArg = false;
|
|
|
|
// Variable used to diagnose non-final parameter packs
|
|
bool SawParameterPack = false;
|
|
|
|
if (TemplateTypeParmDecl *NewTypeParm
|
|
= dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
|
|
// Check the presence of a default argument here.
|
|
if (NewTypeParm->hasDefaultArgument() &&
|
|
DiagnoseDefaultTemplateArgument(
|
|
*this, TPC, NewTypeParm->getLocation(),
|
|
NewTypeParm->getDefaultArgument().getSourceRange()))
|
|
NewTypeParm->removeDefaultArgument();
|
|
|
|
// Merge default arguments for template type parameters.
|
|
TemplateTypeParmDecl *OldTypeParm
|
|
= OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
|
|
if (NewTypeParm->isParameterPack()) {
|
|
assert(!NewTypeParm->hasDefaultArgument() &&
|
|
"Parameter packs can't have a default argument!");
|
|
SawParameterPack = true;
|
|
} else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
|
|
NewTypeParm->hasDefaultArgument() &&
|
|
(!SkipBody || !SkipBody->ShouldSkip)) {
|
|
OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
|
|
if (!OldTypeParm->getOwningModule())
|
|
RedundantDefaultArg = true;
|
|
else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
|
|
NewTypeParm)) {
|
|
InconsistentDefaultArg = true;
|
|
PrevModuleName =
|
|
OldTypeParm->getImportedOwningModule()->getFullModuleName();
|
|
}
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
|
|
PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
|
|
} else if (NewTypeParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
} else if (NonTypeTemplateParmDecl *NewNonTypeParm
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
|
|
// Check for unexpanded parameter packs, except in a template template
|
|
// parameter pack, as in those any unexpanded packs should be expanded
|
|
// along with the parameter itself.
|
|
if (TPC != TPC_TemplateTemplateParameterPack &&
|
|
!NewNonTypeParm->isParameterPack() &&
|
|
DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
|
|
NewNonTypeParm->getTypeSourceInfo(),
|
|
UPPC_NonTypeTemplateParameterType)) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check the presence of a default argument here.
|
|
if (NewNonTypeParm->hasDefaultArgument() &&
|
|
DiagnoseDefaultTemplateArgument(
|
|
*this, TPC, NewNonTypeParm->getLocation(),
|
|
NewNonTypeParm->getDefaultArgument().getSourceRange())) {
|
|
NewNonTypeParm->removeDefaultArgument();
|
|
}
|
|
|
|
// Merge default arguments for non-type template parameters
|
|
NonTypeTemplateParmDecl *OldNonTypeParm
|
|
= OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
|
|
if (NewNonTypeParm->isParameterPack()) {
|
|
assert(!NewNonTypeParm->hasDefaultArgument() &&
|
|
"Parameter packs can't have a default argument!");
|
|
if (!NewNonTypeParm->isPackExpansion())
|
|
SawParameterPack = true;
|
|
} else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
|
|
NewNonTypeParm->hasDefaultArgument() &&
|
|
(!SkipBody || !SkipBody->ShouldSkip)) {
|
|
OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
if (!OldNonTypeParm->getOwningModule())
|
|
RedundantDefaultArg = true;
|
|
else if (!getASTContext().isSameDefaultTemplateArgument(
|
|
OldNonTypeParm, NewNonTypeParm)) {
|
|
InconsistentDefaultArg = true;
|
|
PrevModuleName =
|
|
OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
|
|
}
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
|
|
PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
|
|
} else if (NewNonTypeParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
} else {
|
|
TemplateTemplateParmDecl *NewTemplateParm
|
|
= cast<TemplateTemplateParmDecl>(*NewParam);
|
|
|
|
// Check for unexpanded parameter packs, recursively.
|
|
if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check the presence of a default argument here.
|
|
if (NewTemplateParm->hasDefaultArgument() &&
|
|
DiagnoseDefaultTemplateArgument(*this, TPC,
|
|
NewTemplateParm->getLocation(),
|
|
NewTemplateParm->getDefaultArgument().getSourceRange()))
|
|
NewTemplateParm->removeDefaultArgument();
|
|
|
|
// Merge default arguments for template template parameters
|
|
TemplateTemplateParmDecl *OldTemplateParm
|
|
= OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
|
|
if (NewTemplateParm->isParameterPack()) {
|
|
assert(!NewTemplateParm->hasDefaultArgument() &&
|
|
"Parameter packs can't have a default argument!");
|
|
if (!NewTemplateParm->isPackExpansion())
|
|
SawParameterPack = true;
|
|
} else if (OldTemplateParm &&
|
|
hasVisibleDefaultArgument(OldTemplateParm) &&
|
|
NewTemplateParm->hasDefaultArgument() &&
|
|
(!SkipBody || !SkipBody->ShouldSkip)) {
|
|
OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
|
|
NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
|
|
SawDefaultArgument = true;
|
|
if (!OldTemplateParm->getOwningModule())
|
|
RedundantDefaultArg = true;
|
|
else if (!getASTContext().isSameDefaultTemplateArgument(
|
|
OldTemplateParm, NewTemplateParm)) {
|
|
InconsistentDefaultArg = true;
|
|
PrevModuleName =
|
|
OldTemplateParm->getImportedOwningModule()->getFullModuleName();
|
|
}
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
|
|
PreviousDefaultArgLoc
|
|
= OldTemplateParm->getDefaultArgument().getLocation();
|
|
} else if (NewTemplateParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc
|
|
= NewTemplateParm->getDefaultArgument().getLocation();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
}
|
|
|
|
// C++11 [temp.param]p11:
|
|
// If a template parameter of a primary class template or alias template
|
|
// is a template parameter pack, it shall be the last template parameter.
|
|
if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
|
|
(TPC == TPC_Other || TPC == TPC_TemplateTemplateParameterPack)) {
|
|
Diag((*NewParam)->getLocation(),
|
|
diag::err_template_param_pack_must_be_last_template_parameter);
|
|
Invalid = true;
|
|
}
|
|
|
|
// [basic.def.odr]/13:
|
|
// There can be more than one definition of a
|
|
// ...
|
|
// default template argument
|
|
// ...
|
|
// in a program provided that each definition appears in a different
|
|
// translation unit and the definitions satisfy the [same-meaning
|
|
// criteria of the ODR].
|
|
//
|
|
// Simply, the design of modules allows the definition of template default
|
|
// argument to be repeated across translation unit. Note that the ODR is
|
|
// checked elsewhere. But it is still not allowed to repeat template default
|
|
// argument in the same translation unit.
|
|
if (RedundantDefaultArg) {
|
|
Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
|
|
Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
|
|
Invalid = true;
|
|
} else if (InconsistentDefaultArg) {
|
|
// We could only diagnose about the case that the OldParam is imported.
|
|
// The case NewParam is imported should be handled in ASTReader.
|
|
Diag(NewDefaultLoc,
|
|
diag::err_template_param_default_arg_inconsistent_redefinition);
|
|
Diag(OldDefaultLoc,
|
|
diag::note_template_param_prev_default_arg_in_other_module)
|
|
<< PrevModuleName;
|
|
Invalid = true;
|
|
} else if (MissingDefaultArg &&
|
|
(TPC == TPC_Other || TPC == TPC_TemplateTemplateParameterPack ||
|
|
TPC == TPC_FriendClassTemplate)) {
|
|
// C++ 23[temp.param]p14:
|
|
// If a template-parameter of a class template, variable template, or
|
|
// alias template has a default template argument, each subsequent
|
|
// template-parameter shall either have a default template argument
|
|
// supplied or be a template parameter pack.
|
|
Diag((*NewParam)->getLocation(),
|
|
diag::err_template_param_default_arg_missing);
|
|
Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
|
|
Invalid = true;
|
|
RemoveDefaultArguments = true;
|
|
}
|
|
|
|
// If we have an old template parameter list that we're merging
|
|
// in, move on to the next parameter.
|
|
if (OldParams)
|
|
++OldParam;
|
|
}
|
|
|
|
// We were missing some default arguments at the end of the list, so remove
|
|
// all of the default arguments.
|
|
if (RemoveDefaultArguments) {
|
|
for (TemplateParameterList::iterator NewParam = NewParams->begin(),
|
|
NewParamEnd = NewParams->end();
|
|
NewParam != NewParamEnd; ++NewParam) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
|
|
TTP->removeDefaultArgument();
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
|
|
NTTP->removeDefaultArgument();
|
|
else
|
|
cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
|
|
}
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A class which looks for a use of a certain level of template
|
|
/// parameter.
|
|
struct DependencyChecker : DynamicRecursiveASTVisitor {
|
|
unsigned Depth;
|
|
|
|
// Whether we're looking for a use of a template parameter that makes the
|
|
// overall construct type-dependent / a dependent type. This is strictly
|
|
// best-effort for now; we may fail to match at all for a dependent type
|
|
// in some cases if this is set.
|
|
bool IgnoreNonTypeDependent;
|
|
|
|
bool Match;
|
|
SourceLocation MatchLoc;
|
|
|
|
DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
|
|
: Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
|
|
Match(false) {}
|
|
|
|
DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
|
|
: IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
|
|
NamedDecl *ND = Params->getParam(0);
|
|
if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
|
|
Depth = PD->getDepth();
|
|
} else if (NonTypeTemplateParmDecl *PD =
|
|
dyn_cast<NonTypeTemplateParmDecl>(ND)) {
|
|
Depth = PD->getDepth();
|
|
} else {
|
|
Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
|
|
}
|
|
}
|
|
|
|
bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
|
|
if (ParmDepth >= Depth) {
|
|
Match = true;
|
|
MatchLoc = Loc;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *S) override {
|
|
// Prune out non-type-dependent expressions if requested. This can
|
|
// sometimes result in us failing to find a template parameter reference
|
|
// (if a value-dependent expression creates a dependent type), but this
|
|
// mode is best-effort only.
|
|
if (auto *E = dyn_cast_or_null<Expr>(S))
|
|
if (IgnoreNonTypeDependent && !E->isTypeDependent())
|
|
return true;
|
|
return DynamicRecursiveASTVisitor::TraverseStmt(S);
|
|
}
|
|
|
|
bool TraverseTypeLoc(TypeLoc TL) override {
|
|
if (IgnoreNonTypeDependent && !TL.isNull() &&
|
|
!TL.getType()->isDependentType())
|
|
return true;
|
|
return DynamicRecursiveASTVisitor::TraverseTypeLoc(TL);
|
|
}
|
|
|
|
bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) override {
|
|
return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
|
|
}
|
|
|
|
bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override {
|
|
// For a best-effort search, keep looking until we find a location.
|
|
return IgnoreNonTypeDependent || !Matches(T->getDepth());
|
|
}
|
|
|
|
bool TraverseTemplateName(TemplateName N) override {
|
|
if (TemplateTemplateParmDecl *PD =
|
|
dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
|
|
if (Matches(PD->getDepth()))
|
|
return false;
|
|
return DynamicRecursiveASTVisitor::TraverseTemplateName(N);
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *E) override {
|
|
if (NonTypeTemplateParmDecl *PD =
|
|
dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
|
|
if (Matches(PD->getDepth(), E->getExprLoc()))
|
|
return false;
|
|
return DynamicRecursiveASTVisitor::VisitDeclRefExpr(E);
|
|
}
|
|
|
|
bool VisitSubstTemplateTypeParmType(SubstTemplateTypeParmType *T) override {
|
|
return TraverseType(T->getReplacementType());
|
|
}
|
|
|
|
bool VisitSubstTemplateTypeParmPackType(
|
|
SubstTemplateTypeParmPackType *T) override {
|
|
return TraverseTemplateArgument(T->getArgumentPack());
|
|
}
|
|
|
|
bool TraverseInjectedClassNameType(InjectedClassNameType *T) override {
|
|
return TraverseType(T->getInjectedSpecializationType());
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Determines whether a given type depends on the given parameter
|
|
/// list.
|
|
static bool
|
|
DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
|
|
if (!Params->size())
|
|
return false;
|
|
|
|
DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
|
|
Checker.TraverseType(T);
|
|
return Checker.Match;
|
|
}
|
|
|
|
// Find the source range corresponding to the named type in the given
|
|
// nested-name-specifier, if any.
|
|
static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
|
|
QualType T,
|
|
const CXXScopeSpec &SS) {
|
|
NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
|
|
while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
|
|
if (const Type *CurType = NNS->getAsType()) {
|
|
if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
|
|
return NNSLoc.getTypeLoc().getSourceRange();
|
|
} else
|
|
break;
|
|
|
|
NNSLoc = NNSLoc.getPrefix();
|
|
}
|
|
|
|
return SourceRange();
|
|
}
|
|
|
|
TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
|
|
SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TemplateId,
|
|
ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
|
|
bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
|
|
IsMemberSpecialization = false;
|
|
Invalid = false;
|
|
|
|
// The sequence of nested types to which we will match up the template
|
|
// parameter lists. We first build this list by starting with the type named
|
|
// by the nested-name-specifier and walking out until we run out of types.
|
|
SmallVector<QualType, 4> NestedTypes;
|
|
QualType T;
|
|
if (SS.getScopeRep()) {
|
|
if (CXXRecordDecl *Record
|
|
= dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
|
|
T = Context.getTypeDeclType(Record);
|
|
else
|
|
T = QualType(SS.getScopeRep()->getAsType(), 0);
|
|
}
|
|
|
|
// If we found an explicit specialization that prevents us from needing
|
|
// 'template<>' headers, this will be set to the location of that
|
|
// explicit specialization.
|
|
SourceLocation ExplicitSpecLoc;
|
|
|
|
while (!T.isNull()) {
|
|
NestedTypes.push_back(T);
|
|
|
|
// Retrieve the parent of a record type.
|
|
if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
|
|
// If this type is an explicit specialization, we're done.
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
|
|
if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
|
|
Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
|
|
ExplicitSpecLoc = Spec->getLocation();
|
|
break;
|
|
}
|
|
} else if (Record->getTemplateSpecializationKind()
|
|
== TSK_ExplicitSpecialization) {
|
|
ExplicitSpecLoc = Record->getLocation();
|
|
break;
|
|
}
|
|
|
|
if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
|
|
T = Context.getTypeDeclType(Parent);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
if (const TemplateSpecializationType *TST
|
|
= T->getAs<TemplateSpecializationType>()) {
|
|
if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
|
|
if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
|
|
T = Context.getTypeDeclType(Parent);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Look one step prior in a dependent template specialization type.
|
|
if (const DependentTemplateSpecializationType *DependentTST
|
|
= T->getAs<DependentTemplateSpecializationType>()) {
|
|
if (NestedNameSpecifier *NNS =
|
|
DependentTST->getDependentTemplateName().getQualifier())
|
|
T = QualType(NNS->getAsType(), 0);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
// Look one step prior in a dependent name type.
|
|
if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
|
|
if (NestedNameSpecifier *NNS = DependentName->getQualifier())
|
|
T = QualType(NNS->getAsType(), 0);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
// Retrieve the parent of an enumeration type.
|
|
if (const EnumType *EnumT = T->getAs<EnumType>()) {
|
|
// FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
|
|
// check here.
|
|
EnumDecl *Enum = EnumT->getDecl();
|
|
|
|
// Get to the parent type.
|
|
if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
|
|
T = Context.getTypeDeclType(Parent);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
T = QualType();
|
|
}
|
|
// Reverse the nested types list, since we want to traverse from the outermost
|
|
// to the innermost while checking template-parameter-lists.
|
|
std::reverse(NestedTypes.begin(), NestedTypes.end());
|
|
|
|
// C++0x [temp.expl.spec]p17:
|
|
// A member or a member template may be nested within many
|
|
// enclosing class templates. In an explicit specialization for
|
|
// such a member, the member declaration shall be preceded by a
|
|
// template<> for each enclosing class template that is
|
|
// explicitly specialized.
|
|
bool SawNonEmptyTemplateParameterList = false;
|
|
|
|
auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
|
|
if (SawNonEmptyTemplateParameterList) {
|
|
if (!SuppressDiagnostic)
|
|
Diag(DeclLoc, diag::err_specialize_member_of_template)
|
|
<< !Recovery << Range;
|
|
Invalid = true;
|
|
IsMemberSpecialization = false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
|
|
// Check that we can have an explicit specialization here.
|
|
if (CheckExplicitSpecialization(Range, true))
|
|
return true;
|
|
|
|
// We don't have a template header, but we should.
|
|
SourceLocation ExpectedTemplateLoc;
|
|
if (!ParamLists.empty())
|
|
ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
|
|
else
|
|
ExpectedTemplateLoc = DeclStartLoc;
|
|
|
|
if (!SuppressDiagnostic)
|
|
Diag(DeclLoc, diag::err_template_spec_needs_header)
|
|
<< Range
|
|
<< FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
|
|
return false;
|
|
};
|
|
|
|
unsigned ParamIdx = 0;
|
|
for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
|
|
++TypeIdx) {
|
|
T = NestedTypes[TypeIdx];
|
|
|
|
// Whether we expect a 'template<>' header.
|
|
bool NeedEmptyTemplateHeader = false;
|
|
|
|
// Whether we expect a template header with parameters.
|
|
bool NeedNonemptyTemplateHeader = false;
|
|
|
|
// For a dependent type, the set of template parameters that we
|
|
// expect to see.
|
|
TemplateParameterList *ExpectedTemplateParams = nullptr;
|
|
|
|
// C++0x [temp.expl.spec]p15:
|
|
// A member or a member template may be nested within many enclosing
|
|
// class templates. In an explicit specialization for such a member, the
|
|
// member declaration shall be preceded by a template<> for each
|
|
// enclosing class template that is explicitly specialized.
|
|
if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
|
|
if (ClassTemplatePartialSpecializationDecl *Partial
|
|
= dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
|
|
ExpectedTemplateParams = Partial->getTemplateParameters();
|
|
NeedNonemptyTemplateHeader = true;
|
|
} else if (Record->isDependentType()) {
|
|
if (Record->getDescribedClassTemplate()) {
|
|
ExpectedTemplateParams = Record->getDescribedClassTemplate()
|
|
->getTemplateParameters();
|
|
NeedNonemptyTemplateHeader = true;
|
|
}
|
|
} else if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
|
|
// C++0x [temp.expl.spec]p4:
|
|
// Members of an explicitly specialized class template are defined
|
|
// in the same manner as members of normal classes, and not using
|
|
// the template<> syntax.
|
|
if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
|
|
NeedEmptyTemplateHeader = true;
|
|
else
|
|
continue;
|
|
} else if (Record->getTemplateSpecializationKind()) {
|
|
if (Record->getTemplateSpecializationKind()
|
|
!= TSK_ExplicitSpecialization &&
|
|
TypeIdx == NumTypes - 1)
|
|
IsMemberSpecialization = true;
|
|
|
|
continue;
|
|
}
|
|
} else if (const TemplateSpecializationType *TST
|
|
= T->getAs<TemplateSpecializationType>()) {
|
|
if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
|
|
ExpectedTemplateParams = Template->getTemplateParameters();
|
|
NeedNonemptyTemplateHeader = true;
|
|
}
|
|
} else if (T->getAs<DependentTemplateSpecializationType>()) {
|
|
// FIXME: We actually could/should check the template arguments here
|
|
// against the corresponding template parameter list.
|
|
NeedNonemptyTemplateHeader = false;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p16:
|
|
// In an explicit specialization declaration for a member of a class
|
|
// template or a member template that appears in namespace scope, the
|
|
// member template and some of its enclosing class templates may remain
|
|
// unspecialized, except that the declaration shall not explicitly
|
|
// specialize a class member template if its enclosing class templates
|
|
// are not explicitly specialized as well.
|
|
if (ParamIdx < ParamLists.size()) {
|
|
if (ParamLists[ParamIdx]->size() == 0) {
|
|
if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
|
|
false))
|
|
return nullptr;
|
|
} else
|
|
SawNonEmptyTemplateParameterList = true;
|
|
}
|
|
|
|
if (NeedEmptyTemplateHeader) {
|
|
// If we're on the last of the types, and we need a 'template<>' header
|
|
// here, then it's a member specialization.
|
|
if (TypeIdx == NumTypes - 1)
|
|
IsMemberSpecialization = true;
|
|
|
|
if (ParamIdx < ParamLists.size()) {
|
|
if (ParamLists[ParamIdx]->size() > 0) {
|
|
// The header has template parameters when it shouldn't. Complain.
|
|
if (!SuppressDiagnostic)
|
|
Diag(ParamLists[ParamIdx]->getTemplateLoc(),
|
|
diag::err_template_param_list_matches_nontemplate)
|
|
<< T
|
|
<< SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
|
|
ParamLists[ParamIdx]->getRAngleLoc())
|
|
<< getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
|
|
Invalid = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// Consume this template header.
|
|
++ParamIdx;
|
|
continue;
|
|
}
|
|
|
|
if (!IsFriend)
|
|
if (DiagnoseMissingExplicitSpecialization(
|
|
getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
|
|
return nullptr;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (NeedNonemptyTemplateHeader) {
|
|
// In friend declarations we can have template-ids which don't
|
|
// depend on the corresponding template parameter lists. But
|
|
// assume that empty parameter lists are supposed to match this
|
|
// template-id.
|
|
if (IsFriend && T->isDependentType()) {
|
|
if (ParamIdx < ParamLists.size() &&
|
|
DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
|
|
ExpectedTemplateParams = nullptr;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
if (ParamIdx < ParamLists.size()) {
|
|
// Check the template parameter list, if we can.
|
|
if (ExpectedTemplateParams &&
|
|
!TemplateParameterListsAreEqual(ParamLists[ParamIdx],
|
|
ExpectedTemplateParams,
|
|
!SuppressDiagnostic, TPL_TemplateMatch))
|
|
Invalid = true;
|
|
|
|
if (!Invalid &&
|
|
CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
|
|
TPC_ClassTemplateMember))
|
|
Invalid = true;
|
|
|
|
++ParamIdx;
|
|
continue;
|
|
}
|
|
|
|
if (!SuppressDiagnostic)
|
|
Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
|
|
<< T
|
|
<< getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If there were at least as many template-ids as there were template
|
|
// parameter lists, then there are no template parameter lists remaining for
|
|
// the declaration itself.
|
|
if (ParamIdx >= ParamLists.size()) {
|
|
if (TemplateId && !IsFriend) {
|
|
// We don't have a template header for the declaration itself, but we
|
|
// should.
|
|
DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
|
|
TemplateId->RAngleLoc));
|
|
|
|
// Fabricate an empty template parameter list for the invented header.
|
|
return TemplateParameterList::Create(Context, SourceLocation(),
|
|
SourceLocation(), {},
|
|
SourceLocation(), nullptr);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If there were too many template parameter lists, complain about that now.
|
|
if (ParamIdx < ParamLists.size() - 1) {
|
|
bool HasAnyExplicitSpecHeader = false;
|
|
bool AllExplicitSpecHeaders = true;
|
|
for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
|
|
if (ParamLists[I]->size() == 0)
|
|
HasAnyExplicitSpecHeader = true;
|
|
else
|
|
AllExplicitSpecHeaders = false;
|
|
}
|
|
|
|
if (!SuppressDiagnostic)
|
|
Diag(ParamLists[ParamIdx]->getTemplateLoc(),
|
|
AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers
|
|
: diag::err_template_spec_extra_headers)
|
|
<< SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
|
|
ParamLists[ParamLists.size() - 2]->getRAngleLoc());
|
|
|
|
// If there was a specialization somewhere, such that 'template<>' is
|
|
// not required, and there were any 'template<>' headers, note where the
|
|
// specialization occurred.
|
|
if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
|
|
!SuppressDiagnostic)
|
|
Diag(ExplicitSpecLoc,
|
|
diag::note_explicit_template_spec_does_not_need_header)
|
|
<< NestedTypes.back();
|
|
|
|
// We have a template parameter list with no corresponding scope, which
|
|
// means that the resulting template declaration can't be instantiated
|
|
// properly (we'll end up with dependent nodes when we shouldn't).
|
|
if (!AllExplicitSpecHeaders)
|
|
Invalid = true;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p16:
|
|
// In an explicit specialization declaration for a member of a class
|
|
// template or a member template that ap- pears in namespace scope, the
|
|
// member template and some of its enclosing class templates may remain
|
|
// unspecialized, except that the declaration shall not explicitly
|
|
// specialize a class member template if its en- closing class templates
|
|
// are not explicitly specialized as well.
|
|
if (ParamLists.back()->size() == 0 &&
|
|
CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
|
|
false))
|
|
return nullptr;
|
|
|
|
// Return the last template parameter list, which corresponds to the
|
|
// entity being declared.
|
|
return ParamLists.back();
|
|
}
|
|
|
|
void Sema::NoteAllFoundTemplates(TemplateName Name) {
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
Diag(Template->getLocation(), diag::note_template_declared_here)
|
|
<< (isa<FunctionTemplateDecl>(Template)
|
|
? 0
|
|
: isa<ClassTemplateDecl>(Template)
|
|
? 1
|
|
: isa<VarTemplateDecl>(Template)
|
|
? 2
|
|
: isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
|
|
<< Template->getDeclName();
|
|
return;
|
|
}
|
|
|
|
if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
|
|
for (OverloadedTemplateStorage::iterator I = OST->begin(),
|
|
IEnd = OST->end();
|
|
I != IEnd; ++I)
|
|
Diag((*I)->getLocation(), diag::note_template_declared_here)
|
|
<< 0 << (*I)->getDeclName();
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
static QualType builtinCommonTypeImpl(Sema &S, TemplateName BaseTemplate,
|
|
SourceLocation TemplateLoc,
|
|
ArrayRef<TemplateArgument> Ts) {
|
|
auto lookUpCommonType = [&](TemplateArgument T1,
|
|
TemplateArgument T2) -> QualType {
|
|
// Don't bother looking for other specializations if both types are
|
|
// builtins - users aren't allowed to specialize for them
|
|
if (T1.getAsType()->isBuiltinType() && T2.getAsType()->isBuiltinType())
|
|
return builtinCommonTypeImpl(S, BaseTemplate, TemplateLoc, {T1, T2});
|
|
|
|
TemplateArgumentListInfo Args;
|
|
Args.addArgument(TemplateArgumentLoc(
|
|
T1, S.Context.getTrivialTypeSourceInfo(T1.getAsType())));
|
|
Args.addArgument(TemplateArgumentLoc(
|
|
T2, S.Context.getTrivialTypeSourceInfo(T2.getAsType())));
|
|
|
|
EnterExpressionEvaluationContext UnevaluatedContext(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
|
|
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
|
|
|
|
QualType BaseTemplateInst =
|
|
S.CheckTemplateIdType(BaseTemplate, TemplateLoc, Args);
|
|
|
|
if (SFINAE.hasErrorOccurred())
|
|
return QualType();
|
|
|
|
return BaseTemplateInst;
|
|
};
|
|
|
|
// Note A: For the common_type trait applied to a template parameter pack T of
|
|
// types, the member type shall be either defined or not present as follows:
|
|
switch (Ts.size()) {
|
|
|
|
// If sizeof...(T) is zero, there shall be no member type.
|
|
case 0:
|
|
return QualType();
|
|
|
|
// If sizeof...(T) is one, let T0 denote the sole type constituting the
|
|
// pack T. The member typedef-name type shall denote the same type, if any, as
|
|
// common_type_t<T0, T0>; otherwise there shall be no member type.
|
|
case 1:
|
|
return lookUpCommonType(Ts[0], Ts[0]);
|
|
|
|
// If sizeof...(T) is two, let the first and second types constituting T be
|
|
// denoted by T1 and T2, respectively, and let D1 and D2 denote the same types
|
|
// as decay_t<T1> and decay_t<T2>, respectively.
|
|
case 2: {
|
|
QualType T1 = Ts[0].getAsType();
|
|
QualType T2 = Ts[1].getAsType();
|
|
QualType D1 = S.BuiltinDecay(T1, {});
|
|
QualType D2 = S.BuiltinDecay(T2, {});
|
|
|
|
// If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote
|
|
// the same type, if any, as common_type_t<D1, D2>.
|
|
if (!S.Context.hasSameType(T1, D1) || !S.Context.hasSameType(T2, D2))
|
|
return lookUpCommonType(D1, D2);
|
|
|
|
// Otherwise, if decay_t<decltype(false ? declval<D1>() : declval<D2>())>
|
|
// denotes a valid type, let C denote that type.
|
|
{
|
|
auto CheckConditionalOperands = [&](bool ConstRefQual) -> QualType {
|
|
EnterExpressionEvaluationContext UnevaluatedContext(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
|
|
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
|
|
|
|
// false
|
|
OpaqueValueExpr CondExpr(SourceLocation(), S.Context.BoolTy,
|
|
VK_PRValue);
|
|
ExprResult Cond = &CondExpr;
|
|
|
|
auto EVK = ConstRefQual ? VK_LValue : VK_PRValue;
|
|
if (ConstRefQual) {
|
|
D1.addConst();
|
|
D2.addConst();
|
|
}
|
|
|
|
// declval<D1>()
|
|
OpaqueValueExpr LHSExpr(TemplateLoc, D1, EVK);
|
|
ExprResult LHS = &LHSExpr;
|
|
|
|
// declval<D2>()
|
|
OpaqueValueExpr RHSExpr(TemplateLoc, D2, EVK);
|
|
ExprResult RHS = &RHSExpr;
|
|
|
|
ExprValueKind VK = VK_PRValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
|
|
// decltype(false ? declval<D1>() : declval<D2>())
|
|
QualType Result =
|
|
S.CheckConditionalOperands(Cond, LHS, RHS, VK, OK, TemplateLoc);
|
|
|
|
if (Result.isNull() || SFINAE.hasErrorOccurred())
|
|
return QualType();
|
|
|
|
// decay_t<decltype(false ? declval<D1>() : declval<D2>())>
|
|
return S.BuiltinDecay(Result, TemplateLoc);
|
|
};
|
|
|
|
if (auto Res = CheckConditionalOperands(false); !Res.isNull())
|
|
return Res;
|
|
|
|
// Let:
|
|
// CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>,
|
|
// COND-RES(X, Y) be
|
|
// decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()()).
|
|
|
|
// C++20 only
|
|
// Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type, let C denote
|
|
// the type decay_t<COND-RES(CREF(D1), CREF(D2))>.
|
|
if (!S.Context.getLangOpts().CPlusPlus20)
|
|
return QualType();
|
|
return CheckConditionalOperands(true);
|
|
}
|
|
}
|
|
|
|
// If sizeof...(T) is greater than two, let T1, T2, and R, respectively,
|
|
// denote the first, second, and (pack of) remaining types constituting T. Let
|
|
// C denote the same type, if any, as common_type_t<T1, T2>. If there is such
|
|
// a type C, the member typedef-name type shall denote the same type, if any,
|
|
// as common_type_t<C, R...>. Otherwise, there shall be no member type.
|
|
default: {
|
|
QualType Result = Ts.front().getAsType();
|
|
for (auto T : llvm::drop_begin(Ts)) {
|
|
Result = lookUpCommonType(Result, T.getAsType());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
|
|
static QualType
|
|
checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
|
|
ArrayRef<TemplateArgument> Converted,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
ASTContext &Context = SemaRef.getASTContext();
|
|
|
|
switch (BTD->getBuiltinTemplateKind()) {
|
|
case BTK__make_integer_seq: {
|
|
// Specializations of __make_integer_seq<S, T, N> are treated like
|
|
// S<T, 0, ..., N-1>.
|
|
|
|
QualType OrigType = Converted[1].getAsType();
|
|
// C++14 [inteseq.intseq]p1:
|
|
// T shall be an integer type.
|
|
if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
|
|
SemaRef.Diag(TemplateArgs[1].getLocation(),
|
|
diag::err_integer_sequence_integral_element_type);
|
|
return QualType();
|
|
}
|
|
|
|
TemplateArgument NumArgsArg = Converted[2];
|
|
if (NumArgsArg.isDependent())
|
|
return QualType();
|
|
|
|
TemplateArgumentListInfo SyntheticTemplateArgs;
|
|
// The type argument, wrapped in substitution sugar, gets reused as the
|
|
// first template argument in the synthetic template argument list.
|
|
SyntheticTemplateArgs.addArgument(
|
|
TemplateArgumentLoc(TemplateArgument(OrigType),
|
|
SemaRef.Context.getTrivialTypeSourceInfo(
|
|
OrigType, TemplateArgs[1].getLocation())));
|
|
|
|
if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
|
|
// Expand N into 0 ... N-1.
|
|
for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
|
|
I < NumArgs; ++I) {
|
|
TemplateArgument TA(Context, I, OrigType);
|
|
SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
|
|
TA, OrigType, TemplateArgs[2].getLocation()));
|
|
}
|
|
} else {
|
|
// C++14 [inteseq.make]p1:
|
|
// If N is negative the program is ill-formed.
|
|
SemaRef.Diag(TemplateArgs[2].getLocation(),
|
|
diag::err_integer_sequence_negative_length);
|
|
return QualType();
|
|
}
|
|
|
|
// The first template argument will be reused as the template decl that
|
|
// our synthetic template arguments will be applied to.
|
|
return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
|
|
TemplateLoc, SyntheticTemplateArgs);
|
|
}
|
|
|
|
case BTK__type_pack_element: {
|
|
// Specializations of
|
|
// __type_pack_element<Index, T_1, ..., T_N>
|
|
// are treated like T_Index.
|
|
assert(Converted.size() == 2 &&
|
|
"__type_pack_element should be given an index and a parameter pack");
|
|
|
|
TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
|
|
if (IndexArg.isDependent() || Ts.isDependent())
|
|
return QualType();
|
|
|
|
llvm::APSInt Index = IndexArg.getAsIntegral();
|
|
assert(Index >= 0 && "the index used with __type_pack_element should be of "
|
|
"type std::size_t, and hence be non-negative");
|
|
// If the Index is out of bounds, the program is ill-formed.
|
|
if (Index >= Ts.pack_size()) {
|
|
SemaRef.Diag(TemplateArgs[0].getLocation(),
|
|
diag::err_type_pack_element_out_of_bounds);
|
|
return QualType();
|
|
}
|
|
|
|
// We simply return the type at index `Index`.
|
|
int64_t N = Index.getExtValue();
|
|
return Ts.getPackAsArray()[N].getAsType();
|
|
}
|
|
|
|
case BTK__builtin_common_type: {
|
|
assert(Converted.size() == 4);
|
|
if (llvm::any_of(Converted, [](auto &C) { return C.isDependent(); }))
|
|
return QualType();
|
|
|
|
TemplateName BaseTemplate = Converted[0].getAsTemplate();
|
|
ArrayRef<TemplateArgument> Ts = Converted[3].getPackAsArray();
|
|
if (auto CT = builtinCommonTypeImpl(SemaRef, BaseTemplate, TemplateLoc, Ts);
|
|
!CT.isNull()) {
|
|
TemplateArgumentListInfo TAs;
|
|
TAs.addArgument(TemplateArgumentLoc(
|
|
TemplateArgument(CT), SemaRef.Context.getTrivialTypeSourceInfo(
|
|
CT, TemplateArgs[1].getLocation())));
|
|
TemplateName HasTypeMember = Converted[1].getAsTemplate();
|
|
return SemaRef.CheckTemplateIdType(HasTypeMember, TemplateLoc, TAs);
|
|
}
|
|
QualType HasNoTypeMember = Converted[2].getAsType();
|
|
return HasNoTypeMember;
|
|
}
|
|
}
|
|
llvm_unreachable("unexpected BuiltinTemplateDecl!");
|
|
}
|
|
|
|
/// Determine whether this alias template is "enable_if_t".
|
|
/// libc++ >=14 uses "__enable_if_t" in C++11 mode.
|
|
static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
|
|
return AliasTemplate->getName() == "enable_if_t" ||
|
|
AliasTemplate->getName() == "__enable_if_t";
|
|
}
|
|
|
|
/// Collect all of the separable terms in the given condition, which
|
|
/// might be a conjunction.
|
|
///
|
|
/// FIXME: The right answer is to convert the logical expression into
|
|
/// disjunctive normal form, so we can find the first failed term
|
|
/// within each possible clause.
|
|
static void collectConjunctionTerms(Expr *Clause,
|
|
SmallVectorImpl<Expr *> &Terms) {
|
|
if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
|
|
if (BinOp->getOpcode() == BO_LAnd) {
|
|
collectConjunctionTerms(BinOp->getLHS(), Terms);
|
|
collectConjunctionTerms(BinOp->getRHS(), Terms);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Terms.push_back(Clause);
|
|
}
|
|
|
|
// The ranges-v3 library uses an odd pattern of a top-level "||" with
|
|
// a left-hand side that is value-dependent but never true. Identify
|
|
// the idiom and ignore that term.
|
|
static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
|
|
// Top-level '||'.
|
|
auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
|
|
if (!BinOp) return Cond;
|
|
|
|
if (BinOp->getOpcode() != BO_LOr) return Cond;
|
|
|
|
// With an inner '==' that has a literal on the right-hand side.
|
|
Expr *LHS = BinOp->getLHS();
|
|
auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
|
|
if (!InnerBinOp) return Cond;
|
|
|
|
if (InnerBinOp->getOpcode() != BO_EQ ||
|
|
!isa<IntegerLiteral>(InnerBinOp->getRHS()))
|
|
return Cond;
|
|
|
|
// If the inner binary operation came from a macro expansion named
|
|
// CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
|
|
// of the '||', which is the real, user-provided condition.
|
|
SourceLocation Loc = InnerBinOp->getExprLoc();
|
|
if (!Loc.isMacroID()) return Cond;
|
|
|
|
StringRef MacroName = PP.getImmediateMacroName(Loc);
|
|
if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
|
|
return BinOp->getRHS();
|
|
|
|
return Cond;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
|
|
// within failing boolean expression, such as substituting template parameters
|
|
// for actual types.
|
|
class FailedBooleanConditionPrinterHelper : public PrinterHelper {
|
|
public:
|
|
explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
|
|
: Policy(P) {}
|
|
|
|
bool handledStmt(Stmt *E, raw_ostream &OS) override {
|
|
const auto *DR = dyn_cast<DeclRefExpr>(E);
|
|
if (DR && DR->getQualifier()) {
|
|
// If this is a qualified name, expand the template arguments in nested
|
|
// qualifiers.
|
|
DR->getQualifier()->print(OS, Policy, true);
|
|
// Then print the decl itself.
|
|
const ValueDecl *VD = DR->getDecl();
|
|
OS << VD->getName();
|
|
if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
|
|
// This is a template variable, print the expanded template arguments.
|
|
printTemplateArgumentList(
|
|
OS, IV->getTemplateArgs().asArray(), Policy,
|
|
IV->getSpecializedTemplate()->getTemplateParameters());
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const PrintingPolicy Policy;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::pair<Expr *, std::string>
|
|
Sema::findFailedBooleanCondition(Expr *Cond) {
|
|
Cond = lookThroughRangesV3Condition(PP, Cond);
|
|
|
|
// Separate out all of the terms in a conjunction.
|
|
SmallVector<Expr *, 4> Terms;
|
|
collectConjunctionTerms(Cond, Terms);
|
|
|
|
// Determine which term failed.
|
|
Expr *FailedCond = nullptr;
|
|
for (Expr *Term : Terms) {
|
|
Expr *TermAsWritten = Term->IgnoreParenImpCasts();
|
|
|
|
// Literals are uninteresting.
|
|
if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
|
|
isa<IntegerLiteral>(TermAsWritten))
|
|
continue;
|
|
|
|
// The initialization of the parameter from the argument is
|
|
// a constant-evaluated context.
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
*this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
bool Succeeded;
|
|
if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
|
|
!Succeeded) {
|
|
FailedCond = TermAsWritten;
|
|
break;
|
|
}
|
|
}
|
|
if (!FailedCond)
|
|
FailedCond = Cond->IgnoreParenImpCasts();
|
|
|
|
std::string Description;
|
|
{
|
|
llvm::raw_string_ostream Out(Description);
|
|
PrintingPolicy Policy = getPrintingPolicy();
|
|
Policy.PrintCanonicalTypes = true;
|
|
FailedBooleanConditionPrinterHelper Helper(Policy);
|
|
FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
|
|
}
|
|
return { FailedCond, Description };
|
|
}
|
|
|
|
QualType Sema::CheckTemplateIdType(TemplateName Name,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
// FIXME: 'getUnderlying' loses SubstTemplateTemplateParm nodes from alias
|
|
// template substitutions.
|
|
if (DependentTemplateName *DTN =
|
|
Name.getUnderlying().getAsDependentTemplateName();
|
|
DTN && DTN->getName().getIdentifier())
|
|
// When building a template-id where the template-name is dependent,
|
|
// assume the template is a type template. Either our assumption is
|
|
// correct, or the code is ill-formed and will be diagnosed when the
|
|
// dependent name is substituted.
|
|
return Context.getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword::None, *DTN, TemplateArgs.arguments());
|
|
|
|
if (Name.getAsAssumedTemplateName() &&
|
|
resolveAssumedTemplateNameAsType(/*Scope=*/nullptr, Name, TemplateLoc))
|
|
return QualType();
|
|
|
|
TemplateDecl *Template;
|
|
DefaultArguments DefaultArgs;
|
|
if (const SubstTemplateTemplateParmPackStorage *S =
|
|
Name.getAsSubstTemplateTemplateParmPack()) {
|
|
Template = S->getParameterPack();
|
|
} else {
|
|
std::tie(Template, DefaultArgs) = Name.getTemplateDeclAndDefaultArgs();
|
|
if (!Template || isa<FunctionTemplateDecl>(Template) ||
|
|
isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
|
|
Diag(TemplateLoc, diag::err_template_id_not_a_type) << Name;
|
|
NoteAllFoundTemplates(Name);
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
|
|
DefaultArgs, /*PartialTemplateArgs=*/false,
|
|
CTAI,
|
|
/*UpdateArgsWithConversions=*/true))
|
|
return QualType();
|
|
|
|
QualType CanonType;
|
|
|
|
if (isa<TemplateTemplateParmDecl>(Template)) {
|
|
// We might have a substituted template template parameter pack. If so,
|
|
// build a template specialization type for it.
|
|
} else if (TypeAliasTemplateDecl *AliasTemplate =
|
|
dyn_cast<TypeAliasTemplateDecl>(Template)) {
|
|
|
|
// Find the canonical type for this type alias template specialization.
|
|
TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
|
|
if (Pattern->isInvalidDecl())
|
|
return QualType();
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists;
|
|
TemplateArgLists.addOuterTemplateArguments(Template, CTAI.SugaredConverted,
|
|
/*Final=*/true);
|
|
TemplateArgLists.addOuterRetainedLevels(
|
|
AliasTemplate->getTemplateParameters()->getDepth());
|
|
|
|
LocalInstantiationScope Scope(*this);
|
|
InstantiatingTemplate Inst(
|
|
*this, /*PointOfInstantiation=*/TemplateLoc,
|
|
/*Entity=*/AliasTemplate,
|
|
/*TemplateArgs=*/TemplateArgLists.getInnermost());
|
|
|
|
// Diagnose uses of this alias.
|
|
(void)DiagnoseUseOfDecl(AliasTemplate, TemplateLoc);
|
|
|
|
if (Inst.isInvalid())
|
|
return QualType();
|
|
|
|
std::optional<ContextRAII> SavedContext;
|
|
if (!AliasTemplate->getDeclContext()->isFileContext())
|
|
SavedContext.emplace(*this, AliasTemplate->getDeclContext());
|
|
|
|
CanonType =
|
|
SubstType(Pattern->getUnderlyingType(), TemplateArgLists,
|
|
AliasTemplate->getLocation(), AliasTemplate->getDeclName());
|
|
if (CanonType.isNull()) {
|
|
// If this was enable_if and we failed to find the nested type
|
|
// within enable_if in a SFINAE context, dig out the specific
|
|
// enable_if condition that failed and present that instead.
|
|
if (isEnableIfAliasTemplate(AliasTemplate)) {
|
|
if (auto DeductionInfo = isSFINAEContext()) {
|
|
if (*DeductionInfo &&
|
|
(*DeductionInfo)->hasSFINAEDiagnostic() &&
|
|
(*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
|
|
diag::err_typename_nested_not_found_enable_if &&
|
|
TemplateArgs[0].getArgument().getKind()
|
|
== TemplateArgument::Expression) {
|
|
Expr *FailedCond;
|
|
std::string FailedDescription;
|
|
std::tie(FailedCond, FailedDescription) =
|
|
findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
|
|
|
|
// Remove the old SFINAE diagnostic.
|
|
PartialDiagnosticAt OldDiag =
|
|
{SourceLocation(), PartialDiagnostic::NullDiagnostic()};
|
|
(*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
|
|
|
|
// Add a new SFINAE diagnostic specifying which condition
|
|
// failed.
|
|
(*DeductionInfo)->addSFINAEDiagnostic(
|
|
OldDiag.first,
|
|
PDiag(diag::err_typename_nested_not_found_requirement)
|
|
<< FailedDescription
|
|
<< FailedCond->getSourceRange());
|
|
}
|
|
}
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
} else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
|
|
CanonType = checkBuiltinTemplateIdType(*this, BTD, CTAI.SugaredConverted,
|
|
TemplateLoc, TemplateArgs);
|
|
} else if (Name.isDependent() ||
|
|
TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs, CTAI.CanonicalConverted)) {
|
|
// This class template specialization is a dependent
|
|
// type. Therefore, its canonical type is another class template
|
|
// specialization type that contains all of the converted
|
|
// arguments in canonical form. This ensures that, e.g., A<T> and
|
|
// A<T, T> have identical types when A is declared as:
|
|
//
|
|
// template<typename T, typename U = T> struct A;
|
|
CanonType = Context.getCanonicalTemplateSpecializationType(
|
|
Context.getCanonicalTemplateName(Name, /*IgnoreDeduced=*/true),
|
|
CTAI.CanonicalConverted);
|
|
assert(CanonType->isCanonicalUnqualified());
|
|
|
|
// This might work out to be a current instantiation, in which
|
|
// case the canonical type needs to be the InjectedClassNameType.
|
|
//
|
|
// TODO: in theory this could be a simple hashtable lookup; most
|
|
// changes to CurContext don't change the set of current
|
|
// instantiations.
|
|
if (isa<ClassTemplateDecl>(Template)) {
|
|
for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
|
|
// If we get out to a namespace, we're done.
|
|
if (Ctx->isFileContext()) break;
|
|
|
|
// If this isn't a record, keep looking.
|
|
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
|
|
if (!Record) continue;
|
|
|
|
// Look for one of the two cases with InjectedClassNameTypes
|
|
// and check whether it's the same template.
|
|
if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
|
|
!Record->getDescribedClassTemplate())
|
|
continue;
|
|
|
|
// Fetch the injected class name type and check whether its
|
|
// injected type is equal to the type we just built.
|
|
QualType ICNT = Context.getTypeDeclType(Record);
|
|
QualType Injected = cast<InjectedClassNameType>(ICNT)
|
|
->getInjectedSpecializationType();
|
|
|
|
if (CanonType != Injected->getCanonicalTypeInternal())
|
|
continue;
|
|
|
|
// If so, the canonical type of this TST is the injected
|
|
// class name type of the record we just found.
|
|
assert(ICNT.isCanonical());
|
|
CanonType = ICNT;
|
|
break;
|
|
}
|
|
}
|
|
} else if (ClassTemplateDecl *ClassTemplate =
|
|
dyn_cast<ClassTemplateDecl>(Template)) {
|
|
// Find the class template specialization declaration that
|
|
// corresponds to these arguments.
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *Decl =
|
|
ClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos);
|
|
if (!Decl) {
|
|
// This is the first time we have referenced this class template
|
|
// specialization. Create the canonical declaration and add it to
|
|
// the set of specializations.
|
|
Decl = ClassTemplateSpecializationDecl::Create(
|
|
Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
|
|
ClassTemplate->getDeclContext(),
|
|
ClassTemplate->getTemplatedDecl()->getBeginLoc(),
|
|
ClassTemplate->getLocation(), ClassTemplate, CTAI.CanonicalConverted,
|
|
CTAI.StrictPackMatch, nullptr);
|
|
ClassTemplate->AddSpecialization(Decl, InsertPos);
|
|
if (ClassTemplate->isOutOfLine())
|
|
Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
|
|
}
|
|
|
|
if (Decl->getSpecializationKind() == TSK_Undeclared &&
|
|
ClassTemplate->getTemplatedDecl()->hasAttrs()) {
|
|
InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
|
|
if (!Inst.isInvalid()) {
|
|
MultiLevelTemplateArgumentList TemplateArgLists(Template,
|
|
CTAI.CanonicalConverted,
|
|
/*Final=*/false);
|
|
InstantiateAttrsForDecl(TemplateArgLists,
|
|
ClassTemplate->getTemplatedDecl(), Decl);
|
|
}
|
|
}
|
|
|
|
// Diagnose uses of this specialization.
|
|
(void)DiagnoseUseOfDecl(Decl, TemplateLoc);
|
|
|
|
CanonType = Context.getTypeDeclType(Decl);
|
|
assert(isa<RecordType>(CanonType) &&
|
|
"type of non-dependent specialization is not a RecordType");
|
|
} else {
|
|
llvm_unreachable("Unhandled template kind");
|
|
}
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization, which refers back to the class template
|
|
// specialization we created or found.
|
|
return Context.getTemplateSpecializationType(
|
|
Name, TemplateArgs.arguments(), CTAI.CanonicalConverted, CanonType);
|
|
}
|
|
|
|
void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
|
|
TemplateNameKind &TNK,
|
|
SourceLocation NameLoc,
|
|
IdentifierInfo *&II) {
|
|
assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
|
|
|
|
TemplateName Name = ParsedName.get();
|
|
auto *ATN = Name.getAsAssumedTemplateName();
|
|
assert(ATN && "not an assumed template name");
|
|
II = ATN->getDeclName().getAsIdentifierInfo();
|
|
|
|
if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
|
|
// Resolved to a type template name.
|
|
ParsedName = TemplateTy::make(Name);
|
|
TNK = TNK_Type_template;
|
|
}
|
|
}
|
|
|
|
bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
|
|
SourceLocation NameLoc,
|
|
bool Diagnose) {
|
|
// We assumed this undeclared identifier to be an (ADL-only) function
|
|
// template name, but it was used in a context where a type was required.
|
|
// Try to typo-correct it now.
|
|
AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
|
|
assert(ATN && "not an assumed template name");
|
|
|
|
LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
|
|
struct CandidateCallback : CorrectionCandidateCallback {
|
|
bool ValidateCandidate(const TypoCorrection &TC) override {
|
|
return TC.getCorrectionDecl() &&
|
|
getAsTypeTemplateDecl(TC.getCorrectionDecl());
|
|
}
|
|
std::unique_ptr<CorrectionCandidateCallback> clone() override {
|
|
return std::make_unique<CandidateCallback>(*this);
|
|
}
|
|
} FilterCCC;
|
|
|
|
TypoCorrection Corrected =
|
|
CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
|
|
FilterCCC, CTK_ErrorRecovery);
|
|
if (Corrected && Corrected.getFoundDecl()) {
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
|
|
<< ATN->getDeclName());
|
|
Name = Context.getQualifiedTemplateName(
|
|
/*NNS=*/nullptr, /*TemplateKeyword=*/false,
|
|
TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()));
|
|
return false;
|
|
}
|
|
|
|
if (Diagnose)
|
|
Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
|
|
return true;
|
|
}
|
|
|
|
TypeResult Sema::ActOnTemplateIdType(
|
|
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateD, const IdentifierInfo *TemplateII,
|
|
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
|
|
bool IsCtorOrDtorName, bool IsClassName,
|
|
ImplicitTypenameContext AllowImplicitTypename) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
|
|
DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
|
|
|
|
// C++ [temp.res]p3:
|
|
// A qualified-id that refers to a type and in which the
|
|
// nested-name-specifier depends on a template-parameter (14.6.2)
|
|
// shall be prefixed by the keyword typename to indicate that the
|
|
// qualified-id denotes a type, forming an
|
|
// elaborated-type-specifier (7.1.5.3).
|
|
if (!LookupCtx && isDependentScopeSpecifier(SS)) {
|
|
// C++2a relaxes some of those restrictions in [temp.res]p5.
|
|
NestedNameSpecifier *NNS =
|
|
NestedNameSpecifier::Create(Context, SS.getScopeRep(), TemplateII);
|
|
if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
|
|
if (getLangOpts().CPlusPlus20)
|
|
Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
|
|
else
|
|
Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
|
|
<< NNS
|
|
<< FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
|
|
} else
|
|
Diag(SS.getBeginLoc(), diag::err_typename_missing_template) << NNS;
|
|
|
|
// FIXME: This is not quite correct recovery as we don't transform SS
|
|
// into the corresponding dependent form (and we don't diagnose missing
|
|
// 'template' keywords within SS as a result).
|
|
return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
|
|
TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
|
|
TemplateArgsIn, RAngleLoc);
|
|
}
|
|
|
|
// Per C++ [class.qual]p2, if the template-id was an injected-class-name,
|
|
// it's not actually allowed to be used as a type in most cases. Because
|
|
// we annotate it before we know whether it's valid, we have to check for
|
|
// this case here.
|
|
auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
|
|
if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
|
|
Diag(TemplateIILoc,
|
|
TemplateKWLoc.isInvalid()
|
|
? diag::err_out_of_line_qualified_id_type_names_constructor
|
|
: diag::ext_out_of_line_qualified_id_type_names_constructor)
|
|
<< TemplateII << 0 /*injected-class-name used as template name*/
|
|
<< 1 /*if any keyword was present, it was 'template'*/;
|
|
}
|
|
}
|
|
|
|
TemplateName Template = TemplateD.get();
|
|
if (Template.getAsAssumedTemplateName() &&
|
|
resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
|
|
return true;
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
assert(SS.getScopeRep() == DTN->getQualifier());
|
|
QualType T = Context.getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword::None, *DTN, TemplateArgs.arguments());
|
|
// Build type-source information.
|
|
TypeLocBuilder TLB;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setElaboratedKeywordLoc(SourceLocation());
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateIILoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
|
|
if (SpecTy.isNull())
|
|
return true;
|
|
|
|
// Build type-source information.
|
|
TypeLocBuilder TLB;
|
|
TemplateSpecializationTypeLoc SpecTL =
|
|
TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateIILoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
|
|
SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
|
|
|
|
// Create an elaborated-type-specifier containing the nested-name-specifier.
|
|
QualType ElTy =
|
|
getElaboratedType(ElaboratedTypeKeyword::None,
|
|
!IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
|
|
ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
|
|
ElabTL.setElaboratedKeywordLoc(SourceLocation());
|
|
if (!ElabTL.isEmpty())
|
|
ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
|
|
}
|
|
|
|
TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
|
|
TypeSpecifierType TagSpec,
|
|
SourceLocation TagLoc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateD,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc) {
|
|
if (SS.isInvalid())
|
|
return TypeResult(true);
|
|
|
|
TemplateName Template = TemplateD.get();
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
// Determine the tag kind
|
|
TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
|
|
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
assert(SS.getScopeRep() == DTN->getQualifier());
|
|
QualType T = Context.getDependentTemplateSpecializationType(
|
|
Keyword, *DTN, TemplateArgs.arguments());
|
|
|
|
// Build type-source information.
|
|
TypeLocBuilder TLB;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setElaboratedKeywordLoc(TagLoc);
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
if (TypeAliasTemplateDecl *TAT =
|
|
dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
|
|
// C++0x [dcl.type.elab]p2:
|
|
// If the identifier resolves to a typedef-name or the simple-template-id
|
|
// resolves to an alias template specialization, the
|
|
// elaborated-type-specifier is ill-formed.
|
|
Diag(TemplateLoc, diag::err_tag_reference_non_tag)
|
|
<< TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind);
|
|
Diag(TAT->getLocation(), diag::note_declared_at);
|
|
}
|
|
|
|
QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
|
|
if (Result.isNull())
|
|
return TypeResult(true);
|
|
|
|
// Check the tag kind
|
|
if (const RecordType *RT = Result->getAs<RecordType>()) {
|
|
RecordDecl *D = RT->getDecl();
|
|
|
|
IdentifierInfo *Id = D->getIdentifier();
|
|
assert(Id && "templated class must have an identifier");
|
|
|
|
if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TagUseKind::Definition,
|
|
TagLoc, Id)) {
|
|
Diag(TagLoc, diag::err_use_with_wrong_tag)
|
|
<< Result
|
|
<< FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
|
|
Diag(D->getLocation(), diag::note_previous_use);
|
|
}
|
|
}
|
|
|
|
// Provide source-location information for the template specialization.
|
|
TypeLocBuilder TLB;
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
|
|
SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
|
|
|
|
// Construct an elaborated type containing the nested-name-specifier (if any)
|
|
// and tag keyword.
|
|
Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
|
|
ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
ElabTL.setElaboratedKeywordLoc(TagLoc);
|
|
ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
|
|
}
|
|
|
|
static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
|
|
NamedDecl *PrevDecl,
|
|
SourceLocation Loc,
|
|
bool IsPartialSpecialization);
|
|
|
|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
|
|
|
|
static bool isTemplateArgumentTemplateParameter(
|
|
const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::StructuralValue:
|
|
case TemplateArgument::Pack:
|
|
case TemplateArgument::TemplateExpansion:
|
|
return false;
|
|
|
|
case TemplateArgument::Type: {
|
|
QualType Type = Arg.getAsType();
|
|
const TemplateTypeParmType *TPT =
|
|
Arg.getAsType()->getAs<TemplateTypeParmType>();
|
|
return TPT && !Type.hasQualifiers() &&
|
|
TPT->getDepth() == Depth && TPT->getIndex() == Index;
|
|
}
|
|
|
|
case TemplateArgument::Expression: {
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
|
|
if (!DRE || !DRE->getDecl())
|
|
return false;
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
|
return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
const TemplateTemplateParmDecl *TTP =
|
|
dyn_cast_or_null<TemplateTemplateParmDecl>(
|
|
Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
|
|
return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
|
|
}
|
|
llvm_unreachable("unexpected kind of template argument");
|
|
}
|
|
|
|
static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
|
|
ArrayRef<TemplateArgument> Args) {
|
|
if (Params->size() != Args.size())
|
|
return false;
|
|
|
|
unsigned Depth = Params->getDepth();
|
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
TemplateArgument Arg = Args[I];
|
|
|
|
// If the parameter is a pack expansion, the argument must be a pack
|
|
// whose only element is a pack expansion.
|
|
if (Params->getParam(I)->isParameterPack()) {
|
|
if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
|
|
!Arg.pack_begin()->isPackExpansion())
|
|
return false;
|
|
Arg = Arg.pack_begin()->getPackExpansionPattern();
|
|
}
|
|
|
|
if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename PartialSpecDecl>
|
|
static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
|
|
if (Partial->getDeclContext()->isDependentContext())
|
|
return;
|
|
|
|
// FIXME: Get the TDK from deduction in order to provide better diagnostics
|
|
// for non-substitution-failure issues?
|
|
TemplateDeductionInfo Info(Partial->getLocation());
|
|
if (S.isMoreSpecializedThanPrimary(Partial, Info))
|
|
return;
|
|
|
|
auto *Template = Partial->getSpecializedTemplate();
|
|
S.Diag(Partial->getLocation(),
|
|
diag::ext_partial_spec_not_more_specialized_than_primary)
|
|
<< isa<VarTemplateDecl>(Template);
|
|
|
|
if (Info.hasSFINAEDiagnostic()) {
|
|
PartialDiagnosticAt Diag = {SourceLocation(),
|
|
PartialDiagnostic::NullDiagnostic()};
|
|
Info.takeSFINAEDiagnostic(Diag);
|
|
SmallString<128> SFINAEArgString;
|
|
Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
|
|
S.Diag(Diag.first,
|
|
diag::note_partial_spec_not_more_specialized_than_primary)
|
|
<< SFINAEArgString;
|
|
}
|
|
|
|
S.NoteTemplateLocation(*Template);
|
|
SmallVector<AssociatedConstraint, 3> PartialAC, TemplateAC;
|
|
Template->getAssociatedConstraints(TemplateAC);
|
|
Partial->getAssociatedConstraints(PartialAC);
|
|
S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
|
|
TemplateAC);
|
|
}
|
|
|
|
static void
|
|
noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
|
|
const llvm::SmallBitVector &DeducibleParams) {
|
|
for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
|
|
if (!DeducibleParams[I]) {
|
|
NamedDecl *Param = TemplateParams->getParam(I);
|
|
if (Param->getDeclName())
|
|
S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
|
|
<< Param->getDeclName();
|
|
else
|
|
S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
|
|
<< "(anonymous)";
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename PartialSpecDecl>
|
|
static void checkTemplatePartialSpecialization(Sema &S,
|
|
PartialSpecDecl *Partial) {
|
|
// C++1z [temp.class.spec]p8: (DR1495)
|
|
// - The specialization shall be more specialized than the primary
|
|
// template (14.5.5.2).
|
|
checkMoreSpecializedThanPrimary(S, Partial);
|
|
|
|
// C++ [temp.class.spec]p8: (DR1315)
|
|
// - Each template-parameter shall appear at least once in the
|
|
// template-id outside a non-deduced context.
|
|
// C++1z [temp.class.spec.match]p3 (P0127R2)
|
|
// If the template arguments of a partial specialization cannot be
|
|
// deduced because of the structure of its template-parameter-list
|
|
// and the template-id, the program is ill-formed.
|
|
auto *TemplateParams = Partial->getTemplateParameters();
|
|
llvm::SmallBitVector DeducibleParams(TemplateParams->size());
|
|
S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
|
|
TemplateParams->getDepth(), DeducibleParams);
|
|
|
|
if (!DeducibleParams.all()) {
|
|
unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
|
|
S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
|
|
<< isa<VarTemplatePartialSpecializationDecl>(Partial)
|
|
<< (NumNonDeducible > 1)
|
|
<< SourceRange(Partial->getLocation(),
|
|
Partial->getTemplateArgsAsWritten()->RAngleLoc);
|
|
noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
|
|
}
|
|
}
|
|
|
|
void Sema::CheckTemplatePartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *Partial) {
|
|
checkTemplatePartialSpecialization(*this, Partial);
|
|
}
|
|
|
|
void Sema::CheckTemplatePartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *Partial) {
|
|
checkTemplatePartialSpecialization(*this, Partial);
|
|
}
|
|
|
|
void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
|
|
// C++1z [temp.param]p11:
|
|
// A template parameter of a deduction guide template that does not have a
|
|
// default-argument shall be deducible from the parameter-type-list of the
|
|
// deduction guide template.
|
|
auto *TemplateParams = TD->getTemplateParameters();
|
|
llvm::SmallBitVector DeducibleParams(TemplateParams->size());
|
|
MarkDeducedTemplateParameters(TD, DeducibleParams);
|
|
for (unsigned I = 0; I != TemplateParams->size(); ++I) {
|
|
// A parameter pack is deducible (to an empty pack).
|
|
auto *Param = TemplateParams->getParam(I);
|
|
if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
|
|
DeducibleParams[I] = true;
|
|
}
|
|
|
|
if (!DeducibleParams.all()) {
|
|
unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
|
|
Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
|
|
<< (NumNonDeducible > 1);
|
|
noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
|
|
}
|
|
}
|
|
|
|
DeclResult Sema::ActOnVarTemplateSpecialization(
|
|
Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous,
|
|
SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
|
|
StorageClass SC, bool IsPartialSpecialization) {
|
|
// D must be variable template id.
|
|
assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
|
|
"Variable template specialization is declared with a template id.");
|
|
|
|
TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
|
|
TemplateArgumentListInfo TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, *TemplateId);
|
|
SourceLocation TemplateNameLoc = D.getIdentifierLoc();
|
|
SourceLocation LAngleLoc = TemplateId->LAngleLoc;
|
|
SourceLocation RAngleLoc = TemplateId->RAngleLoc;
|
|
|
|
TemplateName Name = TemplateId->Template.get();
|
|
|
|
// The template-id must name a variable template.
|
|
VarTemplateDecl *VarTemplate =
|
|
dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
|
|
if (!VarTemplate) {
|
|
NamedDecl *FnTemplate;
|
|
if (auto *OTS = Name.getAsOverloadedTemplate())
|
|
FnTemplate = *OTS->begin();
|
|
else
|
|
FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
|
|
if (FnTemplate)
|
|
return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
|
|
<< FnTemplate->getDeclName();
|
|
return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
|
|
<< IsPartialSpecialization;
|
|
}
|
|
|
|
if (const auto *DSA = VarTemplate->getAttr<NoSpecializationsAttr>()) {
|
|
auto Message = DSA->getMessage();
|
|
Diag(TemplateNameLoc, diag::warn_invalid_specialization)
|
|
<< VarTemplate << !Message.empty() << Message;
|
|
Diag(DSA->getLoc(), diag::note_marked_here) << DSA;
|
|
}
|
|
|
|
// Check for unexpanded parameter packs in any of the template arguments.
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
|
|
IsPartialSpecialization
|
|
? UPPC_PartialSpecialization
|
|
: UPPC_ExplicitSpecialization))
|
|
return true;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
|
|
/*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/false, CTAI,
|
|
/*UpdateArgsWithConversions=*/true))
|
|
return true;
|
|
|
|
// Find the variable template (partial) specialization declaration that
|
|
// corresponds to these arguments.
|
|
if (IsPartialSpecialization) {
|
|
if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
|
|
TemplateArgs.size(),
|
|
CTAI.CanonicalConverted))
|
|
return true;
|
|
|
|
// FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so
|
|
// we also do them during instantiation.
|
|
if (!Name.isDependent() &&
|
|
!TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs, CTAI.CanonicalConverted)) {
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
|
|
<< VarTemplate->getDeclName();
|
|
IsPartialSpecialization = false;
|
|
}
|
|
|
|
if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
|
|
CTAI.CanonicalConverted) &&
|
|
(!Context.getLangOpts().CPlusPlus20 ||
|
|
!TemplateParams->hasAssociatedConstraints())) {
|
|
// C++ [temp.class.spec]p9b3:
|
|
//
|
|
// -- The argument list of the specialization shall not be identical
|
|
// to the implicit argument list of the primary template.
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
|
|
<< /*variable template*/ 1
|
|
<< /*is definition*/ (SC != SC_Extern && !CurContext->isRecord())
|
|
<< FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
|
|
// FIXME: Recover from this by treating the declaration as a
|
|
// redeclaration of the primary template.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void *InsertPos = nullptr;
|
|
VarTemplateSpecializationDecl *PrevDecl = nullptr;
|
|
|
|
if (IsPartialSpecialization)
|
|
PrevDecl = VarTemplate->findPartialSpecialization(
|
|
CTAI.CanonicalConverted, TemplateParams, InsertPos);
|
|
else
|
|
PrevDecl =
|
|
VarTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos);
|
|
|
|
VarTemplateSpecializationDecl *Specialization = nullptr;
|
|
|
|
// Check whether we can declare a variable template specialization in
|
|
// the current scope.
|
|
if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
|
|
TemplateNameLoc,
|
|
IsPartialSpecialization))
|
|
return true;
|
|
|
|
if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
|
|
// Since the only prior variable template specialization with these
|
|
// arguments was referenced but not declared, reuse that
|
|
// declaration node as our own, updating its source location and
|
|
// the list of outer template parameters to reflect our new declaration.
|
|
Specialization = PrevDecl;
|
|
Specialization->setLocation(TemplateNameLoc);
|
|
PrevDecl = nullptr;
|
|
} else if (IsPartialSpecialization) {
|
|
// Create a new class template partial specialization declaration node.
|
|
VarTemplatePartialSpecializationDecl *PrevPartial =
|
|
cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
|
|
VarTemplatePartialSpecializationDecl *Partial =
|
|
VarTemplatePartialSpecializationDecl::Create(
|
|
Context, VarTemplate->getDeclContext(), TemplateKWLoc,
|
|
TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
|
|
CTAI.CanonicalConverted);
|
|
Partial->setTemplateArgsAsWritten(TemplateArgs);
|
|
|
|
if (!PrevPartial)
|
|
VarTemplate->AddPartialSpecialization(Partial, InsertPos);
|
|
Specialization = Partial;
|
|
|
|
// If we are providing an explicit specialization of a member variable
|
|
// template specialization, make a note of that.
|
|
if (PrevPartial && PrevPartial->getInstantiatedFromMember())
|
|
PrevPartial->setMemberSpecialization();
|
|
|
|
CheckTemplatePartialSpecialization(Partial);
|
|
} else {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization or friend declaration.
|
|
Specialization = VarTemplateSpecializationDecl::Create(
|
|
Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
|
|
VarTemplate, DI->getType(), DI, SC, CTAI.CanonicalConverted);
|
|
Specialization->setTemplateArgsAsWritten(TemplateArgs);
|
|
|
|
if (!PrevDecl)
|
|
VarTemplate->AddSpecialization(Specialization, InsertPos);
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
|
|
bool Okay = false;
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
|
|
Okay = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Okay) {
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
|
|
<< Name << Range;
|
|
|
|
Diag(PrevDecl->getPointOfInstantiation(),
|
|
diag::note_instantiation_required_here)
|
|
<< (PrevDecl->getTemplateSpecializationKind() !=
|
|
TSK_ImplicitInstantiation);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
|
|
// Add the specialization into its lexical context, so that it can
|
|
// be seen when iterating through the list of declarations in that
|
|
// context. However, specializations are not found by name lookup.
|
|
CurContext->addDecl(Specialization);
|
|
|
|
// Note that this is an explicit specialization.
|
|
Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
|
|
|
|
Previous.clear();
|
|
if (PrevDecl)
|
|
Previous.addDecl(PrevDecl);
|
|
else if (Specialization->isStaticDataMember() &&
|
|
Specialization->isOutOfLine())
|
|
Specialization->setAccess(VarTemplate->getAccess());
|
|
|
|
return Specialization;
|
|
}
|
|
|
|
namespace {
|
|
/// A partial specialization whose template arguments have matched
|
|
/// a given template-id.
|
|
struct PartialSpecMatchResult {
|
|
VarTemplatePartialSpecializationDecl *Partial;
|
|
TemplateArgumentList *Args;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
DeclResult
|
|
Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation TemplateNameLoc,
|
|
const TemplateArgumentListInfo &TemplateArgs) {
|
|
assert(Template && "A variable template id without template?");
|
|
|
|
// Check that the template argument list is well-formed for this template.
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(
|
|
Template, TemplateNameLoc,
|
|
const_cast<TemplateArgumentListInfo &>(TemplateArgs),
|
|
/*DefaultArgs=*/{}, /*PartialTemplateArgs=*/false, CTAI,
|
|
/*UpdateArgsWithConversions=*/true))
|
|
return true;
|
|
|
|
// Produce a placeholder value if the specialization is dependent.
|
|
if (Template->getDeclContext()->isDependentContext() ||
|
|
TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs, CTAI.CanonicalConverted))
|
|
return DeclResult();
|
|
|
|
// Find the variable template specialization declaration that
|
|
// corresponds to these arguments.
|
|
void *InsertPos = nullptr;
|
|
if (VarTemplateSpecializationDecl *Spec =
|
|
Template->findSpecialization(CTAI.CanonicalConverted, InsertPos)) {
|
|
checkSpecializationReachability(TemplateNameLoc, Spec);
|
|
// If we already have a variable template specialization, return it.
|
|
return Spec;
|
|
}
|
|
|
|
// This is the first time we have referenced this variable template
|
|
// specialization. Create the canonical declaration and add it to
|
|
// the set of specializations, based on the closest partial specialization
|
|
// that it represents. That is,
|
|
VarDecl *InstantiationPattern = Template->getTemplatedDecl();
|
|
const TemplateArgumentList *PartialSpecArgs = nullptr;
|
|
bool AmbiguousPartialSpec = false;
|
|
typedef PartialSpecMatchResult MatchResult;
|
|
SmallVector<MatchResult, 4> Matched;
|
|
SourceLocation PointOfInstantiation = TemplateNameLoc;
|
|
TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
|
|
/*ForTakingAddress=*/false);
|
|
|
|
// 1. Attempt to find the closest partial specialization that this
|
|
// specializes, if any.
|
|
// TODO: Unify with InstantiateClassTemplateSpecialization()?
|
|
// Perhaps better after unification of DeduceTemplateArguments() and
|
|
// getMoreSpecializedPartialSpecialization().
|
|
SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
|
|
Template->getPartialSpecializations(PartialSpecs);
|
|
|
|
for (VarTemplatePartialSpecializationDecl *Partial : PartialSpecs) {
|
|
// C++ [temp.spec.partial.member]p2:
|
|
// If the primary member template is explicitly specialized for a given
|
|
// (implicit) specialization of the enclosing class template, the partial
|
|
// specializations of the member template are ignored for this
|
|
// specialization of the enclosing class template. If a partial
|
|
// specialization of the member template is explicitly specialized for a
|
|
// given (implicit) specialization of the enclosing class template, the
|
|
// primary member template and its other partial specializations are still
|
|
// considered for this specialization of the enclosing class template.
|
|
if (Template->getMostRecentDecl()->isMemberSpecialization() &&
|
|
!Partial->getMostRecentDecl()->isMemberSpecialization())
|
|
continue;
|
|
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
|
|
if (TemplateDeductionResult Result =
|
|
DeduceTemplateArguments(Partial, CTAI.SugaredConverted, Info);
|
|
Result != TemplateDeductionResult::Success) {
|
|
// Store the failed-deduction information for use in diagnostics, later.
|
|
// TODO: Actually use the failed-deduction info?
|
|
FailedCandidates.addCandidate().set(
|
|
DeclAccessPair::make(Template, AS_public), Partial,
|
|
MakeDeductionFailureInfo(Context, Result, Info));
|
|
(void)Result;
|
|
} else {
|
|
Matched.push_back(PartialSpecMatchResult());
|
|
Matched.back().Partial = Partial;
|
|
Matched.back().Args = Info.takeSugared();
|
|
}
|
|
}
|
|
|
|
if (Matched.size() >= 1) {
|
|
SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
|
|
if (Matched.size() == 1) {
|
|
// -- If exactly one matching specialization is found, the
|
|
// instantiation is generated from that specialization.
|
|
// We don't need to do anything for this.
|
|
} else {
|
|
// -- If more than one matching specialization is found, the
|
|
// partial order rules (14.5.4.2) are used to determine
|
|
// whether one of the specializations is more specialized
|
|
// than the others. If none of the specializations is more
|
|
// specialized than all of the other matching
|
|
// specializations, then the use of the variable template is
|
|
// ambiguous and the program is ill-formed.
|
|
for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
|
|
PEnd = Matched.end();
|
|
P != PEnd; ++P) {
|
|
if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
|
|
PointOfInstantiation) ==
|
|
P->Partial)
|
|
Best = P;
|
|
}
|
|
|
|
// Determine if the best partial specialization is more specialized than
|
|
// the others.
|
|
for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
|
|
PEnd = Matched.end();
|
|
P != PEnd; ++P) {
|
|
if (P != Best && getMoreSpecializedPartialSpecialization(
|
|
P->Partial, Best->Partial,
|
|
PointOfInstantiation) != Best->Partial) {
|
|
AmbiguousPartialSpec = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Instantiate using the best variable template partial specialization.
|
|
InstantiationPattern = Best->Partial;
|
|
PartialSpecArgs = Best->Args;
|
|
} else {
|
|
// -- If no match is found, the instantiation is generated
|
|
// from the primary template.
|
|
// InstantiationPattern = Template->getTemplatedDecl();
|
|
}
|
|
|
|
// 2. Create the canonical declaration.
|
|
// Note that we do not instantiate a definition until we see an odr-use
|
|
// in DoMarkVarDeclReferenced().
|
|
// FIXME: LateAttrs et al.?
|
|
VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
|
|
Template, InstantiationPattern, PartialSpecArgs, TemplateArgs,
|
|
CTAI.CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
|
|
if (!Decl)
|
|
return true;
|
|
|
|
if (AmbiguousPartialSpec) {
|
|
// Partial ordering did not produce a clear winner. Complain.
|
|
Decl->setInvalidDecl();
|
|
Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
|
|
<< Decl;
|
|
|
|
// Print the matching partial specializations.
|
|
for (MatchResult P : Matched)
|
|
Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
|
|
<< getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
|
|
*P.Args);
|
|
return true;
|
|
}
|
|
|
|
if (VarTemplatePartialSpecializationDecl *D =
|
|
dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
|
|
Decl->setInstantiationOf(D, PartialSpecArgs);
|
|
|
|
checkSpecializationReachability(TemplateNameLoc, Decl);
|
|
|
|
assert(Decl && "No variable template specialization?");
|
|
return Decl;
|
|
}
|
|
|
|
ExprResult Sema::CheckVarTemplateId(
|
|
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
|
|
VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
|
|
DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
|
|
*TemplateArgs);
|
|
if (Decl.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!Decl.get())
|
|
return ExprResult();
|
|
|
|
VarDecl *Var = cast<VarDecl>(Decl.get());
|
|
if (!Var->getTemplateSpecializationKind())
|
|
Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
|
|
NameInfo.getLoc());
|
|
|
|
// Build an ordinary singleton decl ref.
|
|
return BuildDeclarationNameExpr(SS, NameInfo, Var, FoundD, TemplateArgs);
|
|
}
|
|
|
|
void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
|
|
SourceLocation Loc) {
|
|
Diag(Loc, diag::err_template_missing_args)
|
|
<< (int)getTemplateNameKindForDiagnostics(Name) << Name;
|
|
if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
|
|
NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange());
|
|
}
|
|
}
|
|
|
|
void Sema::diagnoseMissingTemplateArguments(const CXXScopeSpec &SS,
|
|
bool TemplateKeyword,
|
|
TemplateDecl *TD,
|
|
SourceLocation Loc) {
|
|
TemplateName Name = Context.getQualifiedTemplateName(
|
|
SS.getScopeRep(), TemplateKeyword, TemplateName(TD));
|
|
diagnoseMissingTemplateArguments(Name, Loc);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &ConceptNameInfo,
|
|
NamedDecl *FoundDecl,
|
|
ConceptDecl *NamedConcept,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
assert(NamedConcept && "A concept template id without a template?");
|
|
|
|
if (NamedConcept->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(
|
|
NamedConcept, ConceptNameInfo.getLoc(),
|
|
const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
|
|
/*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/false, CTAI,
|
|
/*UpdateArgsWithConversions=*/false))
|
|
return ExprError();
|
|
|
|
DiagnoseUseOfDecl(NamedConcept, ConceptNameInfo.getLoc());
|
|
|
|
auto *CSD = ImplicitConceptSpecializationDecl::Create(
|
|
Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
|
|
CTAI.CanonicalConverted);
|
|
ConstraintSatisfaction Satisfaction;
|
|
bool AreArgsDependent =
|
|
TemplateSpecializationType::anyDependentTemplateArguments(
|
|
*TemplateArgs, CTAI.CanonicalConverted);
|
|
MultiLevelTemplateArgumentList MLTAL(NamedConcept, CTAI.CanonicalConverted,
|
|
/*Final=*/false);
|
|
LocalInstantiationScope Scope(*this);
|
|
|
|
EnterExpressionEvaluationContext EECtx{
|
|
*this, ExpressionEvaluationContext::Unevaluated, CSD};
|
|
|
|
if (!AreArgsDependent &&
|
|
CheckConstraintSatisfaction(
|
|
NamedConcept, AssociatedConstraint(NamedConcept->getConstraintExpr()),
|
|
MLTAL,
|
|
SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
|
|
TemplateArgs->getRAngleLoc()),
|
|
Satisfaction))
|
|
return ExprError();
|
|
auto *CL = ConceptReference::Create(
|
|
Context,
|
|
SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
|
|
TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
|
|
ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs));
|
|
return ConceptSpecializationExpr::Create(
|
|
Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
|
|
}
|
|
|
|
ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
bool RequiresADL,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// FIXME: Can we do any checking at this point? I guess we could check the
|
|
// template arguments that we have against the template name, if the template
|
|
// name refers to a single template. That's not a terribly common case,
|
|
// though.
|
|
// foo<int> could identify a single function unambiguously
|
|
// This approach does NOT work, since f<int>(1);
|
|
// gets resolved prior to resorting to overload resolution
|
|
// i.e., template<class T> void f(double);
|
|
// vs template<class T, class U> void f(U);
|
|
|
|
// These should be filtered out by our callers.
|
|
assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
|
|
|
|
// Non-function templates require a template argument list.
|
|
if (auto *TD = R.getAsSingle<TemplateDecl>()) {
|
|
if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
|
|
diagnoseMissingTemplateArguments(
|
|
SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), TD, R.getNameLoc());
|
|
return ExprError();
|
|
}
|
|
}
|
|
bool KnownDependent = false;
|
|
// In C++1y, check variable template ids.
|
|
if (R.getAsSingle<VarTemplateDecl>()) {
|
|
ExprResult Res = CheckVarTemplateId(
|
|
SS, R.getLookupNameInfo(), R.getAsSingle<VarTemplateDecl>(),
|
|
R.getRepresentativeDecl(), TemplateKWLoc, TemplateArgs);
|
|
if (Res.isInvalid() || Res.isUsable())
|
|
return Res;
|
|
// Result is dependent. Carry on to build an UnresolvedLookupExpr.
|
|
KnownDependent = true;
|
|
}
|
|
|
|
if (R.getAsSingle<ConceptDecl>()) {
|
|
return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
|
|
R.getRepresentativeDecl(),
|
|
R.getAsSingle<ConceptDecl>(), TemplateArgs);
|
|
}
|
|
|
|
// We don't want lookup warnings at this point.
|
|
R.suppressDiagnostics();
|
|
|
|
UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
|
|
Context, R.getNamingClass(), SS.getWithLocInContext(Context),
|
|
TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs,
|
|
R.begin(), R.end(), KnownDependent,
|
|
/*KnownInstantiationDependent=*/false);
|
|
|
|
// Model the templates with UnresolvedTemplateTy. The expression should then
|
|
// either be transformed in an instantiation or be diagnosed in
|
|
// CheckPlaceholderExpr.
|
|
if (ULE->getType() == Context.OverloadTy && R.isSingleResult() &&
|
|
!R.getFoundDecl()->getAsFunction())
|
|
ULE->setType(Context.UnresolvedTemplateTy);
|
|
|
|
return ULE;
|
|
}
|
|
|
|
ExprResult Sema::BuildQualifiedTemplateIdExpr(
|
|
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) {
|
|
assert(TemplateArgs || TemplateKWLoc.isValid());
|
|
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
if (LookupTemplateName(R, /*S=*/nullptr, SS, /*ObjectType=*/QualType(),
|
|
/*EnteringContext=*/false, TemplateKWLoc))
|
|
return ExprError();
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
|
|
return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
|
|
|
|
if (R.empty()) {
|
|
DeclContext *DC = computeDeclContext(SS);
|
|
Diag(NameInfo.getLoc(), diag::err_no_member)
|
|
<< NameInfo.getName() << DC << SS.getRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// If necessary, build an implicit class member access.
|
|
if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
|
|
return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
|
|
/*S=*/nullptr);
|
|
|
|
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL=*/false, TemplateArgs);
|
|
}
|
|
|
|
TemplateNameKind Sema::ActOnTemplateName(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const UnqualifiedId &Name,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
TemplateTy &Result,
|
|
bool AllowInjectedClassName) {
|
|
if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
|
|
Diag(TemplateKWLoc,
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_outside_of_template :
|
|
diag::ext_template_outside_of_template)
|
|
<< FixItHint::CreateRemoval(TemplateKWLoc);
|
|
|
|
if (SS.isInvalid())
|
|
return TNK_Non_template;
|
|
|
|
// Figure out where isTemplateName is going to look.
|
|
DeclContext *LookupCtx = nullptr;
|
|
if (SS.isNotEmpty())
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
|
else if (ObjectType)
|
|
LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
|
|
|
|
// C++0x [temp.names]p5:
|
|
// If a name prefixed by the keyword template is not the name of
|
|
// a template, the program is ill-formed. [Note: the keyword
|
|
// template may not be applied to non-template members of class
|
|
// templates. -end note ] [ Note: as is the case with the
|
|
// typename prefix, the template prefix is allowed in cases
|
|
// where it is not strictly necessary; i.e., when the
|
|
// nested-name-specifier or the expression on the left of the ->
|
|
// or . is not dependent on a template-parameter, or the use
|
|
// does not appear in the scope of a template. -end note]
|
|
//
|
|
// Note: C++03 was more strict here, because it banned the use of
|
|
// the "template" keyword prior to a template-name that was not a
|
|
// dependent name. C++ DR468 relaxed this requirement (the
|
|
// "template" keyword is now permitted). We follow the C++0x
|
|
// rules, even in C++03 mode with a warning, retroactively applying the DR.
|
|
bool MemberOfUnknownSpecialization;
|
|
TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
|
|
ObjectType, EnteringContext, Result,
|
|
MemberOfUnknownSpecialization);
|
|
if (TNK != TNK_Non_template) {
|
|
// We resolved this to a (non-dependent) template name. Return it.
|
|
auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
|
|
if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
|
|
Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
|
|
Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
|
|
// C++14 [class.qual]p2:
|
|
// In a lookup in which function names are not ignored and the
|
|
// nested-name-specifier nominates a class C, if the name specified
|
|
// [...] is the injected-class-name of C, [...] the name is instead
|
|
// considered to name the constructor
|
|
//
|
|
// We don't get here if naming the constructor would be valid, so we
|
|
// just reject immediately and recover by treating the
|
|
// injected-class-name as naming the template.
|
|
Diag(Name.getBeginLoc(),
|
|
diag::ext_out_of_line_qualified_id_type_names_constructor)
|
|
<< Name.Identifier
|
|
<< 0 /*injected-class-name used as template name*/
|
|
<< TemplateKWLoc.isValid();
|
|
}
|
|
return TNK;
|
|
}
|
|
|
|
if (!MemberOfUnknownSpecialization) {
|
|
// Didn't find a template name, and the lookup wasn't dependent.
|
|
// Do the lookup again to determine if this is a "nothing found" case or
|
|
// a "not a template" case. FIXME: Refactor isTemplateName so we don't
|
|
// need to do this.
|
|
DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
|
|
LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
|
|
LookupOrdinaryName);
|
|
// Tell LookupTemplateName that we require a template so that it diagnoses
|
|
// cases where it finds a non-template.
|
|
RequiredTemplateKind RTK = TemplateKWLoc.isValid()
|
|
? RequiredTemplateKind(TemplateKWLoc)
|
|
: TemplateNameIsRequired;
|
|
if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, RTK,
|
|
/*ATK=*/nullptr, /*AllowTypoCorrection=*/false) &&
|
|
!R.isAmbiguous()) {
|
|
if (LookupCtx)
|
|
Diag(Name.getBeginLoc(), diag::err_no_member)
|
|
<< DNI.getName() << LookupCtx << SS.getRange();
|
|
else
|
|
Diag(Name.getBeginLoc(), diag::err_undeclared_use)
|
|
<< DNI.getName() << SS.getRange();
|
|
}
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
NestedNameSpecifier *Qualifier = SS.getScopeRep();
|
|
|
|
switch (Name.getKind()) {
|
|
case UnqualifiedIdKind::IK_Identifier:
|
|
Result = TemplateTy::make(Context.getDependentTemplateName(
|
|
{Qualifier, Name.Identifier, TemplateKWLoc.isValid()}));
|
|
return TNK_Dependent_template_name;
|
|
|
|
case UnqualifiedIdKind::IK_OperatorFunctionId:
|
|
Result = TemplateTy::make(Context.getDependentTemplateName(
|
|
{Qualifier, Name.OperatorFunctionId.Operator,
|
|
TemplateKWLoc.isValid()}));
|
|
return TNK_Function_template;
|
|
|
|
case UnqualifiedIdKind::IK_LiteralOperatorId:
|
|
// This is a kind of template name, but can never occur in a dependent
|
|
// scope (literal operators can only be declared at namespace scope).
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// This name cannot possibly name a dependent template. Diagnose this now
|
|
// rather than building a dependent template name that can never be valid.
|
|
Diag(Name.getBeginLoc(),
|
|
diag::err_template_kw_refers_to_dependent_non_template)
|
|
<< GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
|
|
<< TemplateKWLoc.isValid() << TemplateKWLoc;
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
bool Sema::CheckTemplateTypeArgument(
|
|
TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
|
|
SmallVectorImpl<TemplateArgument> &SugaredConverted,
|
|
SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
|
|
const TemplateArgument &Arg = AL.getArgument();
|
|
QualType ArgType;
|
|
TypeSourceInfo *TSI = nullptr;
|
|
|
|
// Check template type parameter.
|
|
switch(Arg.getKind()) {
|
|
case TemplateArgument::Type:
|
|
// C++ [temp.arg.type]p1:
|
|
// A template-argument for a template-parameter which is a
|
|
// type shall be a type-id.
|
|
ArgType = Arg.getAsType();
|
|
TSI = AL.getTypeSourceInfo();
|
|
break;
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion: {
|
|
// We have a template type parameter but the template argument
|
|
// is a template without any arguments.
|
|
SourceRange SR = AL.getSourceRange();
|
|
TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
|
|
diagnoseMissingTemplateArguments(Name, SR.getEnd());
|
|
return true;
|
|
}
|
|
case TemplateArgument::Expression: {
|
|
// We have a template type parameter but the template argument is an
|
|
// expression; see if maybe it is missing the "typename" keyword.
|
|
CXXScopeSpec SS;
|
|
DeclarationNameInfo NameInfo;
|
|
|
|
if (DependentScopeDeclRefExpr *ArgExpr =
|
|
dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
|
|
SS.Adopt(ArgExpr->getQualifierLoc());
|
|
NameInfo = ArgExpr->getNameInfo();
|
|
} else if (CXXDependentScopeMemberExpr *ArgExpr =
|
|
dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
|
|
if (ArgExpr->isImplicitAccess()) {
|
|
SS.Adopt(ArgExpr->getQualifierLoc());
|
|
NameInfo = ArgExpr->getMemberNameInfo();
|
|
}
|
|
}
|
|
|
|
if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
|
|
LookupResult Result(*this, NameInfo, LookupOrdinaryName);
|
|
LookupParsedName(Result, CurScope, &SS, /*ObjectType=*/QualType());
|
|
|
|
if (Result.getAsSingle<TypeDecl>() ||
|
|
Result.wasNotFoundInCurrentInstantiation()) {
|
|
assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
|
|
// Suggest that the user add 'typename' before the NNS.
|
|
SourceLocation Loc = AL.getSourceRange().getBegin();
|
|
Diag(Loc, getLangOpts().MSVCCompat
|
|
? diag::ext_ms_template_type_arg_missing_typename
|
|
: diag::err_template_arg_must_be_type_suggest)
|
|
<< FixItHint::CreateInsertion(Loc, "typename ");
|
|
NoteTemplateParameterLocation(*Param);
|
|
|
|
// Recover by synthesizing a type using the location information that we
|
|
// already have.
|
|
ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename,
|
|
SS.getScopeRep(), II);
|
|
TypeLocBuilder TLB;
|
|
DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
|
|
TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(NameInfo.getLoc());
|
|
TSI = TLB.getTypeSourceInfo(Context, ArgType);
|
|
|
|
// Overwrite our input TemplateArgumentLoc so that we can recover
|
|
// properly.
|
|
AL = TemplateArgumentLoc(TemplateArgument(ArgType),
|
|
TemplateArgumentLocInfo(TSI));
|
|
|
|
break;
|
|
}
|
|
}
|
|
// fallthrough
|
|
[[fallthrough]];
|
|
}
|
|
default: {
|
|
// We allow instantiating a template with template argument packs when
|
|
// building deduction guides.
|
|
if (Arg.getKind() == TemplateArgument::Pack &&
|
|
CodeSynthesisContexts.back().Kind ==
|
|
Sema::CodeSynthesisContext::BuildingDeductionGuides) {
|
|
SugaredConverted.push_back(Arg);
|
|
CanonicalConverted.push_back(Arg);
|
|
return false;
|
|
}
|
|
// We have a template type parameter but the template argument
|
|
// is not a type.
|
|
SourceRange SR = AL.getSourceRange();
|
|
Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
|
|
NoteTemplateParameterLocation(*Param);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (CheckTemplateArgument(TSI))
|
|
return true;
|
|
|
|
// Objective-C ARC:
|
|
// If an explicitly-specified template argument type is a lifetime type
|
|
// with no lifetime qualifier, the __strong lifetime qualifier is inferred.
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
ArgType->isObjCLifetimeType() &&
|
|
!ArgType.getObjCLifetime()) {
|
|
Qualifiers Qs;
|
|
Qs.setObjCLifetime(Qualifiers::OCL_Strong);
|
|
ArgType = Context.getQualifiedType(ArgType, Qs);
|
|
}
|
|
|
|
SugaredConverted.push_back(TemplateArgument(ArgType));
|
|
CanonicalConverted.push_back(
|
|
TemplateArgument(Context.getCanonicalType(ArgType)));
|
|
return false;
|
|
}
|
|
|
|
/// Substitute template arguments into the default template argument for
|
|
/// the given template type parameter.
|
|
///
|
|
/// \param SemaRef the semantic analysis object for which we are performing
|
|
/// the substitution.
|
|
///
|
|
/// \param Template the template that we are synthesizing template arguments
|
|
/// for.
|
|
///
|
|
/// \param TemplateLoc the location of the template name that started the
|
|
/// template-id we are checking.
|
|
///
|
|
/// \param RAngleLoc the location of the right angle bracket ('>') that
|
|
/// terminates the template-id.
|
|
///
|
|
/// \param Param the template template parameter whose default we are
|
|
/// substituting into.
|
|
///
|
|
/// \param Converted the list of template arguments provided for template
|
|
/// parameters that precede \p Param in the template parameter list.
|
|
///
|
|
/// \param Output the resulting substituted template argument.
|
|
///
|
|
/// \returns true if an error occurred.
|
|
static bool SubstDefaultTemplateArgument(
|
|
Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
|
|
ArrayRef<TemplateArgument> SugaredConverted,
|
|
ArrayRef<TemplateArgument> CanonicalConverted,
|
|
TemplateArgumentLoc &Output) {
|
|
Output = Param->getDefaultArgument();
|
|
|
|
// If the argument type is dependent, instantiate it now based
|
|
// on the previously-computed template arguments.
|
|
if (Output.getArgument().isInstantiationDependent()) {
|
|
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
|
|
SugaredConverted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
|
|
/*Final=*/true);
|
|
for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
|
|
TemplateArgLists.addOuterTemplateArguments(std::nullopt);
|
|
|
|
bool ForLambdaCallOperator = false;
|
|
if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
|
|
ForLambdaCallOperator = Rec->isLambda();
|
|
Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
|
|
!ForLambdaCallOperator);
|
|
|
|
if (SemaRef.SubstTemplateArgument(Output, TemplateArgLists, Output,
|
|
Param->getDefaultArgumentLoc(),
|
|
Param->getDeclName()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Substitute template arguments into the default template argument for
|
|
/// the given non-type template parameter.
|
|
///
|
|
/// \param SemaRef the semantic analysis object for which we are performing
|
|
/// the substitution.
|
|
///
|
|
/// \param Template the template that we are synthesizing template arguments
|
|
/// for.
|
|
///
|
|
/// \param TemplateLoc the location of the template name that started the
|
|
/// template-id we are checking.
|
|
///
|
|
/// \param RAngleLoc the location of the right angle bracket ('>') that
|
|
/// terminates the template-id.
|
|
///
|
|
/// \param Param the non-type template parameter whose default we are
|
|
/// substituting into.
|
|
///
|
|
/// \param Converted the list of template arguments provided for template
|
|
/// parameters that precede \p Param in the template parameter list.
|
|
///
|
|
/// \returns the substituted template argument, or NULL if an error occurred.
|
|
static bool SubstDefaultTemplateArgument(
|
|
Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
|
|
ArrayRef<TemplateArgument> SugaredConverted,
|
|
ArrayRef<TemplateArgument> CanonicalConverted,
|
|
TemplateArgumentLoc &Output) {
|
|
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
|
|
SugaredConverted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
|
|
/*Final=*/true);
|
|
for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
|
|
TemplateArgLists.addOuterTemplateArguments(std::nullopt);
|
|
|
|
Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
return SemaRef.SubstTemplateArgument(Param->getDefaultArgument(),
|
|
TemplateArgLists, Output);
|
|
}
|
|
|
|
/// Substitute template arguments into the default template argument for
|
|
/// the given template template parameter.
|
|
///
|
|
/// \param SemaRef the semantic analysis object for which we are performing
|
|
/// the substitution.
|
|
///
|
|
/// \param Template the template that we are synthesizing template arguments
|
|
/// for.
|
|
///
|
|
/// \param TemplateLoc the location of the template name that started the
|
|
/// template-id we are checking.
|
|
///
|
|
/// \param RAngleLoc the location of the right angle bracket ('>') that
|
|
/// terminates the template-id.
|
|
///
|
|
/// \param Param the template template parameter whose default we are
|
|
/// substituting into.
|
|
///
|
|
/// \param Converted the list of template arguments provided for template
|
|
/// parameters that precede \p Param in the template parameter list.
|
|
///
|
|
/// \param QualifierLoc Will be set to the nested-name-specifier (with
|
|
/// source-location information) that precedes the template name.
|
|
///
|
|
/// \returns the substituted template argument, or NULL if an error occurred.
|
|
static TemplateName SubstDefaultTemplateArgument(
|
|
Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
|
|
ArrayRef<TemplateArgument> SugaredConverted,
|
|
ArrayRef<TemplateArgument> CanonicalConverted,
|
|
NestedNameSpecifierLoc &QualifierLoc) {
|
|
Sema::InstantiatingTemplate Inst(
|
|
SemaRef, TemplateLoc, TemplateParameter(Param), Template,
|
|
SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return TemplateName();
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
|
|
/*Final=*/true);
|
|
for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
|
|
TemplateArgLists.addOuterTemplateArguments(std::nullopt);
|
|
|
|
Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
|
|
// Substitute into the nested-name-specifier first,
|
|
QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc =
|
|
SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
|
|
if (!QualifierLoc)
|
|
return TemplateName();
|
|
}
|
|
|
|
return SemaRef.SubstTemplateName(
|
|
QualifierLoc,
|
|
Param->getDefaultArgument().getArgument().getAsTemplate(),
|
|
Param->getDefaultArgument().getTemplateNameLoc(),
|
|
TemplateArgLists);
|
|
}
|
|
|
|
TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
|
|
TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc, Decl *Param,
|
|
ArrayRef<TemplateArgument> SugaredConverted,
|
|
ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
|
|
HasDefaultArg = false;
|
|
|
|
if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
|
|
if (!hasReachableDefaultArgument(TypeParm))
|
|
return TemplateArgumentLoc();
|
|
|
|
HasDefaultArg = true;
|
|
TemplateArgumentLoc Output;
|
|
if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc,
|
|
TypeParm, SugaredConverted,
|
|
CanonicalConverted, Output))
|
|
return TemplateArgumentLoc();
|
|
return Output;
|
|
}
|
|
|
|
if (NonTypeTemplateParmDecl *NonTypeParm
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
if (!hasReachableDefaultArgument(NonTypeParm))
|
|
return TemplateArgumentLoc();
|
|
|
|
HasDefaultArg = true;
|
|
TemplateArgumentLoc Output;
|
|
if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc,
|
|
NonTypeParm, SugaredConverted,
|
|
CanonicalConverted, Output))
|
|
return TemplateArgumentLoc();
|
|
return Output;
|
|
}
|
|
|
|
TemplateTemplateParmDecl *TempTempParm
|
|
= cast<TemplateTemplateParmDecl>(Param);
|
|
if (!hasReachableDefaultArgument(TempTempParm))
|
|
return TemplateArgumentLoc();
|
|
|
|
HasDefaultArg = true;
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
TemplateName TName = SubstDefaultTemplateArgument(
|
|
*this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
|
|
CanonicalConverted, QualifierLoc);
|
|
if (TName.isNull())
|
|
return TemplateArgumentLoc();
|
|
|
|
return TemplateArgumentLoc(
|
|
Context, TemplateArgument(TName),
|
|
TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
|
|
TempTempParm->getDefaultArgument().getTemplateNameLoc());
|
|
}
|
|
|
|
/// Convert a template-argument that we parsed as a type into a template, if
|
|
/// possible. C++ permits injected-class-names to perform dual service as
|
|
/// template template arguments and as template type arguments.
|
|
static TemplateArgumentLoc
|
|
convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
|
|
// Extract and step over any surrounding nested-name-specifier.
|
|
NestedNameSpecifierLoc QualLoc;
|
|
if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
|
|
if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
|
|
return TemplateArgumentLoc();
|
|
|
|
QualLoc = ETLoc.getQualifierLoc();
|
|
TLoc = ETLoc.getNamedTypeLoc();
|
|
}
|
|
// If this type was written as an injected-class-name, it can be used as a
|
|
// template template argument.
|
|
if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
|
|
return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
|
|
QualLoc, InjLoc.getNameLoc());
|
|
|
|
// If this type was written as an injected-class-name, it may have been
|
|
// converted to a RecordType during instantiation. If the RecordType is
|
|
// *not* wrapped in a TemplateSpecializationType and denotes a class
|
|
// template specialization, it must have come from an injected-class-name.
|
|
if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
|
|
if (auto *CTSD =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
|
|
return TemplateArgumentLoc(Context,
|
|
TemplateName(CTSD->getSpecializedTemplate()),
|
|
QualLoc, RecLoc.getNameLoc());
|
|
|
|
return TemplateArgumentLoc();
|
|
}
|
|
|
|
bool Sema::CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &ArgLoc,
|
|
NamedDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
unsigned ArgumentPackIndex,
|
|
CheckTemplateArgumentInfo &CTAI,
|
|
CheckTemplateArgumentKind CTAK) {
|
|
// Check template type parameters.
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
|
|
return CheckTemplateTypeArgument(TTP, ArgLoc, CTAI.SugaredConverted,
|
|
CTAI.CanonicalConverted);
|
|
|
|
const TemplateArgument &Arg = ArgLoc.getArgument();
|
|
// Check non-type template parameters.
|
|
if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
// Do substitution on the type of the non-type template parameter
|
|
// with the template arguments we've seen thus far. But if the
|
|
// template has a dependent context then we cannot substitute yet.
|
|
QualType NTTPType = NTTP->getType();
|
|
if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
|
|
NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
|
|
|
|
if (NTTPType->isInstantiationDependentType() &&
|
|
!isa<TemplateTemplateParmDecl>(Template) &&
|
|
!Template->getDeclContext()->isDependentContext()) {
|
|
// Do substitution on the type of the non-type template parameter.
|
|
InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
|
|
CTAI.SugaredConverted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
MultiLevelTemplateArgumentList MLTAL(Template, CTAI.SugaredConverted,
|
|
/*Final=*/true);
|
|
// If the parameter is a pack expansion, expand this slice of the pack.
|
|
if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
|
|
Sema::ArgPackSubstIndexRAII SubstIndex(*this, ArgumentPackIndex);
|
|
NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
} else {
|
|
NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
}
|
|
|
|
// If that worked, check the non-type template parameter type
|
|
// for validity.
|
|
if (!NTTPType.isNull())
|
|
NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
|
|
NTTP->getLocation());
|
|
if (NTTPType.isNull())
|
|
return true;
|
|
}
|
|
|
|
auto checkExpr = [&](Expr *E) -> Expr * {
|
|
TemplateArgument SugaredResult, CanonicalResult;
|
|
unsigned CurSFINAEErrors = NumSFINAEErrors;
|
|
ExprResult Res = CheckTemplateArgument(
|
|
NTTP, NTTPType, E, SugaredResult, CanonicalResult,
|
|
/*StrictCheck=*/CTAI.MatchingTTP || CTAI.PartialOrdering, CTAK);
|
|
// If the current template argument causes an error, give up now.
|
|
if (Res.isInvalid() || CurSFINAEErrors < NumSFINAEErrors)
|
|
return nullptr;
|
|
CTAI.SugaredConverted.push_back(SugaredResult);
|
|
CTAI.CanonicalConverted.push_back(CanonicalResult);
|
|
return Res.get();
|
|
};
|
|
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Should never see a NULL template argument here");
|
|
|
|
case TemplateArgument::Expression: {
|
|
Expr *E = Arg.getAsExpr();
|
|
Expr *R = checkExpr(E);
|
|
if (!R)
|
|
return true;
|
|
// If the resulting expression is new, then use it in place of the
|
|
// old expression in the template argument.
|
|
if (R != E) {
|
|
TemplateArgument TA(R, /*IsCanonical=*/false);
|
|
ArgLoc = TemplateArgumentLoc(TA, R);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// As for the converted NTTP kinds, they still might need another
|
|
// conversion, as the new corresponding parameter might be different.
|
|
// Ideally, we would always perform substitution starting with sugared types
|
|
// and never need these, as we would still have expressions. Since these are
|
|
// needed so rarely, it's probably a better tradeoff to just convert them
|
|
// back to expressions.
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::StructuralValue: {
|
|
// FIXME: StructuralValue is untested here.
|
|
ExprResult R =
|
|
BuildExpressionFromNonTypeTemplateArgument(Arg, SourceLocation());
|
|
assert(R.isUsable());
|
|
if (!checkExpr(R.get()))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
// We were given a template template argument. It may not be ill-formed;
|
|
// see below.
|
|
if (DependentTemplateName *DTN = Arg.getAsTemplateOrTemplatePattern()
|
|
.getAsDependentTemplateName()) {
|
|
// We have a template argument such as \c T::template X, which we
|
|
// parsed as a template template argument. However, since we now
|
|
// know that we need a non-type template argument, convert this
|
|
// template name into an expression.
|
|
|
|
DeclarationNameInfo NameInfo(DTN->getName().getIdentifier(),
|
|
ArgLoc.getTemplateNameLoc());
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(ArgLoc.getTemplateQualifierLoc());
|
|
// FIXME: the template-template arg was a DependentTemplateName,
|
|
// so it was provided with a template keyword. However, its source
|
|
// location is not stored in the template argument structure.
|
|
SourceLocation TemplateKWLoc;
|
|
ExprResult E = DependentScopeDeclRefExpr::Create(
|
|
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
|
|
nullptr);
|
|
|
|
// If we parsed the template argument as a pack expansion, create a
|
|
// pack expansion expression.
|
|
if (Arg.getKind() == TemplateArgument::TemplateExpansion) {
|
|
E = ActOnPackExpansion(E.get(), ArgLoc.getTemplateEllipsisLoc());
|
|
if (E.isInvalid())
|
|
return true;
|
|
}
|
|
|
|
TemplateArgument SugaredResult, CanonicalResult;
|
|
E = CheckTemplateArgument(
|
|
NTTP, NTTPType, E.get(), SugaredResult, CanonicalResult,
|
|
/*StrictCheck=*/CTAI.PartialOrdering, CTAK_Specified);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
CTAI.SugaredConverted.push_back(SugaredResult);
|
|
CTAI.CanonicalConverted.push_back(CanonicalResult);
|
|
break;
|
|
}
|
|
|
|
// We have a template argument that actually does refer to a class
|
|
// template, alias template, or template template parameter, and
|
|
// therefore cannot be a non-type template argument.
|
|
Diag(ArgLoc.getLocation(), diag::err_template_arg_must_be_expr)
|
|
<< ArgLoc.getSourceRange();
|
|
NoteTemplateParameterLocation(*Param);
|
|
|
|
return true;
|
|
|
|
case TemplateArgument::Type: {
|
|
// We have a non-type template parameter but the template
|
|
// argument is a type.
|
|
|
|
// C++ [temp.arg]p2:
|
|
// In a template-argument, an ambiguity between a type-id and
|
|
// an expression is resolved to a type-id, regardless of the
|
|
// form of the corresponding template-parameter.
|
|
//
|
|
// We warn specifically about this case, since it can be rather
|
|
// confusing for users.
|
|
QualType T = Arg.getAsType();
|
|
SourceRange SR = ArgLoc.getSourceRange();
|
|
if (T->isFunctionType())
|
|
Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
|
|
else
|
|
Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
|
|
NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Caller must expand template argument packs");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Check template template parameters.
|
|
TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
|
|
|
|
TemplateParameterList *Params = TempParm->getTemplateParameters();
|
|
if (TempParm->isExpandedParameterPack())
|
|
Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
|
|
|
|
// Substitute into the template parameter list of the template
|
|
// template parameter, since previously-supplied template arguments
|
|
// may appear within the template template parameter.
|
|
//
|
|
// FIXME: Skip this if the parameters aren't instantiation-dependent.
|
|
{
|
|
// Set up a template instantiation context.
|
|
LocalInstantiationScope Scope(*this);
|
|
InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
|
|
CTAI.SugaredConverted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
Params = SubstTemplateParams(
|
|
Params, CurContext,
|
|
MultiLevelTemplateArgumentList(Template, CTAI.SugaredConverted,
|
|
/*Final=*/true),
|
|
/*EvaluateConstraints=*/false);
|
|
if (!Params)
|
|
return true;
|
|
}
|
|
|
|
// C++1z [temp.local]p1: (DR1004)
|
|
// When [the injected-class-name] is used [...] as a template-argument for
|
|
// a template template-parameter [...] it refers to the class template
|
|
// itself.
|
|
if (Arg.getKind() == TemplateArgument::Type) {
|
|
TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
|
|
Context, ArgLoc.getTypeSourceInfo()->getTypeLoc());
|
|
if (!ConvertedArg.getArgument().isNull())
|
|
ArgLoc = ConvertedArg;
|
|
}
|
|
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Should never see a NULL template argument here");
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (CheckTemplateTemplateArgument(TempParm, Params, ArgLoc,
|
|
CTAI.PartialOrdering,
|
|
&CTAI.StrictPackMatch))
|
|
return true;
|
|
|
|
CTAI.SugaredConverted.push_back(Arg);
|
|
CTAI.CanonicalConverted.push_back(
|
|
Context.getCanonicalTemplateArgument(Arg));
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
case TemplateArgument::Type:
|
|
// We have a template template parameter but the template
|
|
// argument does not refer to a template.
|
|
Diag(ArgLoc.getLocation(), diag::err_template_arg_must_be_template)
|
|
<< getLangOpts().CPlusPlus11;
|
|
return true;
|
|
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::StructuralValue:
|
|
case TemplateArgument::NullPtr:
|
|
llvm_unreachable("non-type argument with template template parameter");
|
|
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Caller must expand template argument packs");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Diagnose a missing template argument.
|
|
template<typename TemplateParmDecl>
|
|
static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
|
|
TemplateDecl *TD,
|
|
const TemplateParmDecl *D,
|
|
TemplateArgumentListInfo &Args) {
|
|
// Dig out the most recent declaration of the template parameter; there may be
|
|
// declarations of the template that are more recent than TD.
|
|
D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
|
|
->getTemplateParameters()
|
|
->getParam(D->getIndex()));
|
|
|
|
// If there's a default argument that's not reachable, diagnose that we're
|
|
// missing a module import.
|
|
llvm::SmallVector<Module*, 8> Modules;
|
|
if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
|
|
S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
|
|
D->getDefaultArgumentLoc(), Modules,
|
|
Sema::MissingImportKind::DefaultArgument,
|
|
/*Recover*/true);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: If there's a more recent default argument that *is* visible,
|
|
// diagnose that it was declared too late.
|
|
|
|
TemplateParameterList *Params = TD->getTemplateParameters();
|
|
|
|
S.Diag(Loc, diag::err_template_arg_list_different_arity)
|
|
<< /*not enough args*/0
|
|
<< (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
|
|
<< TD;
|
|
S.NoteTemplateLocation(*TD, Params->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
/// Check that the given template argument list is well-formed
|
|
/// for specializing the given template.
|
|
bool Sema::CheckTemplateArgumentList(
|
|
TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs, const DefaultArguments &DefaultArgs,
|
|
bool PartialTemplateArgs, CheckTemplateArgumentInfo &CTAI,
|
|
bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
|
|
|
|
if (ConstraintsNotSatisfied)
|
|
*ConstraintsNotSatisfied = false;
|
|
|
|
// Make a copy of the template arguments for processing. Only make the
|
|
// changes at the end when successful in matching the arguments to the
|
|
// template.
|
|
TemplateArgumentListInfo NewArgs = TemplateArgs;
|
|
|
|
TemplateParameterList *Params = GetTemplateParameterList(Template);
|
|
|
|
SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
|
|
|
|
// C++23 [temp.arg.general]p1:
|
|
// [...] The type and form of each template-argument specified in
|
|
// a template-id shall match the type and form specified for the
|
|
// corresponding parameter declared by the template in its
|
|
// template-parameter-list.
|
|
bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
|
|
SmallVector<TemplateArgument, 2> SugaredArgumentPack;
|
|
SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
|
|
unsigned ArgIdx = 0, NumArgs = NewArgs.size();
|
|
LocalInstantiationScope InstScope(*this, true);
|
|
for (TemplateParameterList::iterator ParamBegin = Params->begin(),
|
|
ParamEnd = Params->end(),
|
|
Param = ParamBegin;
|
|
Param != ParamEnd;
|
|
/* increment in loop */) {
|
|
if (size_t ParamIdx = Param - ParamBegin;
|
|
DefaultArgs && ParamIdx >= DefaultArgs.StartPos) {
|
|
// All written arguments should have been consumed by this point.
|
|
assert(ArgIdx == NumArgs && "bad default argument deduction");
|
|
if (ParamIdx == DefaultArgs.StartPos) {
|
|
assert(Param + DefaultArgs.Args.size() <= ParamEnd);
|
|
// Default arguments from a DeducedTemplateName are already converted.
|
|
for (const TemplateArgument &DefArg : DefaultArgs.Args) {
|
|
CTAI.SugaredConverted.push_back(DefArg);
|
|
CTAI.CanonicalConverted.push_back(
|
|
Context.getCanonicalTemplateArgument(DefArg));
|
|
++Param;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we have an expanded parameter pack, make sure we don't have too
|
|
// many arguments.
|
|
if (UnsignedOrNone Expansions = getExpandedPackSize(*Param)) {
|
|
if (*Expansions == SugaredArgumentPack.size()) {
|
|
// We're done with this parameter pack. Pack up its arguments and add
|
|
// them to the list.
|
|
CTAI.SugaredConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
|
|
SugaredArgumentPack.clear();
|
|
|
|
CTAI.CanonicalConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
|
|
CanonicalArgumentPack.clear();
|
|
|
|
// This argument is assigned to the next parameter.
|
|
++Param;
|
|
continue;
|
|
} else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
|
|
// Not enough arguments for this parameter pack.
|
|
Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
|
|
<< /*not enough args*/0
|
|
<< (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
|
|
<< Template;
|
|
NoteTemplateLocation(*Template, Params->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ArgIdx < NumArgs) {
|
|
TemplateArgumentLoc &ArgLoc = NewArgs[ArgIdx];
|
|
bool NonPackParameter =
|
|
!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param);
|
|
bool ArgIsExpansion = ArgLoc.getArgument().isPackExpansion();
|
|
|
|
if (ArgIsExpansion && CTAI.MatchingTTP) {
|
|
SmallVector<TemplateArgument, 4> Args(ParamEnd - Param);
|
|
for (TemplateParameterList::iterator First = Param; Param != ParamEnd;
|
|
++Param) {
|
|
TemplateArgument &Arg = Args[Param - First];
|
|
Arg = ArgLoc.getArgument();
|
|
if (!(*Param)->isTemplateParameterPack() ||
|
|
getExpandedPackSize(*Param))
|
|
Arg = Arg.getPackExpansionPattern();
|
|
TemplateArgumentLoc NewArgLoc(Arg, ArgLoc.getLocInfo());
|
|
SaveAndRestore _1(CTAI.PartialOrdering, false);
|
|
SaveAndRestore _2(CTAI.MatchingTTP, true);
|
|
if (CheckTemplateArgument(*Param, NewArgLoc, Template, TemplateLoc,
|
|
RAngleLoc, SugaredArgumentPack.size(), CTAI,
|
|
CTAK_Specified))
|
|
return true;
|
|
Arg = NewArgLoc.getArgument();
|
|
CTAI.CanonicalConverted.back().setIsDefaulted(
|
|
clang::isSubstitutedDefaultArgument(Context, Arg, *Param,
|
|
CTAI.CanonicalConverted,
|
|
Params->getDepth()));
|
|
}
|
|
ArgLoc =
|
|
TemplateArgumentLoc(TemplateArgument::CreatePackCopy(Context, Args),
|
|
ArgLoc.getLocInfo());
|
|
} else {
|
|
SaveAndRestore _1(CTAI.PartialOrdering, false);
|
|
if (CheckTemplateArgument(*Param, ArgLoc, Template, TemplateLoc,
|
|
RAngleLoc, SugaredArgumentPack.size(), CTAI,
|
|
CTAK_Specified))
|
|
return true;
|
|
CTAI.CanonicalConverted.back().setIsDefaulted(
|
|
clang::isSubstitutedDefaultArgument(Context, ArgLoc.getArgument(),
|
|
*Param, CTAI.CanonicalConverted,
|
|
Params->getDepth()));
|
|
if (ArgIsExpansion && NonPackParameter) {
|
|
// CWG1430/CWG2686: we have a pack expansion as an argument to an
|
|
// alias template or concept, and it's not part of a parameter pack.
|
|
// This can't be canonicalized, so reject it now.
|
|
if (isa<TypeAliasTemplateDecl, ConceptDecl>(Template)) {
|
|
Diag(ArgLoc.getLocation(),
|
|
diag::err_template_expansion_into_fixed_list)
|
|
<< (isa<ConceptDecl>(Template) ? 1 : 0)
|
|
<< ArgLoc.getSourceRange();
|
|
NoteTemplateParameterLocation(**Param);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're now done with this argument.
|
|
++ArgIdx;
|
|
|
|
if (ArgIsExpansion && (CTAI.MatchingTTP || NonPackParameter)) {
|
|
// Directly convert the remaining arguments, because we don't know what
|
|
// parameters they'll match up with.
|
|
|
|
if (!SugaredArgumentPack.empty()) {
|
|
// If we were part way through filling in an expanded parameter pack,
|
|
// fall back to just producing individual arguments.
|
|
CTAI.SugaredConverted.insert(CTAI.SugaredConverted.end(),
|
|
SugaredArgumentPack.begin(),
|
|
SugaredArgumentPack.end());
|
|
SugaredArgumentPack.clear();
|
|
|
|
CTAI.CanonicalConverted.insert(CTAI.CanonicalConverted.end(),
|
|
CanonicalArgumentPack.begin(),
|
|
CanonicalArgumentPack.end());
|
|
CanonicalArgumentPack.clear();
|
|
}
|
|
|
|
while (ArgIdx < NumArgs) {
|
|
const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
|
|
CTAI.SugaredConverted.push_back(Arg);
|
|
CTAI.CanonicalConverted.push_back(
|
|
Context.getCanonicalTemplateArgument(Arg));
|
|
++ArgIdx;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if ((*Param)->isTemplateParameterPack()) {
|
|
// The template parameter was a template parameter pack, so take the
|
|
// deduced argument and place it on the argument pack. Note that we
|
|
// stay on the same template parameter so that we can deduce more
|
|
// arguments.
|
|
SugaredArgumentPack.push_back(CTAI.SugaredConverted.pop_back_val());
|
|
CanonicalArgumentPack.push_back(CTAI.CanonicalConverted.pop_back_val());
|
|
} else {
|
|
// Move to the next template parameter.
|
|
++Param;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If we're checking a partial template argument list, we're done.
|
|
if (PartialTemplateArgs) {
|
|
if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
|
|
CTAI.SugaredConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
|
|
CTAI.CanonicalConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If we have a template parameter pack with no more corresponding
|
|
// arguments, just break out now and we'll fill in the argument pack below.
|
|
if ((*Param)->isTemplateParameterPack()) {
|
|
assert(!getExpandedPackSize(*Param) &&
|
|
"Should have dealt with this already");
|
|
|
|
// A non-expanded parameter pack before the end of the parameter list
|
|
// only occurs for an ill-formed template parameter list, unless we've
|
|
// got a partial argument list for a function template, so just bail out.
|
|
if (Param + 1 != ParamEnd) {
|
|
assert(
|
|
(Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
|
|
"Concept templates must have parameter packs at the end.");
|
|
return true;
|
|
}
|
|
|
|
CTAI.SugaredConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
|
|
SugaredArgumentPack.clear();
|
|
|
|
CTAI.CanonicalConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
|
|
CanonicalArgumentPack.clear();
|
|
|
|
++Param;
|
|
continue;
|
|
}
|
|
|
|
// Check whether we have a default argument.
|
|
bool HasDefaultArg;
|
|
|
|
// Retrieve the default template argument from the template
|
|
// parameter. For each kind of template parameter, we substitute the
|
|
// template arguments provided thus far and any "outer" template arguments
|
|
// (when the template parameter was part of a nested template) into
|
|
// the default argument.
|
|
TemplateArgumentLoc Arg = SubstDefaultTemplateArgumentIfAvailable(
|
|
Template, TemplateLoc, RAngleLoc, *Param, CTAI.SugaredConverted,
|
|
CTAI.CanonicalConverted, HasDefaultArg);
|
|
|
|
if (Arg.getArgument().isNull()) {
|
|
if (!HasDefaultArg) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param))
|
|
return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
|
|
NewArgs);
|
|
if (NonTypeTemplateParmDecl *NTTP =
|
|
dyn_cast<NonTypeTemplateParmDecl>(*Param))
|
|
return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
|
|
NewArgs);
|
|
return diagnoseMissingArgument(*this, TemplateLoc, Template,
|
|
cast<TemplateTemplateParmDecl>(*Param),
|
|
NewArgs);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Introduce an instantiation record that describes where we are using
|
|
// the default template argument. We're not actually instantiating a
|
|
// template here, we just create this object to put a note into the
|
|
// context stack.
|
|
InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
|
|
CTAI.SugaredConverted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
SaveAndRestore _1(CTAI.PartialOrdering, false);
|
|
SaveAndRestore _2(CTAI.MatchingTTP, false);
|
|
SaveAndRestore _3(CTAI.StrictPackMatch, {});
|
|
// Check the default template argument.
|
|
if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
|
|
CTAI, CTAK_Specified))
|
|
return true;
|
|
|
|
CTAI.SugaredConverted.back().setIsDefaulted(true);
|
|
CTAI.CanonicalConverted.back().setIsDefaulted(true);
|
|
|
|
// Core issue 150 (assumed resolution): if this is a template template
|
|
// parameter, keep track of the default template arguments from the
|
|
// template definition.
|
|
if (isTemplateTemplateParameter)
|
|
NewArgs.addArgument(Arg);
|
|
|
|
// Move to the next template parameter and argument.
|
|
++Param;
|
|
++ArgIdx;
|
|
}
|
|
|
|
// If we're performing a partial argument substitution, allow any trailing
|
|
// pack expansions; they might be empty. This can happen even if
|
|
// PartialTemplateArgs is false (the list of arguments is complete but
|
|
// still dependent).
|
|
if (CTAI.MatchingTTP ||
|
|
(CurrentInstantiationScope &&
|
|
CurrentInstantiationScope->getPartiallySubstitutedPack())) {
|
|
while (ArgIdx < NumArgs &&
|
|
NewArgs[ArgIdx].getArgument().isPackExpansion()) {
|
|
const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
|
|
CTAI.SugaredConverted.push_back(Arg);
|
|
CTAI.CanonicalConverted.push_back(
|
|
Context.getCanonicalTemplateArgument(Arg));
|
|
}
|
|
}
|
|
|
|
// If we have any leftover arguments, then there were too many arguments.
|
|
// Complain and fail.
|
|
if (ArgIdx < NumArgs) {
|
|
Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
|
|
<< /*too many args*/1
|
|
<< (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
|
|
<< Template
|
|
<< SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
|
|
NoteTemplateLocation(*Template, Params->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
// No problems found with the new argument list, propagate changes back
|
|
// to caller.
|
|
if (UpdateArgsWithConversions)
|
|
TemplateArgs = std::move(NewArgs);
|
|
|
|
if (!PartialTemplateArgs) {
|
|
// Setup the context/ThisScope for the case where we are needing to
|
|
// re-instantiate constraints outside of normal instantiation.
|
|
DeclContext *NewContext = Template->getDeclContext();
|
|
|
|
// If this template is in a template, make sure we extract the templated
|
|
// decl.
|
|
if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
|
|
NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
|
|
auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
|
|
|
|
Qualifiers ThisQuals;
|
|
if (const auto *Method =
|
|
dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
|
|
ThisQuals = Method->getMethodQualifiers();
|
|
|
|
ContextRAII Context(*this, NewContext);
|
|
CXXThisScopeRAII Scope(*this, RD, ThisQuals, RD != nullptr);
|
|
|
|
MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
|
|
Template, NewContext, /*Final=*/false, CTAI.CanonicalConverted,
|
|
/*RelativeToPrimary=*/true,
|
|
/*Pattern=*/nullptr,
|
|
/*ForConceptInstantiation=*/true);
|
|
if (EnsureTemplateArgumentListConstraints(
|
|
Template, MLTAL,
|
|
SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
|
|
if (ConstraintsNotSatisfied)
|
|
*ConstraintsNotSatisfied = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class UnnamedLocalNoLinkageFinder
|
|
: public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
|
|
{
|
|
Sema &S;
|
|
SourceRange SR;
|
|
|
|
typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
|
|
|
|
public:
|
|
UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
|
|
|
|
bool Visit(QualType T) {
|
|
return T.isNull() ? false : inherited::Visit(T.getTypePtr());
|
|
}
|
|
|
|
#define TYPE(Class, Parent) \
|
|
bool Visit##Class##Type(const Class##Type *);
|
|
#define ABSTRACT_TYPE(Class, Parent) \
|
|
bool Visit##Class##Type(const Class##Type *) { return false; }
|
|
#define NON_CANONICAL_TYPE(Class, Parent) \
|
|
bool Visit##Class##Type(const Class##Type *) { return false; }
|
|
#include "clang/AST/TypeNodes.inc"
|
|
|
|
bool VisitTagDecl(const TagDecl *Tag);
|
|
bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
|
|
const BlockPointerType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
|
|
const LValueReferenceType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
|
|
const RValueReferenceType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
|
|
const MemberPointerType *T) {
|
|
if (Visit(T->getPointeeType()))
|
|
return true;
|
|
if (auto *RD = T->getMostRecentCXXRecordDecl())
|
|
return VisitTagDecl(RD);
|
|
return VisitNestedNameSpecifier(T->getQualifier());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
|
|
const ConstantArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
|
|
const IncompleteArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
|
|
const VariableArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
|
|
const DependentSizedArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
|
|
const DependentSizedExtVectorType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
|
|
const DependentSizedMatrixType *T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
|
|
const DependentAddressSpaceType *T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
|
|
const DependentVectorType *T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
|
|
const ConstantMatrixType *T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
|
|
const FunctionProtoType* T) {
|
|
for (const auto &A : T->param_types()) {
|
|
if (Visit(A))
|
|
return true;
|
|
}
|
|
|
|
return Visit(T->getReturnType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
|
|
const FunctionNoProtoType* T) {
|
|
return Visit(T->getReturnType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
|
|
const UnresolvedUsingType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
|
|
return Visit(T->getUnmodifiedType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType(
|
|
const PackIndexingType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
|
|
const UnaryTransformType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
|
|
return Visit(T->getDeducedType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
|
|
const DeducedTemplateSpecializationType *T) {
|
|
return Visit(T->getDeducedType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
|
|
return VisitTagDecl(T->getDecl());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
|
|
return VisitTagDecl(T->getDecl());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
|
|
const TemplateTypeParmType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
|
|
const SubstTemplateTypeParmPackType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
|
|
const TemplateSpecializationType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
|
|
const InjectedClassNameType* T) {
|
|
return VisitTagDecl(T->getDecl());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
|
|
const DependentNameType* T) {
|
|
return VisitNestedNameSpecifier(T->getQualifier());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
|
|
const DependentTemplateSpecializationType* T) {
|
|
if (auto *Q = T->getDependentTemplateName().getQualifier())
|
|
return VisitNestedNameSpecifier(Q);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
|
|
const PackExpansionType* T) {
|
|
return Visit(T->getPattern());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
|
|
const ObjCInterfaceType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
|
|
const ObjCObjectPointerType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
|
|
return Visit(T->getValueType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType(
|
|
const ArrayParameterType *T) {
|
|
return VisitConstantArrayType(T);
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
|
|
const DependentBitIntType *T) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
|
|
if (Tag->getDeclContext()->isFunctionOrMethod()) {
|
|
S.Diag(SR.getBegin(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_arg_local_type :
|
|
diag::ext_template_arg_local_type)
|
|
<< S.Context.getTypeDeclType(Tag) << SR;
|
|
return true;
|
|
}
|
|
|
|
if (!Tag->hasNameForLinkage()) {
|
|
S.Diag(SR.getBegin(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_arg_unnamed_type :
|
|
diag::ext_template_arg_unnamed_type) << SR;
|
|
S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
|
|
NestedNameSpecifier *NNS) {
|
|
assert(NNS);
|
|
if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
|
|
return true;
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Super:
|
|
return false;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
return Visit(QualType(NNS->getAsType(), 0));
|
|
}
|
|
llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitHLSLAttributedResourceType(
|
|
const HLSLAttributedResourceType *T) {
|
|
if (T->hasContainedType() && Visit(T->getContainedType()))
|
|
return true;
|
|
return Visit(T->getWrappedType());
|
|
}
|
|
|
|
bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
|
|
assert(ArgInfo && "invalid TypeSourceInfo");
|
|
QualType Arg = ArgInfo->getType();
|
|
SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
|
|
QualType CanonArg = Context.getCanonicalType(Arg);
|
|
|
|
if (CanonArg->isVariablyModifiedType()) {
|
|
return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
|
|
} else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
|
|
return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
|
|
}
|
|
|
|
// C++03 [temp.arg.type]p2:
|
|
// A local type, a type with no linkage, an unnamed type or a type
|
|
// compounded from any of these types shall not be used as a
|
|
// template-argument for a template type-parameter.
|
|
//
|
|
// C++11 allows these, and even in C++03 we allow them as an extension with
|
|
// a warning.
|
|
if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
|
|
UnnamedLocalNoLinkageFinder Finder(*this, SR);
|
|
(void)Finder.Visit(CanonArg);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
enum NullPointerValueKind {
|
|
NPV_NotNullPointer,
|
|
NPV_NullPointer,
|
|
NPV_Error
|
|
};
|
|
|
|
/// Determine whether the given template argument is a null pointer
|
|
/// value of the appropriate type.
|
|
static NullPointerValueKind
|
|
isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType, Expr *Arg,
|
|
Decl *Entity = nullptr) {
|
|
if (Arg->isValueDependent() || Arg->isTypeDependent())
|
|
return NPV_NotNullPointer;
|
|
|
|
// dllimport'd entities aren't constant but are available inside of template
|
|
// arguments.
|
|
if (Entity && Entity->hasAttr<DLLImportAttr>())
|
|
return NPV_NotNullPointer;
|
|
|
|
if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
|
|
llvm_unreachable(
|
|
"Incomplete parameter type in isNullPointerValueTemplateArgument!");
|
|
|
|
if (!S.getLangOpts().CPlusPlus11)
|
|
return NPV_NotNullPointer;
|
|
|
|
// Determine whether we have a constant expression.
|
|
ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
|
|
if (ArgRV.isInvalid())
|
|
return NPV_Error;
|
|
Arg = ArgRV.get();
|
|
|
|
Expr::EvalResult EvalResult;
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
EvalResult.Diag = &Notes;
|
|
if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
|
|
EvalResult.HasSideEffects) {
|
|
SourceLocation DiagLoc = Arg->getExprLoc();
|
|
|
|
// If our only note is the usual "invalid subexpression" note, just point
|
|
// the caret at its location rather than producing an essentially
|
|
// redundant note.
|
|
if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
|
|
diag::note_invalid_subexpr_in_const_expr) {
|
|
DiagLoc = Notes[0].first;
|
|
Notes.clear();
|
|
}
|
|
|
|
S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
|
|
<< Arg->getType() << Arg->getSourceRange();
|
|
for (unsigned I = 0, N = Notes.size(); I != N; ++I)
|
|
S.Diag(Notes[I].first, Notes[I].second);
|
|
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return NPV_Error;
|
|
}
|
|
|
|
// C++11 [temp.arg.nontype]p1:
|
|
// - an address constant expression of type std::nullptr_t
|
|
if (Arg->getType()->isNullPtrType())
|
|
return NPV_NullPointer;
|
|
|
|
// - a constant expression that evaluates to a null pointer value (4.10); or
|
|
// - a constant expression that evaluates to a null member pointer value
|
|
// (4.11); or
|
|
if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
|
|
(EvalResult.Val.isMemberPointer() &&
|
|
!EvalResult.Val.getMemberPointerDecl())) {
|
|
// If our expression has an appropriate type, we've succeeded.
|
|
bool ObjCLifetimeConversion;
|
|
if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
|
|
S.IsQualificationConversion(Arg->getType(), ParamType, false,
|
|
ObjCLifetimeConversion))
|
|
return NPV_NullPointer;
|
|
|
|
// The types didn't match, but we know we got a null pointer; complain,
|
|
// then recover as if the types were correct.
|
|
S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
|
|
<< Arg->getType() << ParamType << Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return NPV_NullPointer;
|
|
}
|
|
|
|
if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
|
|
// We found a pointer that isn't null, but doesn't refer to an object.
|
|
// We could just return NPV_NotNullPointer, but we can print a better
|
|
// message with the information we have here.
|
|
S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
|
|
<< EvalResult.Val.getAsString(S.Context, ParamType);
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return NPV_Error;
|
|
}
|
|
|
|
// If we don't have a null pointer value, but we do have a NULL pointer
|
|
// constant, suggest a cast to the appropriate type.
|
|
if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
|
|
std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
|
|
S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
|
|
<< ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
|
|
<< FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
|
|
")");
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return NPV_NullPointer;
|
|
}
|
|
|
|
// FIXME: If we ever want to support general, address-constant expressions
|
|
// as non-type template arguments, we should return the ExprResult here to
|
|
// be interpreted by the caller.
|
|
return NPV_NotNullPointer;
|
|
}
|
|
|
|
/// Checks whether the given template argument is compatible with its
|
|
/// template parameter.
|
|
static bool CheckTemplateArgumentIsCompatibleWithParameter(
|
|
Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
|
|
Expr *Arg, QualType ArgType) {
|
|
bool ObjCLifetimeConversion;
|
|
if (ParamType->isPointerType() &&
|
|
!ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
|
|
S.IsQualificationConversion(ArgType, ParamType, false,
|
|
ObjCLifetimeConversion)) {
|
|
// For pointer-to-object types, qualification conversions are
|
|
// permitted.
|
|
} else {
|
|
if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
|
|
if (!ParamRef->getPointeeType()->isFunctionType()) {
|
|
// C++ [temp.arg.nontype]p5b3:
|
|
// For a non-type template-parameter of type reference to
|
|
// object, no conversions apply. The type referred to by the
|
|
// reference may be more cv-qualified than the (otherwise
|
|
// identical) type of the template- argument. The
|
|
// template-parameter is bound directly to the
|
|
// template-argument, which shall be an lvalue.
|
|
|
|
// FIXME: Other qualifiers?
|
|
unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
|
|
unsigned ArgQuals = ArgType.getCVRQualifiers();
|
|
|
|
if ((ParamQuals | ArgQuals) != ParamQuals) {
|
|
S.Diag(Arg->getBeginLoc(),
|
|
diag::err_template_arg_ref_bind_ignores_quals)
|
|
<< ParamType << Arg->getType() << Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point, the template argument refers to an object or
|
|
// function with external linkage. We now need to check whether the
|
|
// argument and parameter types are compatible.
|
|
if (!S.Context.hasSameUnqualifiedType(ArgType,
|
|
ParamType.getNonReferenceType())) {
|
|
// We can't perform this conversion or binding.
|
|
if (ParamType->isReferenceType())
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
|
|
<< ParamType << ArgIn->getType() << Arg->getSourceRange();
|
|
else
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
|
|
<< ArgIn->getType() << ParamType << Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Checks whether the given template argument is the address
|
|
/// of an object or function according to C++ [temp.arg.nontype]p1.
|
|
static bool CheckTemplateArgumentAddressOfObjectOrFunction(
|
|
Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
|
|
TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
|
|
bool Invalid = false;
|
|
Expr *Arg = ArgIn;
|
|
QualType ArgType = Arg->getType();
|
|
|
|
bool AddressTaken = false;
|
|
SourceLocation AddrOpLoc;
|
|
if (S.getLangOpts().MicrosoftExt) {
|
|
// Microsoft Visual C++ strips all casts, allows an arbitrary number of
|
|
// dereference and address-of operators.
|
|
Arg = Arg->IgnoreParenCasts();
|
|
|
|
bool ExtWarnMSTemplateArg = false;
|
|
UnaryOperatorKind FirstOpKind;
|
|
SourceLocation FirstOpLoc;
|
|
while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
UnaryOperatorKind UnOpKind = UnOp->getOpcode();
|
|
if (UnOpKind == UO_Deref)
|
|
ExtWarnMSTemplateArg = true;
|
|
if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
|
|
Arg = UnOp->getSubExpr()->IgnoreParenCasts();
|
|
if (!AddrOpLoc.isValid()) {
|
|
FirstOpKind = UnOpKind;
|
|
FirstOpLoc = UnOp->getOperatorLoc();
|
|
}
|
|
} else
|
|
break;
|
|
}
|
|
if (FirstOpLoc.isValid()) {
|
|
if (ExtWarnMSTemplateArg)
|
|
S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
|
|
<< ArgIn->getSourceRange();
|
|
|
|
if (FirstOpKind == UO_AddrOf)
|
|
AddressTaken = true;
|
|
else if (Arg->getType()->isPointerType()) {
|
|
// We cannot let pointers get dereferenced here, that is obviously not a
|
|
// constant expression.
|
|
assert(FirstOpKind == UO_Deref);
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
}
|
|
} else {
|
|
// See through any implicit casts we added to fix the type.
|
|
Arg = Arg->IgnoreImpCasts();
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
//
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of: [...]
|
|
//
|
|
// -- the address of an object or function with external
|
|
// linkage, including function templates and function
|
|
// template-ids but excluding non-static class members,
|
|
// expressed as & id-expression where the & is optional if
|
|
// the name refers to a function or array, or if the
|
|
// corresponding template-parameter is a reference; or
|
|
|
|
// In C++98/03 mode, give an extension warning on any extra parentheses.
|
|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
|
|
bool ExtraParens = false;
|
|
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
|
|
if (!Invalid && !ExtraParens) {
|
|
S.DiagCompat(Arg->getBeginLoc(), diag_compat::template_arg_extra_parens)
|
|
<< Arg->getSourceRange();
|
|
ExtraParens = true;
|
|
}
|
|
|
|
Arg = Parens->getSubExpr();
|
|
}
|
|
|
|
while (SubstNonTypeTemplateParmExpr *subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
|
|
Arg = subst->getReplacement()->IgnoreImpCasts();
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
if (UnOp->getOpcode() == UO_AddrOf) {
|
|
Arg = UnOp->getSubExpr();
|
|
AddressTaken = true;
|
|
AddrOpLoc = UnOp->getOperatorLoc();
|
|
}
|
|
}
|
|
|
|
while (SubstNonTypeTemplateParmExpr *subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
|
|
Arg = subst->getReplacement()->IgnoreImpCasts();
|
|
}
|
|
|
|
ValueDecl *Entity = nullptr;
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
|
|
Entity = DRE->getDecl();
|
|
else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
|
|
Entity = CUE->getGuidDecl();
|
|
|
|
// If our parameter has pointer type, check for a null template value.
|
|
if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
|
|
switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
|
|
Entity)) {
|
|
case NPV_NullPointer:
|
|
S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
|
|
SugaredConverted = TemplateArgument(ParamType,
|
|
/*isNullPtr=*/true);
|
|
CanonicalConverted =
|
|
TemplateArgument(S.Context.getCanonicalType(ParamType),
|
|
/*isNullPtr=*/true);
|
|
return false;
|
|
|
|
case NPV_Error:
|
|
return true;
|
|
|
|
case NPV_NotNullPointer:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Stop checking the precise nature of the argument if it is value dependent,
|
|
// it should be checked when instantiated.
|
|
if (Arg->isValueDependent()) {
|
|
SugaredConverted = TemplateArgument(ArgIn, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
S.Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
return false;
|
|
}
|
|
|
|
if (!Entity) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
|
|
<< Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
// Cannot refer to non-static data members
|
|
if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
|
|
<< Entity << Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
// Cannot refer to non-static member functions
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
|
|
if (!Method->isStatic()) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
|
|
<< Method << Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
|
|
VarDecl *Var = dyn_cast<VarDecl>(Entity);
|
|
MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
|
|
|
|
// A non-type template argument must refer to an object or function.
|
|
if (!Func && !Var && !Guid) {
|
|
// We found something, but we don't know specifically what it is.
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
// Address / reference template args must have external linkage in C++98.
|
|
if (Entity->getFormalLinkage() == Linkage::Internal) {
|
|
S.Diag(Arg->getBeginLoc(),
|
|
S.getLangOpts().CPlusPlus11
|
|
? diag::warn_cxx98_compat_template_arg_object_internal
|
|
: diag::ext_template_arg_object_internal)
|
|
<< !Func << Entity << Arg->getSourceRange();
|
|
S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
|
|
<< !Func;
|
|
} else if (!Entity->hasLinkage()) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
|
|
<< !Func << Entity << Arg->getSourceRange();
|
|
S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
|
|
<< !Func;
|
|
return true;
|
|
}
|
|
|
|
if (Var) {
|
|
// A value of reference type is not an object.
|
|
if (Var->getType()->isReferenceType()) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
|
|
<< Var->getType() << Arg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
// A template argument must have static storage duration.
|
|
if (Var->getTLSKind()) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (AddressTaken && ParamType->isReferenceType()) {
|
|
// If we originally had an address-of operator, but the
|
|
// parameter has reference type, complain and (if things look
|
|
// like they will work) drop the address-of operator.
|
|
if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
|
|
ParamType.getNonReferenceType())) {
|
|
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
|
|
<< ParamType;
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
|
|
<< ParamType
|
|
<< FixItHint::CreateRemoval(AddrOpLoc);
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
|
|
ArgType = Entity->getType();
|
|
}
|
|
|
|
// If the template parameter has pointer type, either we must have taken the
|
|
// address or the argument must decay to a pointer.
|
|
if (!AddressTaken && ParamType->isPointerType()) {
|
|
if (Func) {
|
|
// Function-to-pointer decay.
|
|
ArgType = S.Context.getPointerType(Func->getType());
|
|
} else if (Entity->getType()->isArrayType()) {
|
|
// Array-to-pointer decay.
|
|
ArgType = S.Context.getArrayDecayedType(Entity->getType());
|
|
} else {
|
|
// If the template parameter has pointer type but the address of
|
|
// this object was not taken, complain and (possibly) recover by
|
|
// taking the address of the entity.
|
|
ArgType = S.Context.getPointerType(Entity->getType());
|
|
if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
|
|
<< ParamType;
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
|
|
<< ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
|
|
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
}
|
|
}
|
|
|
|
if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
|
|
Arg, ArgType))
|
|
return true;
|
|
|
|
// Create the template argument.
|
|
SugaredConverted = TemplateArgument(Entity, ParamType);
|
|
CanonicalConverted =
|
|
TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
|
|
S.Context.getCanonicalType(ParamType));
|
|
S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
|
|
return false;
|
|
}
|
|
|
|
/// Checks whether the given template argument is a pointer to
|
|
/// member constant according to C++ [temp.arg.nontype]p1.
|
|
static bool
|
|
CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType, Expr *&ResultArg,
|
|
TemplateArgument &SugaredConverted,
|
|
TemplateArgument &CanonicalConverted) {
|
|
bool Invalid = false;
|
|
|
|
Expr *Arg = ResultArg;
|
|
bool ObjCLifetimeConversion;
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
//
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of: [...]
|
|
//
|
|
// -- a pointer to member expressed as described in 5.3.1.
|
|
DeclRefExpr *DRE = nullptr;
|
|
|
|
// In C++98/03 mode, give an extension warning on any extra parentheses.
|
|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
|
|
bool ExtraParens = false;
|
|
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
|
|
if (!Invalid && !ExtraParens) {
|
|
S.DiagCompat(Arg->getBeginLoc(), diag_compat::template_arg_extra_parens)
|
|
<< Arg->getSourceRange();
|
|
ExtraParens = true;
|
|
}
|
|
|
|
Arg = Parens->getSubExpr();
|
|
}
|
|
|
|
while (SubstNonTypeTemplateParmExpr *subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
|
|
Arg = subst->getReplacement()->IgnoreImpCasts();
|
|
|
|
// A pointer-to-member constant written &Class::member.
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
if (UnOp->getOpcode() == UO_AddrOf) {
|
|
DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
|
|
if (DRE && !DRE->getQualifier())
|
|
DRE = nullptr;
|
|
}
|
|
}
|
|
// A constant of pointer-to-member type.
|
|
else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
|
|
ValueDecl *VD = DRE->getDecl();
|
|
if (VD->getType()->isMemberPointerType()) {
|
|
if (isa<NonTypeTemplateParmDecl>(VD)) {
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
S.Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
SugaredConverted = TemplateArgument(VD, ParamType);
|
|
CanonicalConverted =
|
|
TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
|
|
S.Context.getCanonicalType(ParamType));
|
|
}
|
|
return Invalid;
|
|
}
|
|
}
|
|
|
|
DRE = nullptr;
|
|
}
|
|
|
|
ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
|
|
|
|
// Check for a null pointer value.
|
|
switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
|
|
Entity)) {
|
|
case NPV_Error:
|
|
return true;
|
|
case NPV_NullPointer:
|
|
S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
|
|
SugaredConverted = TemplateArgument(ParamType,
|
|
/*isNullPtr*/ true);
|
|
CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
|
|
/*isNullPtr*/ true);
|
|
return false;
|
|
case NPV_NotNullPointer:
|
|
break;
|
|
}
|
|
|
|
if (S.IsQualificationConversion(ResultArg->getType(),
|
|
ParamType.getNonReferenceType(), false,
|
|
ObjCLifetimeConversion)) {
|
|
ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
|
|
ResultArg->getValueKind())
|
|
.get();
|
|
} else if (!S.Context.hasSameUnqualifiedType(
|
|
ResultArg->getType(), ParamType.getNonReferenceType())) {
|
|
// We can't perform this conversion.
|
|
S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
|
|
<< ResultArg->getType() << ParamType << ResultArg->getSourceRange();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
|
|
if (!DRE)
|
|
return S.Diag(Arg->getBeginLoc(),
|
|
diag::err_template_arg_not_pointer_to_member_form)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (isa<FieldDecl>(DRE->getDecl()) ||
|
|
isa<IndirectFieldDecl>(DRE->getDecl()) ||
|
|
isa<CXXMethodDecl>(DRE->getDecl())) {
|
|
assert((isa<FieldDecl>(DRE->getDecl()) ||
|
|
isa<IndirectFieldDecl>(DRE->getDecl()) ||
|
|
cast<CXXMethodDecl>(DRE->getDecl())
|
|
->isImplicitObjectMemberFunction()) &&
|
|
"Only non-static member pointers can make it here");
|
|
|
|
// Okay: this is the address of a non-static member, and therefore
|
|
// a member pointer constant.
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
S.Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
ValueDecl *D = DRE->getDecl();
|
|
SugaredConverted = TemplateArgument(D, ParamType);
|
|
CanonicalConverted =
|
|
TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
|
|
S.Context.getCanonicalType(ParamType));
|
|
}
|
|
return Invalid;
|
|
}
|
|
|
|
// We found something else, but we don't know specifically what it is.
|
|
S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType, Expr *Arg,
|
|
TemplateArgument &SugaredConverted,
|
|
TemplateArgument &CanonicalConverted,
|
|
bool StrictCheck,
|
|
CheckTemplateArgumentKind CTAK) {
|
|
SourceLocation StartLoc = Arg->getBeginLoc();
|
|
auto *ArgPE = dyn_cast<PackExpansionExpr>(Arg);
|
|
Expr *DeductionArg = ArgPE ? ArgPE->getPattern() : Arg;
|
|
auto setDeductionArg = [&](Expr *NewDeductionArg) {
|
|
DeductionArg = NewDeductionArg;
|
|
if (ArgPE) {
|
|
// Recreate a pack expansion if we unwrapped one.
|
|
Arg = new (Context) PackExpansionExpr(
|
|
DeductionArg, ArgPE->getEllipsisLoc(), ArgPE->getNumExpansions());
|
|
} else {
|
|
Arg = DeductionArg;
|
|
}
|
|
};
|
|
|
|
// If the parameter type somehow involves auto, deduce the type now.
|
|
DeducedType *DeducedT = ParamType->getContainedDeducedType();
|
|
if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
|
|
// During template argument deduction, we allow 'decltype(auto)' to
|
|
// match an arbitrary dependent argument.
|
|
// FIXME: The language rules don't say what happens in this case.
|
|
// FIXME: We get an opaque dependent type out of decltype(auto) if the
|
|
// expression is merely instantiation-dependent; is this enough?
|
|
if (DeductionArg->isTypeDependent()) {
|
|
auto *AT = dyn_cast<AutoType>(DeducedT);
|
|
if (AT && AT->isDecltypeAuto()) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted = TemplateArgument(
|
|
Context.getCanonicalTemplateArgument(SugaredConverted));
|
|
return Arg;
|
|
}
|
|
}
|
|
|
|
// When checking a deduced template argument, deduce from its type even if
|
|
// the type is dependent, in order to check the types of non-type template
|
|
// arguments line up properly in partial ordering.
|
|
TypeSourceInfo *TSI =
|
|
Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
|
|
if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeTemplateParameter(ParamType, Param);
|
|
InitializationKind Kind = InitializationKind::CreateForInit(
|
|
DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
|
|
Expr *Inits[1] = {DeductionArg};
|
|
ParamType =
|
|
DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
|
|
if (ParamType.isNull())
|
|
return ExprError();
|
|
} else {
|
|
TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
|
|
Param->getDepth() + 1);
|
|
ParamType = QualType();
|
|
TemplateDeductionResult Result =
|
|
DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
|
|
/*DependentDeduction=*/true,
|
|
// We do not check constraints right now because the
|
|
// immediately-declared constraint of the auto type is
|
|
// also an associated constraint, and will be checked
|
|
// along with the other associated constraints after
|
|
// checking the template argument list.
|
|
/*IgnoreConstraints=*/true);
|
|
if (Result == TemplateDeductionResult::AlreadyDiagnosed) {
|
|
if (ParamType.isNull())
|
|
return ExprError();
|
|
} else if (Result != TemplateDeductionResult::Success) {
|
|
Diag(Arg->getExprLoc(),
|
|
diag::err_non_type_template_parm_type_deduction_failure)
|
|
<< Param->getDeclName() << Param->getType() << Arg->getType()
|
|
<< Arg->getSourceRange();
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
}
|
|
}
|
|
// CheckNonTypeTemplateParameterType will produce a diagnostic if there's
|
|
// an error. The error message normally references the parameter
|
|
// declaration, but here we'll pass the argument location because that's
|
|
// where the parameter type is deduced.
|
|
ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
|
|
if (ParamType.isNull()) {
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// We should have already dropped all cv-qualifiers by now.
|
|
assert(!ParamType.hasQualifiers() &&
|
|
"non-type template parameter type cannot be qualified");
|
|
|
|
// If either the parameter has a dependent type or the argument is
|
|
// type-dependent, there's nothing we can check now.
|
|
if (ParamType->isDependentType() || DeductionArg->isTypeDependent()) {
|
|
// Force the argument to the type of the parameter to maintain invariants.
|
|
ExprResult E = ImpCastExprToType(
|
|
DeductionArg, ParamType.getNonLValueExprType(Context), CK_Dependent,
|
|
ParamType->isLValueReferenceType() ? VK_LValue
|
|
: ParamType->isRValueReferenceType() ? VK_XValue
|
|
: VK_PRValue);
|
|
if (E.isInvalid())
|
|
return ExprError();
|
|
setDeductionArg(E.get());
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted = TemplateArgument(
|
|
Context.getCanonicalTemplateArgument(SugaredConverted));
|
|
return Arg;
|
|
}
|
|
|
|
// FIXME: When Param is a reference, should we check that Arg is an lvalue?
|
|
if (CTAK == CTAK_Deduced && !StrictCheck &&
|
|
(ParamType->isReferenceType()
|
|
? !Context.hasSameType(ParamType.getNonReferenceType(),
|
|
DeductionArg->getType())
|
|
: !Context.hasSameUnqualifiedType(ParamType,
|
|
DeductionArg->getType()))) {
|
|
// FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
|
|
// we should actually be checking the type of the template argument in P,
|
|
// not the type of the template argument deduced from A, against the
|
|
// template parameter type.
|
|
Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
|
|
<< Arg->getType() << ParamType.getUnqualifiedType();
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
}
|
|
|
|
// If the argument is a pack expansion, we don't know how many times it would
|
|
// expand. If we continue checking the argument, this will make the template
|
|
// definition ill-formed if it would be ill-formed for any number of
|
|
// expansions during instantiation time. When partial ordering or matching
|
|
// template template parameters, this is exactly what we want. Otherwise, the
|
|
// normal template rules apply: we accept the template if it would be valid
|
|
// for any number of expansions (i.e. none).
|
|
if (ArgPE && !StrictCheck) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted = TemplateArgument(
|
|
Context.getCanonicalTemplateArgument(SugaredConverted));
|
|
return Arg;
|
|
}
|
|
|
|
// Avoid making a copy when initializing a template parameter of class type
|
|
// from a template parameter object of the same type. This is going beyond
|
|
// the standard, but is required for soundness: in
|
|
// template<A a> struct X { X *p; X<a> *q; };
|
|
// ... we need p and q to have the same type.
|
|
//
|
|
// Similarly, don't inject a call to a copy constructor when initializing
|
|
// from a template parameter of the same type.
|
|
Expr *InnerArg = DeductionArg->IgnoreParenImpCasts();
|
|
if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
|
|
Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
|
|
NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
|
|
if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
|
|
|
|
SugaredConverted = TemplateArgument(TPO, ParamType);
|
|
CanonicalConverted = TemplateArgument(TPO->getCanonicalDecl(),
|
|
ParamType.getCanonicalType());
|
|
return Arg;
|
|
}
|
|
if (isa<NonTypeTemplateParmDecl>(ND)) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
return Arg;
|
|
}
|
|
}
|
|
|
|
// The initialization of the parameter from the argument is
|
|
// a constant-evaluated context.
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
*this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
bool IsConvertedConstantExpression = true;
|
|
if (isa<InitListExpr>(DeductionArg) || ParamType->isRecordType()) {
|
|
InitializationKind Kind = InitializationKind::CreateForInit(
|
|
StartLoc, /*DirectInit=*/false, DeductionArg);
|
|
Expr *Inits[1] = {DeductionArg};
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeTemplateParameter(ParamType, Param);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, Inits);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits);
|
|
if (Result.isInvalid() || !Result.get())
|
|
return ExprError();
|
|
Result = ActOnConstantExpression(Result.get());
|
|
if (Result.isInvalid() || !Result.get())
|
|
return ExprError();
|
|
setDeductionArg(ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(),
|
|
/*DiscardedValue=*/false,
|
|
/*IsConstexpr=*/true,
|
|
/*IsTemplateArgument=*/true)
|
|
.get());
|
|
IsConvertedConstantExpression = false;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus17 || StrictCheck) {
|
|
// C++17 [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type template parameter shall be
|
|
// a converted constant expression of the type of the template-parameter.
|
|
APValue Value;
|
|
ExprResult ArgResult;
|
|
if (IsConvertedConstantExpression) {
|
|
ArgResult = BuildConvertedConstantExpression(
|
|
DeductionArg, ParamType,
|
|
StrictCheck ? CCEK_TempArgStrict : CCEK_TemplateArg, Param);
|
|
assert(!ArgResult.isUnset());
|
|
if (ArgResult.isInvalid()) {
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
ArgResult = DeductionArg;
|
|
}
|
|
|
|
// For a value-dependent argument, CheckConvertedConstantExpression is
|
|
// permitted (and expected) to be unable to determine a value.
|
|
if (ArgResult.get()->isValueDependent()) {
|
|
setDeductionArg(ArgResult.get());
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
return Arg;
|
|
}
|
|
|
|
APValue PreNarrowingValue;
|
|
ArgResult = EvaluateConvertedConstantExpression(
|
|
ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/
|
|
false, PreNarrowingValue);
|
|
if (ArgResult.isInvalid())
|
|
return ExprError();
|
|
setDeductionArg(ArgResult.get());
|
|
|
|
if (Value.isLValue()) {
|
|
APValue::LValueBase Base = Value.getLValueBase();
|
|
auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
|
|
// For a non-type template-parameter of pointer or reference type,
|
|
// the value of the constant expression shall not refer to
|
|
assert(ParamType->isPointerOrReferenceType() ||
|
|
ParamType->isNullPtrType());
|
|
// -- a temporary object
|
|
// -- a string literal
|
|
// -- the result of a typeid expression, or
|
|
// -- a predefined __func__ variable
|
|
if (Base &&
|
|
(!VD ||
|
|
isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
|
|
Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
|
|
<< Arg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD &&
|
|
VD->getType()->isArrayType() &&
|
|
Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
|
|
!Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
|
|
if (ArgPE) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
SugaredConverted = TemplateArgument(VD, ParamType);
|
|
CanonicalConverted =
|
|
TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
|
|
ParamType.getCanonicalType());
|
|
}
|
|
return Arg;
|
|
}
|
|
|
|
// -- a subobject [until C++20]
|
|
if (!getLangOpts().CPlusPlus20) {
|
|
if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
|
|
Value.isLValueOnePastTheEnd()) {
|
|
Diag(StartLoc, diag::err_non_type_template_arg_subobject)
|
|
<< Value.getAsString(Context, ParamType);
|
|
return ExprError();
|
|
}
|
|
assert((VD || !ParamType->isReferenceType()) &&
|
|
"null reference should not be a constant expression");
|
|
assert((!VD || !ParamType->isNullPtrType()) &&
|
|
"non-null value of type nullptr_t?");
|
|
}
|
|
}
|
|
|
|
if (Value.isAddrLabelDiff())
|
|
return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
|
|
|
|
if (ArgPE) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
SugaredConverted = TemplateArgument(Context, ParamType, Value);
|
|
CanonicalConverted =
|
|
TemplateArgument(Context, ParamType.getCanonicalType(), Value);
|
|
}
|
|
return Arg;
|
|
}
|
|
|
|
// C++ [temp.arg.nontype]p5:
|
|
// The following conversions are performed on each expression used
|
|
// as a non-type template-argument. If a non-type
|
|
// template-argument cannot be converted to the type of the
|
|
// corresponding template-parameter then the program is
|
|
// ill-formed.
|
|
if (ParamType->isIntegralOrEnumerationType()) {
|
|
// C++11:
|
|
// -- for a non-type template-parameter of integral or
|
|
// enumeration type, conversions permitted in a converted
|
|
// constant expression are applied.
|
|
//
|
|
// C++98:
|
|
// -- for a non-type template-parameter of integral or
|
|
// enumeration type, integral promotions (4.5) and integral
|
|
// conversions (4.7) are applied.
|
|
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// C++ [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type, non-template template-parameter
|
|
// shall be one of:
|
|
//
|
|
// -- for a non-type template-parameter of integral or enumeration
|
|
// type, a converted constant expression of the type of the
|
|
// template-parameter; or
|
|
llvm::APSInt Value;
|
|
ExprResult ArgResult = CheckConvertedConstantExpression(
|
|
DeductionArg, ParamType, Value, CCEK_TemplateArg);
|
|
if (ArgResult.isInvalid())
|
|
return ExprError();
|
|
setDeductionArg(ArgResult.get());
|
|
|
|
// We can't check arbitrary value-dependent arguments.
|
|
if (DeductionArg->isValueDependent()) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
return Arg;
|
|
}
|
|
|
|
// Widen the argument value to sizeof(parameter type). This is almost
|
|
// always a no-op, except when the parameter type is bool. In
|
|
// that case, this may extend the argument from 1 bit to 8 bits.
|
|
QualType IntegerType = ParamType;
|
|
if (const EnumType *Enum = IntegerType->getAs<EnumType>())
|
|
IntegerType = Enum->getDecl()->getIntegerType();
|
|
Value = Value.extOrTrunc(IntegerType->isBitIntType()
|
|
? Context.getIntWidth(IntegerType)
|
|
: Context.getTypeSize(IntegerType));
|
|
|
|
if (ArgPE) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
SugaredConverted = TemplateArgument(Context, Value, ParamType);
|
|
CanonicalConverted = TemplateArgument(
|
|
Context, Value, Context.getCanonicalType(ParamType));
|
|
}
|
|
return Arg;
|
|
}
|
|
|
|
ExprResult ArgResult = DefaultLvalueConversion(Arg);
|
|
if (ArgResult.isInvalid())
|
|
return ExprError();
|
|
DeductionArg = ArgResult.get();
|
|
|
|
QualType ArgType = DeductionArg->getType();
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of:
|
|
//
|
|
// -- an integral constant-expression of integral or enumeration
|
|
// type; or
|
|
// -- the name of a non-type template-parameter; or
|
|
llvm::APSInt Value;
|
|
if (!ArgType->isIntegralOrEnumerationType()) {
|
|
Diag(StartLoc, diag::err_template_arg_not_integral_or_enumeral)
|
|
<< ArgType << DeductionArg->getSourceRange();
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
} else if (!DeductionArg->isValueDependent()) {
|
|
class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
|
|
QualType T;
|
|
|
|
public:
|
|
TmplArgICEDiagnoser(QualType T) : T(T) { }
|
|
|
|
SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
|
|
SourceLocation Loc) override {
|
|
return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
|
|
}
|
|
} Diagnoser(ArgType);
|
|
|
|
DeductionArg =
|
|
VerifyIntegerConstantExpression(DeductionArg, &Value, Diagnoser)
|
|
.get();
|
|
if (!DeductionArg)
|
|
return ExprError();
|
|
}
|
|
|
|
// From here on out, all we care about is the unqualified form
|
|
// of the argument type.
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
|
|
// Try to convert the argument to the parameter's type.
|
|
if (Context.hasSameType(ParamType, ArgType)) {
|
|
// Okay: no conversion necessary
|
|
} else if (ParamType->isBooleanType()) {
|
|
// This is an integral-to-boolean conversion.
|
|
DeductionArg =
|
|
ImpCastExprToType(DeductionArg, ParamType, CK_IntegralToBoolean)
|
|
.get();
|
|
} else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
|
|
!ParamType->isEnumeralType()) {
|
|
// This is an integral promotion or conversion.
|
|
DeductionArg =
|
|
ImpCastExprToType(DeductionArg, ParamType, CK_IntegralCast).get();
|
|
} else {
|
|
// We can't perform this conversion.
|
|
Diag(StartLoc, diag::err_template_arg_not_convertible)
|
|
<< DeductionArg->getType() << ParamType
|
|
<< DeductionArg->getSourceRange();
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
}
|
|
setDeductionArg(DeductionArg);
|
|
|
|
// Add the value of this argument to the list of converted
|
|
// arguments. We use the bitwidth and signedness of the template
|
|
// parameter.
|
|
if (DeductionArg->isValueDependent()) {
|
|
// The argument is value-dependent. Create a new
|
|
// TemplateArgument with the converted expression.
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
return Arg;
|
|
}
|
|
|
|
QualType IntegerType = ParamType;
|
|
if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
|
|
IntegerType = Enum->getDecl()->getIntegerType();
|
|
}
|
|
|
|
if (ParamType->isBooleanType()) {
|
|
// Value must be zero or one.
|
|
Value = Value != 0;
|
|
unsigned AllowedBits = Context.getTypeSize(IntegerType);
|
|
if (Value.getBitWidth() != AllowedBits)
|
|
Value = Value.extOrTrunc(AllowedBits);
|
|
Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
|
|
} else {
|
|
llvm::APSInt OldValue = Value;
|
|
|
|
// Coerce the template argument's value to the value it will have
|
|
// based on the template parameter's type.
|
|
unsigned AllowedBits = IntegerType->isBitIntType()
|
|
? Context.getIntWidth(IntegerType)
|
|
: Context.getTypeSize(IntegerType);
|
|
if (Value.getBitWidth() != AllowedBits)
|
|
Value = Value.extOrTrunc(AllowedBits);
|
|
Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
|
|
|
|
// Complain if an unsigned parameter received a negative value.
|
|
if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
|
|
(OldValue.isSigned() && OldValue.isNegative())) {
|
|
Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
|
|
<< toString(OldValue, 10) << toString(Value, 10) << Param->getType()
|
|
<< Arg->getSourceRange();
|
|
NoteTemplateParameterLocation(*Param);
|
|
}
|
|
|
|
// Complain if we overflowed the template parameter's type.
|
|
unsigned RequiredBits;
|
|
if (IntegerType->isUnsignedIntegerOrEnumerationType())
|
|
RequiredBits = OldValue.getActiveBits();
|
|
else if (OldValue.isUnsigned())
|
|
RequiredBits = OldValue.getActiveBits() + 1;
|
|
else
|
|
RequiredBits = OldValue.getSignificantBits();
|
|
if (RequiredBits > AllowedBits) {
|
|
Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
|
|
<< toString(OldValue, 10) << toString(Value, 10) << Param->getType()
|
|
<< Arg->getSourceRange();
|
|
NoteTemplateParameterLocation(*Param);
|
|
}
|
|
}
|
|
|
|
if (ArgPE) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
|
|
SugaredConverted = TemplateArgument(Context, Value, T);
|
|
CanonicalConverted =
|
|
TemplateArgument(Context, Value, Context.getCanonicalType(T));
|
|
}
|
|
return Arg;
|
|
}
|
|
|
|
QualType ArgType = DeductionArg->getType();
|
|
DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
|
|
|
|
// Handle pointer-to-function, reference-to-function, and
|
|
// pointer-to-member-function all in (roughly) the same way.
|
|
if (// -- For a non-type template-parameter of type pointer to
|
|
// function, only the function-to-pointer conversion (4.3) is
|
|
// applied. If the template-argument represents a set of
|
|
// overloaded functions (or a pointer to such), the matching
|
|
// function is selected from the set (13.4).
|
|
(ParamType->isPointerType() &&
|
|
ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
|
|
// -- For a non-type template-parameter of type reference to
|
|
// function, no conversions apply. If the template-argument
|
|
// represents a set of overloaded functions, the matching
|
|
// function is selected from the set (13.4).
|
|
(ParamType->isReferenceType() &&
|
|
ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
|
|
// -- For a non-type template-parameter of type pointer to
|
|
// member function, no conversions apply. If the
|
|
// template-argument represents a set of overloaded member
|
|
// functions, the matching member function is selected from
|
|
// the set (13.4).
|
|
(ParamType->isMemberPointerType() &&
|
|
ParamType->castAs<MemberPointerType>()->getPointeeType()
|
|
->isFunctionType())) {
|
|
|
|
if (DeductionArg->getType() == Context.OverloadTy) {
|
|
if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
|
|
true,
|
|
FoundResult)) {
|
|
if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
|
|
return ExprError();
|
|
|
|
ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
DeductionArg = Res.get();
|
|
ArgType = Arg->getType();
|
|
} else
|
|
return ExprError();
|
|
}
|
|
setDeductionArg(DeductionArg);
|
|
|
|
if (!ParamType->isMemberPointerType()) {
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(
|
|
*this, Param, ParamType, Arg, SugaredConverted,
|
|
CanonicalConverted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
if (CheckTemplateArgumentPointerToMember(
|
|
*this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
setDeductionArg(DeductionArg);
|
|
|
|
if (ParamType->isPointerType()) {
|
|
// -- for a non-type template-parameter of type pointer to
|
|
// object, qualification conversions (4.4) and the
|
|
// array-to-pointer conversion (4.2) are applied.
|
|
// C++0x also allows a value of std::nullptr_t.
|
|
assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
|
|
"Only object pointers allowed here");
|
|
|
|
// FIXME: Deal with pack expansions here.
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(
|
|
*this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
|
|
// -- For a non-type template-parameter of type reference to
|
|
// object, no conversions apply. The type referred to by the
|
|
// reference may be more cv-qualified than the (otherwise
|
|
// identical) type of the template-argument. The
|
|
// template-parameter is bound directly to the
|
|
// template-argument, which must be an lvalue.
|
|
assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
|
|
"Only object references allowed here");
|
|
|
|
// FIXME: Deal with pack expansions here.
|
|
if (Arg->getType() == Context.OverloadTy) {
|
|
if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
|
|
ParamRefType->getPointeeType(),
|
|
true,
|
|
FoundResult)) {
|
|
if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
|
|
return ExprError();
|
|
ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
Arg = Res.get();
|
|
ArgType = Arg->getType();
|
|
} else
|
|
return ExprError();
|
|
}
|
|
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(
|
|
*this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
// Deal with parameters of type std::nullptr_t.
|
|
if (ParamType->isNullPtrType()) {
|
|
if (DeductionArg->isTypeDependent() || DeductionArg->isValueDependent()) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
return Arg;
|
|
}
|
|
|
|
switch (isNullPointerValueTemplateArgument(*this, Param, ParamType,
|
|
DeductionArg)) {
|
|
case NPV_NotNullPointer:
|
|
Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
|
|
<< DeductionArg->getType() << ParamType;
|
|
NoteTemplateParameterLocation(*Param);
|
|
return ExprError();
|
|
|
|
case NPV_Error:
|
|
return ExprError();
|
|
|
|
case NPV_NullPointer:
|
|
Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
|
|
if (ArgPE) {
|
|
SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false);
|
|
CanonicalConverted =
|
|
Context.getCanonicalTemplateArgument(SugaredConverted);
|
|
} else {
|
|
SugaredConverted = TemplateArgument(ParamType,
|
|
/*isNullPtr=*/true);
|
|
CanonicalConverted =
|
|
TemplateArgument(Context.getCanonicalType(ParamType),
|
|
/*isNullPtr=*/true);
|
|
}
|
|
return Arg;
|
|
}
|
|
}
|
|
|
|
// -- For a non-type template-parameter of type pointer to data
|
|
// member, qualification conversions (4.4) are applied.
|
|
assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
|
|
|
|
// FIXME: Deal with pack expansions here.
|
|
if (CheckTemplateArgumentPointerToMember(
|
|
*this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
static void DiagnoseTemplateParameterListArityMismatch(
|
|
Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
|
|
Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
|
|
|
|
bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
|
|
TemplateParameterList *Params,
|
|
TemplateArgumentLoc &Arg,
|
|
bool PartialOrdering,
|
|
bool *StrictPackMatch) {
|
|
TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
|
|
auto [Template, DefaultArgs] = Name.getTemplateDeclAndDefaultArgs();
|
|
if (!Template) {
|
|
// Any dependent template name is fine.
|
|
assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
|
|
return false;
|
|
}
|
|
|
|
if (Template->isInvalidDecl())
|
|
return true;
|
|
|
|
// C++0x [temp.arg.template]p1:
|
|
// A template-argument for a template template-parameter shall be
|
|
// the name of a class template or an alias template, expressed as an
|
|
// id-expression. When the template-argument names a class template, only
|
|
// primary class templates are considered when matching the
|
|
// template template argument with the corresponding parameter;
|
|
// partial specializations are not considered even if their
|
|
// parameter lists match that of the template template parameter.
|
|
//
|
|
// Note that we also allow template template parameters here, which
|
|
// will happen when we are dealing with, e.g., class template
|
|
// partial specializations.
|
|
if (!isa<ClassTemplateDecl>(Template) &&
|
|
!isa<TemplateTemplateParmDecl>(Template) &&
|
|
!isa<TypeAliasTemplateDecl>(Template) &&
|
|
!isa<BuiltinTemplateDecl>(Template)) {
|
|
assert(isa<FunctionTemplateDecl>(Template) &&
|
|
"Only function templates are possible here");
|
|
Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
|
|
Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
|
|
<< Template;
|
|
}
|
|
|
|
// C++1z [temp.arg.template]p3: (DR 150)
|
|
// A template-argument matches a template template-parameter P when P
|
|
// is at least as specialized as the template-argument A.
|
|
if (!isTemplateTemplateParameterAtLeastAsSpecializedAs(
|
|
Params, Param, Template, DefaultArgs, Arg.getLocation(),
|
|
PartialOrdering, StrictPackMatch))
|
|
return true;
|
|
// P2113
|
|
// C++20[temp.func.order]p2
|
|
// [...] If both deductions succeed, the partial ordering selects the
|
|
// more constrained template (if one exists) as determined below.
|
|
SmallVector<AssociatedConstraint, 3> ParamsAC, TemplateAC;
|
|
Params->getAssociatedConstraints(ParamsAC);
|
|
// C++20[temp.arg.template]p3
|
|
// [...] In this comparison, if P is unconstrained, the constraints on A
|
|
// are not considered.
|
|
if (ParamsAC.empty())
|
|
return false;
|
|
|
|
Template->getAssociatedConstraints(TemplateAC);
|
|
|
|
bool IsParamAtLeastAsConstrained;
|
|
if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
|
|
IsParamAtLeastAsConstrained))
|
|
return true;
|
|
if (!IsParamAtLeastAsConstrained) {
|
|
Diag(Arg.getLocation(),
|
|
diag::err_template_template_parameter_not_at_least_as_constrained)
|
|
<< Template << Param << Arg.getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
|
|
Diag(Template->getLocation(), diag::note_entity_declared_at) << Template;
|
|
MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
|
|
TemplateAC);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl,
|
|
unsigned HereDiagID,
|
|
unsigned ExternalDiagID) {
|
|
if (Decl.getLocation().isValid())
|
|
return S.Diag(Decl.getLocation(), HereDiagID);
|
|
|
|
SmallString<128> Str;
|
|
llvm::raw_svector_ostream Out(Str);
|
|
PrintingPolicy PP = S.getPrintingPolicy();
|
|
PP.TerseOutput = 1;
|
|
Decl.print(Out, PP);
|
|
return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str();
|
|
}
|
|
|
|
void Sema::NoteTemplateLocation(const NamedDecl &Decl,
|
|
std::optional<SourceRange> ParamRange) {
|
|
SemaDiagnosticBuilder DB =
|
|
noteLocation(*this, Decl, diag::note_template_decl_here,
|
|
diag::note_template_decl_external);
|
|
if (ParamRange && ParamRange->isValid()) {
|
|
assert(Decl.getLocation().isValid() &&
|
|
"Parameter range has location when Decl does not");
|
|
DB << *ParamRange;
|
|
}
|
|
}
|
|
|
|
void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) {
|
|
noteLocation(*this, Decl, diag::note_template_param_here,
|
|
diag::note_template_param_external);
|
|
}
|
|
|
|
ExprResult Sema::BuildExpressionFromDeclTemplateArgument(
|
|
const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc,
|
|
NamedDecl *TemplateParam) {
|
|
// C++ [temp.param]p8:
|
|
//
|
|
// A non-type template-parameter of type "array of T" or
|
|
// "function returning T" is adjusted to be of type "pointer to
|
|
// T" or "pointer to function returning T", respectively.
|
|
if (ParamType->isArrayType())
|
|
ParamType = Context.getArrayDecayedType(ParamType);
|
|
else if (ParamType->isFunctionType())
|
|
ParamType = Context.getPointerType(ParamType);
|
|
|
|
// For a NULL non-type template argument, return nullptr casted to the
|
|
// parameter's type.
|
|
if (Arg.getKind() == TemplateArgument::NullPtr) {
|
|
return ImpCastExprToType(
|
|
new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
|
|
ParamType,
|
|
ParamType->getAs<MemberPointerType>()
|
|
? CK_NullToMemberPointer
|
|
: CK_NullToPointer);
|
|
}
|
|
assert(Arg.getKind() == TemplateArgument::Declaration &&
|
|
"Only declaration template arguments permitted here");
|
|
|
|
ValueDecl *VD = Arg.getAsDecl();
|
|
|
|
CXXScopeSpec SS;
|
|
if (ParamType->isMemberPointerType()) {
|
|
// If this is a pointer to member, we need to use a qualified name to
|
|
// form a suitable pointer-to-member constant.
|
|
assert(VD->getDeclContext()->isRecord() &&
|
|
(isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
|
|
isa<IndirectFieldDecl>(VD)));
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
|
|
NestedNameSpecifier *Qualifier =
|
|
NestedNameSpecifier::Create(Context, nullptr, ClassType.getTypePtr());
|
|
SS.MakeTrivial(Context, Qualifier, Loc);
|
|
}
|
|
|
|
ExprResult RefExpr = BuildDeclarationNameExpr(
|
|
SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
|
|
if (RefExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
// For a pointer, the argument declaration is the pointee. Take its address.
|
|
QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
|
|
if (ParamType->isPointerType() && !ElemT.isNull() &&
|
|
Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
|
|
// Decay an array argument if we want a pointer to its first element.
|
|
RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
|
|
if (RefExpr.isInvalid())
|
|
return ExprError();
|
|
} else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
|
|
// For any other pointer, take the address (or form a pointer-to-member).
|
|
RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
|
|
if (RefExpr.isInvalid())
|
|
return ExprError();
|
|
} else if (ParamType->isRecordType()) {
|
|
assert(isa<TemplateParamObjectDecl>(VD) &&
|
|
"arg for class template param not a template parameter object");
|
|
// No conversions apply in this case.
|
|
return RefExpr;
|
|
} else {
|
|
assert(ParamType->isReferenceType() &&
|
|
"unexpected type for decl template argument");
|
|
if (NonTypeTemplateParmDecl *NTTP =
|
|
dyn_cast_if_present<NonTypeTemplateParmDecl>(TemplateParam)) {
|
|
QualType TemplateParamType = NTTP->getType();
|
|
const AutoType *AT = TemplateParamType->getAs<AutoType>();
|
|
if (AT && AT->isDecltypeAuto()) {
|
|
RefExpr = new (getASTContext()) SubstNonTypeTemplateParmExpr(
|
|
ParamType->getPointeeType(), RefExpr.get()->getValueKind(),
|
|
RefExpr.get()->getExprLoc(), RefExpr.get(), VD, NTTP->getIndex(),
|
|
/*PackIndex=*/std::nullopt,
|
|
/*RefParam=*/true, /*Final=*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point we should have the right value category.
|
|
assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
|
|
"value kind mismatch for non-type template argument");
|
|
|
|
// The type of the template parameter can differ from the type of the
|
|
// argument in various ways; convert it now if necessary.
|
|
QualType DestExprType = ParamType.getNonLValueExprType(Context);
|
|
if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
|
|
CastKind CK;
|
|
QualType Ignored;
|
|
if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
|
|
IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
|
|
CK = CK_NoOp;
|
|
} else if (ParamType->isVoidPointerType() &&
|
|
RefExpr.get()->getType()->isPointerType()) {
|
|
CK = CK_BitCast;
|
|
} else {
|
|
// FIXME: Pointers to members can need conversion derived-to-base or
|
|
// base-to-derived conversions. We currently don't retain enough
|
|
// information to convert properly (we need to track a cast path or
|
|
// subobject number in the template argument).
|
|
llvm_unreachable(
|
|
"unexpected conversion required for non-type template argument");
|
|
}
|
|
RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
|
|
RefExpr.get()->getValueKind());
|
|
}
|
|
|
|
return RefExpr;
|
|
}
|
|
|
|
/// Construct a new expression that refers to the given
|
|
/// integral template argument with the given source-location
|
|
/// information.
|
|
///
|
|
/// This routine takes care of the mapping from an integral template
|
|
/// argument (which may have any integral type) to the appropriate
|
|
/// literal value.
|
|
static Expr *BuildExpressionFromIntegralTemplateArgumentValue(
|
|
Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) {
|
|
assert(OrigT->isIntegralOrEnumerationType());
|
|
|
|
// If this is an enum type that we're instantiating, we need to use an integer
|
|
// type the same size as the enumerator. We don't want to build an
|
|
// IntegerLiteral with enum type. The integer type of an enum type can be of
|
|
// any integral type with C++11 enum classes, make sure we create the right
|
|
// type of literal for it.
|
|
QualType T = OrigT;
|
|
if (const EnumType *ET = OrigT->getAs<EnumType>())
|
|
T = ET->getDecl()->getIntegerType();
|
|
|
|
Expr *E;
|
|
if (T->isAnyCharacterType()) {
|
|
CharacterLiteralKind Kind;
|
|
if (T->isWideCharType())
|
|
Kind = CharacterLiteralKind::Wide;
|
|
else if (T->isChar8Type() && S.getLangOpts().Char8)
|
|
Kind = CharacterLiteralKind::UTF8;
|
|
else if (T->isChar16Type())
|
|
Kind = CharacterLiteralKind::UTF16;
|
|
else if (T->isChar32Type())
|
|
Kind = CharacterLiteralKind::UTF32;
|
|
else
|
|
Kind = CharacterLiteralKind::Ascii;
|
|
|
|
E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc);
|
|
} else if (T->isBooleanType()) {
|
|
E = CXXBoolLiteralExpr::Create(S.Context, Int.getBoolValue(), T, Loc);
|
|
} else {
|
|
E = IntegerLiteral::Create(S.Context, Int, T, Loc);
|
|
}
|
|
|
|
if (OrigT->isEnumeralType()) {
|
|
// FIXME: This is a hack. We need a better way to handle substituted
|
|
// non-type template parameters.
|
|
E = CStyleCastExpr::Create(S.Context, OrigT, VK_PRValue, CK_IntegralCast, E,
|
|
nullptr, S.CurFPFeatureOverrides(),
|
|
S.Context.getTrivialTypeSourceInfo(OrigT, Loc),
|
|
Loc, Loc);
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
static Expr *BuildExpressionFromNonTypeTemplateArgumentValue(
|
|
Sema &S, QualType T, const APValue &Val, SourceLocation Loc) {
|
|
auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * {
|
|
auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc);
|
|
ILE->setType(T);
|
|
return ILE;
|
|
};
|
|
|
|
switch (Val.getKind()) {
|
|
case APValue::AddrLabelDiff:
|
|
// This cannot occur in a template argument at all.
|
|
case APValue::Array:
|
|
case APValue::Struct:
|
|
case APValue::Union:
|
|
// These can only occur within a template parameter object, which is
|
|
// represented as a TemplateArgument::Declaration.
|
|
llvm_unreachable("unexpected template argument value");
|
|
|
|
case APValue::Int:
|
|
return BuildExpressionFromIntegralTemplateArgumentValue(S, T, Val.getInt(),
|
|
Loc);
|
|
|
|
case APValue::Float:
|
|
return FloatingLiteral::Create(S.Context, Val.getFloat(), /*IsExact=*/true,
|
|
T, Loc);
|
|
|
|
case APValue::FixedPoint:
|
|
return FixedPointLiteral::CreateFromRawInt(
|
|
S.Context, Val.getFixedPoint().getValue(), T, Loc,
|
|
Val.getFixedPoint().getScale());
|
|
|
|
case APValue::ComplexInt: {
|
|
QualType ElemT = T->castAs<ComplexType>()->getElementType();
|
|
return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue(
|
|
S, ElemT, Val.getComplexIntReal(), Loc),
|
|
BuildExpressionFromIntegralTemplateArgumentValue(
|
|
S, ElemT, Val.getComplexIntImag(), Loc)});
|
|
}
|
|
|
|
case APValue::ComplexFloat: {
|
|
QualType ElemT = T->castAs<ComplexType>()->getElementType();
|
|
return MakeInitList(
|
|
{FloatingLiteral::Create(S.Context, Val.getComplexFloatReal(), true,
|
|
ElemT, Loc),
|
|
FloatingLiteral::Create(S.Context, Val.getComplexFloatImag(), true,
|
|
ElemT, Loc)});
|
|
}
|
|
|
|
case APValue::Vector: {
|
|
QualType ElemT = T->castAs<VectorType>()->getElementType();
|
|
llvm::SmallVector<Expr *, 8> Elts;
|
|
for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I)
|
|
Elts.push_back(BuildExpressionFromNonTypeTemplateArgumentValue(
|
|
S, ElemT, Val.getVectorElt(I), Loc));
|
|
return MakeInitList(Elts);
|
|
}
|
|
|
|
case APValue::None:
|
|
case APValue::Indeterminate:
|
|
llvm_unreachable("Unexpected APValue kind.");
|
|
case APValue::LValue:
|
|
case APValue::MemberPointer:
|
|
// There isn't necessarily a valid equivalent source-level syntax for
|
|
// these; in particular, a naive lowering might violate access control.
|
|
// So for now we lower to a ConstantExpr holding the value, wrapped around
|
|
// an OpaqueValueExpr.
|
|
// FIXME: We should have a better representation for this.
|
|
ExprValueKind VK = VK_PRValue;
|
|
if (T->isReferenceType()) {
|
|
T = T->getPointeeType();
|
|
VK = VK_LValue;
|
|
}
|
|
auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK);
|
|
return ConstantExpr::Create(S.Context, OVE, Val);
|
|
}
|
|
llvm_unreachable("Unhandled APValue::ValueKind enum");
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg,
|
|
SourceLocation Loc) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Type:
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("not a non-type template argument");
|
|
|
|
case TemplateArgument::Expression:
|
|
return Arg.getAsExpr();
|
|
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::Declaration:
|
|
return BuildExpressionFromDeclTemplateArgument(
|
|
Arg, Arg.getNonTypeTemplateArgumentType(), Loc);
|
|
|
|
case TemplateArgument::Integral:
|
|
return BuildExpressionFromIntegralTemplateArgumentValue(
|
|
*this, Arg.getIntegralType(), Arg.getAsIntegral(), Loc);
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
return BuildExpressionFromNonTypeTemplateArgumentValue(
|
|
*this, Arg.getStructuralValueType(), Arg.getAsStructuralValue(), Loc);
|
|
}
|
|
llvm_unreachable("Unhandled TemplateArgument::ArgKind enum");
|
|
}
|
|
|
|
/// Match two template parameters within template parameter lists.
|
|
static bool MatchTemplateParameterKind(
|
|
Sema &S, NamedDecl *New,
|
|
const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
|
|
const NamedDecl *OldInstFrom, bool Complain,
|
|
Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
|
|
// Check the actual kind (type, non-type, template).
|
|
if (Old->getKind() != New->getKind()) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_param_different_kind;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_param_different_kind;
|
|
}
|
|
S.Diag(New->getLocation(), NextDiag)
|
|
<< (Kind != Sema::TPL_TemplateMatch);
|
|
S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
|
|
<< (Kind != Sema::TPL_TemplateMatch);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check that both are parameter packs or neither are parameter packs.
|
|
// However, if we are matching a template template argument to a
|
|
// template template parameter, the template template parameter can have
|
|
// a parameter pack where the template template argument does not.
|
|
if (Old->isTemplateParameterPack() != New->isTemplateParameterPack()) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc,
|
|
diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_parameter_pack_non_pack;
|
|
}
|
|
|
|
unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
|
|
: isa<NonTypeTemplateParmDecl>(New)? 1
|
|
: 2;
|
|
S.Diag(New->getLocation(), NextDiag)
|
|
<< ParamKind << New->isParameterPack();
|
|
S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
|
|
<< ParamKind << Old->isParameterPack();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// For non-type template parameters, check the type of the parameter.
|
|
if (NonTypeTemplateParmDecl *OldNTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Old)) {
|
|
NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
|
|
|
|
// C++20 [temp.over.link]p6:
|
|
// Two [non-type] template-parameters are equivalent [if] they have
|
|
// equivalent types ignoring the use of type-constraints for
|
|
// placeholder types
|
|
QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType());
|
|
QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType());
|
|
if (!S.Context.hasSameType(OldType, NewType)) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_nontype_parm_different_type;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc,
|
|
diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_nontype_parm_different_type;
|
|
}
|
|
S.Diag(NewNTTP->getLocation(), NextDiag)
|
|
<< NewNTTP->getType() << (Kind != Sema::TPL_TemplateMatch);
|
|
S.Diag(OldNTTP->getLocation(),
|
|
diag::note_template_nontype_parm_prev_declaration)
|
|
<< OldNTTP->getType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
// For template template parameters, check the template parameter types.
|
|
// The template parameter lists of template template
|
|
// parameters must agree.
|
|
else if (TemplateTemplateParmDecl *OldTTP =
|
|
dyn_cast<TemplateTemplateParmDecl>(Old)) {
|
|
TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
|
|
if (!S.TemplateParameterListsAreEqual(
|
|
NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
|
|
OldTTP->getTemplateParameters(), Complain,
|
|
(Kind == Sema::TPL_TemplateMatch
|
|
? Sema::TPL_TemplateTemplateParmMatch
|
|
: Kind),
|
|
TemplateArgLoc))
|
|
return false;
|
|
}
|
|
|
|
if (Kind != Sema::TPL_TemplateParamsEquivalent &&
|
|
!isa<TemplateTemplateParmDecl>(Old)) {
|
|
const Expr *NewC = nullptr, *OldC = nullptr;
|
|
|
|
if (isa<TemplateTypeParmDecl>(New)) {
|
|
if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
|
|
NewC = TC->getImmediatelyDeclaredConstraint();
|
|
if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
|
|
OldC = TC->getImmediatelyDeclaredConstraint();
|
|
} else if (isa<NonTypeTemplateParmDecl>(New)) {
|
|
if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
|
|
->getPlaceholderTypeConstraint())
|
|
NewC = E;
|
|
if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
|
|
->getPlaceholderTypeConstraint())
|
|
OldC = E;
|
|
} else
|
|
llvm_unreachable("unexpected template parameter type");
|
|
|
|
auto Diagnose = [&] {
|
|
S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
|
|
diag::err_template_different_type_constraint);
|
|
S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
|
|
diag::note_template_prev_declaration) << /*declaration*/0;
|
|
};
|
|
|
|
if (!NewC != !OldC) {
|
|
if (Complain)
|
|
Diagnose();
|
|
return false;
|
|
}
|
|
|
|
if (NewC) {
|
|
if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
|
|
NewC)) {
|
|
if (Complain)
|
|
Diagnose();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Diagnose a known arity mismatch when comparing template argument
|
|
/// lists.
|
|
static
|
|
void DiagnoseTemplateParameterListArityMismatch(Sema &S,
|
|
TemplateParameterList *New,
|
|
TemplateParameterList *Old,
|
|
Sema::TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc) {
|
|
unsigned NextDiag = diag::err_template_param_list_different_arity;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_param_list_different_arity;
|
|
}
|
|
S.Diag(New->getTemplateLoc(), NextDiag)
|
|
<< (New->size() > Old->size())
|
|
<< (Kind != Sema::TPL_TemplateMatch)
|
|
<< SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
|
|
S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
|
|
<< (Kind != Sema::TPL_TemplateMatch)
|
|
<< SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
|
|
}
|
|
|
|
bool Sema::TemplateParameterListsAreEqual(
|
|
const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
|
|
const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
|
|
TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
|
|
if (Old->size() != New->size()) {
|
|
if (Complain)
|
|
DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
|
|
TemplateArgLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
// C++0x [temp.arg.template]p3:
|
|
// A template-argument matches a template template-parameter (call it P)
|
|
// when each of the template parameters in the template-parameter-list of
|
|
// the template-argument's corresponding class template or alias template
|
|
// (call it A) matches the corresponding template parameter in the
|
|
// template-parameter-list of P. [...]
|
|
TemplateParameterList::iterator NewParm = New->begin();
|
|
TemplateParameterList::iterator NewParmEnd = New->end();
|
|
for (TemplateParameterList::iterator OldParm = Old->begin(),
|
|
OldParmEnd = Old->end();
|
|
OldParm != OldParmEnd; ++OldParm, ++NewParm) {
|
|
if (NewParm == NewParmEnd) {
|
|
if (Complain)
|
|
DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
|
|
TemplateArgLoc);
|
|
return false;
|
|
}
|
|
if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
|
|
OldInstFrom, Complain, Kind,
|
|
TemplateArgLoc))
|
|
return false;
|
|
}
|
|
|
|
// Make sure we exhausted all of the arguments.
|
|
if (NewParm != NewParmEnd) {
|
|
if (Complain)
|
|
DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
|
|
TemplateArgLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (Kind != TPL_TemplateParamsEquivalent) {
|
|
const Expr *NewRC = New->getRequiresClause();
|
|
const Expr *OldRC = Old->getRequiresClause();
|
|
|
|
auto Diagnose = [&] {
|
|
Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
|
|
diag::err_template_different_requires_clause);
|
|
Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
|
|
diag::note_template_prev_declaration) << /*declaration*/0;
|
|
};
|
|
|
|
if (!NewRC != !OldRC) {
|
|
if (Complain)
|
|
Diagnose();
|
|
return false;
|
|
}
|
|
|
|
if (NewRC) {
|
|
if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
|
|
NewRC)) {
|
|
if (Complain)
|
|
Diagnose();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
|
|
if (!S)
|
|
return false;
|
|
|
|
// Find the nearest enclosing declaration scope.
|
|
S = S->getDeclParent();
|
|
|
|
// C++ [temp.pre]p6: [P2096]
|
|
// A template, explicit specialization, or partial specialization shall not
|
|
// have C linkage.
|
|
DeclContext *Ctx = S->getEntity();
|
|
if (Ctx && Ctx->isExternCContext()) {
|
|
SourceRange Range =
|
|
TemplateParams->getTemplateLoc().isInvalid() && TemplateParams->size()
|
|
? TemplateParams->getParam(0)->getSourceRange()
|
|
: TemplateParams->getSourceRange();
|
|
Diag(Range.getBegin(), diag::err_template_linkage) << Range;
|
|
if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
|
|
Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
|
|
return true;
|
|
}
|
|
Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
|
|
|
|
// C++ [temp]p2:
|
|
// A template-declaration can appear only as a namespace scope or
|
|
// class scope declaration.
|
|
// C++ [temp.expl.spec]p3:
|
|
// An explicit specialization may be declared in any scope in which the
|
|
// corresponding primary template may be defined.
|
|
// C++ [temp.class.spec]p6: [P2096]
|
|
// A partial specialization may be declared in any scope in which the
|
|
// corresponding primary template may be defined.
|
|
if (Ctx) {
|
|
if (Ctx->isFileContext())
|
|
return false;
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
|
|
// C++ [temp.mem]p2:
|
|
// A local class shall not have member templates.
|
|
if (RD->isLocalClass())
|
|
return Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_inside_local_class)
|
|
<< TemplateParams->getSourceRange();
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_outside_namespace_or_class_scope)
|
|
<< TemplateParams->getSourceRange();
|
|
}
|
|
|
|
/// Determine what kind of template specialization the given declaration
|
|
/// is.
|
|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
|
|
if (!D)
|
|
return TSK_Undeclared;
|
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
|
|
return Record->getTemplateSpecializationKind();
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
|
|
return Function->getTemplateSpecializationKind();
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D))
|
|
return Var->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
/// Check whether a specialization is well-formed in the current
|
|
/// context.
|
|
///
|
|
/// This routine determines whether a template specialization can be declared
|
|
/// in the current context (C++ [temp.expl.spec]p2).
|
|
///
|
|
/// \param S the semantic analysis object for which this check is being
|
|
/// performed.
|
|
///
|
|
/// \param Specialized the entity being specialized or instantiated, which
|
|
/// may be a kind of template (class template, function template, etc.) or
|
|
/// a member of a class template (member function, static data member,
|
|
/// member class).
|
|
///
|
|
/// \param PrevDecl the previous declaration of this entity, if any.
|
|
///
|
|
/// \param Loc the location of the explicit specialization or instantiation of
|
|
/// this entity.
|
|
///
|
|
/// \param IsPartialSpecialization whether this is a partial specialization of
|
|
/// a class template.
|
|
///
|
|
/// \returns true if there was an error that we cannot recover from, false
|
|
/// otherwise.
|
|
static bool CheckTemplateSpecializationScope(Sema &S,
|
|
NamedDecl *Specialized,
|
|
NamedDecl *PrevDecl,
|
|
SourceLocation Loc,
|
|
bool IsPartialSpecialization) {
|
|
// Keep these "kind" numbers in sync with the %select statements in the
|
|
// various diagnostics emitted by this routine.
|
|
int EntityKind = 0;
|
|
if (isa<ClassTemplateDecl>(Specialized))
|
|
EntityKind = IsPartialSpecialization? 1 : 0;
|
|
else if (isa<VarTemplateDecl>(Specialized))
|
|
EntityKind = IsPartialSpecialization ? 3 : 2;
|
|
else if (isa<FunctionTemplateDecl>(Specialized))
|
|
EntityKind = 4;
|
|
else if (isa<CXXMethodDecl>(Specialized))
|
|
EntityKind = 5;
|
|
else if (isa<VarDecl>(Specialized))
|
|
EntityKind = 6;
|
|
else if (isa<RecordDecl>(Specialized))
|
|
EntityKind = 7;
|
|
else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
|
|
EntityKind = 8;
|
|
else {
|
|
S.Diag(Loc, diag::err_template_spec_unknown_kind)
|
|
<< S.getLangOpts().CPlusPlus11;
|
|
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p2:
|
|
// An explicit specialization may be declared in any scope in which
|
|
// the corresponding primary template may be defined.
|
|
if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
|
|
S.Diag(Loc, diag::err_template_spec_decl_function_scope)
|
|
<< Specialized;
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.class.spec]p6:
|
|
// A class template partial specialization may be declared in any
|
|
// scope in which the primary template may be defined.
|
|
DeclContext *SpecializedContext =
|
|
Specialized->getDeclContext()->getRedeclContext();
|
|
DeclContext *DC = S.CurContext->getRedeclContext();
|
|
|
|
// Make sure that this redeclaration (or definition) occurs in the same
|
|
// scope or an enclosing namespace.
|
|
if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
|
|
: DC->Equals(SpecializedContext))) {
|
|
if (isa<TranslationUnitDecl>(SpecializedContext))
|
|
S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
|
|
<< EntityKind << Specialized;
|
|
else {
|
|
auto *ND = cast<NamedDecl>(SpecializedContext);
|
|
int Diag = diag::err_template_spec_redecl_out_of_scope;
|
|
if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
|
|
Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
|
|
S.Diag(Loc, Diag) << EntityKind << Specialized
|
|
<< ND << isa<CXXRecordDecl>(ND);
|
|
}
|
|
|
|
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
|
|
|
|
// Don't allow specializing in the wrong class during error recovery.
|
|
// Otherwise, things can go horribly wrong.
|
|
if (DC->isRecord())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
|
|
if (!E->isTypeDependent())
|
|
return SourceLocation();
|
|
DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
|
|
Checker.TraverseStmt(E);
|
|
if (Checker.MatchLoc.isInvalid())
|
|
return E->getSourceRange();
|
|
return Checker.MatchLoc;
|
|
}
|
|
|
|
static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
|
|
if (!TL.getType()->isDependentType())
|
|
return SourceLocation();
|
|
DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
|
|
Checker.TraverseTypeLoc(TL);
|
|
if (Checker.MatchLoc.isInvalid())
|
|
return TL.getSourceRange();
|
|
return Checker.MatchLoc;
|
|
}
|
|
|
|
/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
|
|
/// that checks non-type template partial specialization arguments.
|
|
static bool CheckNonTypeTemplatePartialSpecializationArgs(
|
|
Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
|
|
const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
if (Args[I].getKind() == TemplateArgument::Pack) {
|
|
if (CheckNonTypeTemplatePartialSpecializationArgs(
|
|
S, TemplateNameLoc, Param, Args[I].pack_begin(),
|
|
Args[I].pack_size(), IsDefaultArgument))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (Args[I].getKind() != TemplateArgument::Expression)
|
|
continue;
|
|
|
|
Expr *ArgExpr = Args[I].getAsExpr();
|
|
|
|
// We can have a pack expansion of any of the bullets below.
|
|
if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
|
|
ArgExpr = Expansion->getPattern();
|
|
|
|
// Strip off any implicit casts we added as part of type checking.
|
|
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
|
|
ArgExpr = ICE->getSubExpr();
|
|
|
|
// C++ [temp.class.spec]p8:
|
|
// A non-type argument is non-specialized if it is the name of a
|
|
// non-type parameter. All other non-type arguments are
|
|
// specialized.
|
|
//
|
|
// Below, we check the two conditions that only apply to
|
|
// specialized non-type arguments, so skip any non-specialized
|
|
// arguments.
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
|
|
if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
|
|
continue;
|
|
|
|
// C++ [temp.class.spec]p9:
|
|
// Within the argument list of a class template partial
|
|
// specialization, the following restrictions apply:
|
|
// -- A partially specialized non-type argument expression
|
|
// shall not involve a template parameter of the partial
|
|
// specialization except when the argument expression is a
|
|
// simple identifier.
|
|
// -- The type of a template parameter corresponding to a
|
|
// specialized non-type argument shall not be dependent on a
|
|
// parameter of the specialization.
|
|
// DR1315 removes the first bullet, leaving an incoherent set of rules.
|
|
// We implement a compromise between the original rules and DR1315:
|
|
// -- A specialized non-type template argument shall not be
|
|
// type-dependent and the corresponding template parameter
|
|
// shall have a non-dependent type.
|
|
SourceRange ParamUseRange =
|
|
findTemplateParameterInType(Param->getDepth(), ArgExpr);
|
|
if (ParamUseRange.isValid()) {
|
|
if (IsDefaultArgument) {
|
|
S.Diag(TemplateNameLoc,
|
|
diag::err_dependent_non_type_arg_in_partial_spec);
|
|
S.Diag(ParamUseRange.getBegin(),
|
|
diag::note_dependent_non_type_default_arg_in_partial_spec)
|
|
<< ParamUseRange;
|
|
} else {
|
|
S.Diag(ParamUseRange.getBegin(),
|
|
diag::err_dependent_non_type_arg_in_partial_spec)
|
|
<< ParamUseRange;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ParamUseRange = findTemplateParameter(
|
|
Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
|
|
if (ParamUseRange.isValid()) {
|
|
S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
|
|
diag::err_dependent_typed_non_type_arg_in_partial_spec)
|
|
<< Param->getType();
|
|
S.NoteTemplateParameterLocation(*Param);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckTemplatePartialSpecializationArgs(
|
|
SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
|
|
unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
|
|
// We have to be conservative when checking a template in a dependent
|
|
// context.
|
|
if (PrimaryTemplate->getDeclContext()->isDependentContext())
|
|
return false;
|
|
|
|
TemplateParameterList *TemplateParams =
|
|
PrimaryTemplate->getTemplateParameters();
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
NonTypeTemplateParmDecl *Param
|
|
= dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
|
|
if (!Param)
|
|
continue;
|
|
|
|
if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
|
|
Param, &TemplateArgs[I],
|
|
1, I >= NumExplicit))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
DeclResult Sema::ActOnClassTemplateSpecialization(
|
|
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
|
|
SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
|
|
TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
|
|
MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
|
|
assert(TUK != TagUseKind::Reference && "References are not specializations");
|
|
|
|
SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
|
|
SourceLocation LAngleLoc = TemplateId.LAngleLoc;
|
|
SourceLocation RAngleLoc = TemplateId.RAngleLoc;
|
|
|
|
// Find the class template we're specializing
|
|
TemplateName Name = TemplateId.Template.get();
|
|
ClassTemplateDecl *ClassTemplate
|
|
= dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
|
|
|
|
if (!ClassTemplate) {
|
|
Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
|
|
<< (Name.getAsTemplateDecl() &&
|
|
isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
|
|
return true;
|
|
}
|
|
|
|
if (const auto *DSA = ClassTemplate->getAttr<NoSpecializationsAttr>()) {
|
|
auto Message = DSA->getMessage();
|
|
Diag(TemplateNameLoc, diag::warn_invalid_specialization)
|
|
<< ClassTemplate << !Message.empty() << Message;
|
|
Diag(DSA->getLoc(), diag::note_marked_here) << DSA;
|
|
}
|
|
|
|
if (S->isTemplateParamScope())
|
|
EnterTemplatedContext(S, ClassTemplate->getTemplatedDecl());
|
|
|
|
DeclContext *DC = ClassTemplate->getDeclContext();
|
|
|
|
bool isMemberSpecialization = false;
|
|
bool isPartialSpecialization = false;
|
|
|
|
if (SS.isSet()) {
|
|
if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend &&
|
|
diagnoseQualifiedDeclaration(SS, DC, ClassTemplate->getDeclName(),
|
|
TemplateNameLoc, &TemplateId,
|
|
/*IsMemberSpecialization=*/false))
|
|
return true;
|
|
}
|
|
|
|
// Check the validity of the template headers that introduce this
|
|
// template.
|
|
// FIXME: We probably shouldn't complain about these headers for
|
|
// friend declarations.
|
|
bool Invalid = false;
|
|
TemplateParameterList *TemplateParams =
|
|
MatchTemplateParametersToScopeSpecifier(
|
|
KWLoc, TemplateNameLoc, SS, &TemplateId, TemplateParameterLists,
|
|
TUK == TagUseKind::Friend, isMemberSpecialization, Invalid);
|
|
if (Invalid)
|
|
return true;
|
|
|
|
// Check that we can declare a template specialization here.
|
|
if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
|
|
return true;
|
|
|
|
if (TemplateParams && DC->isDependentContext()) {
|
|
ContextRAII SavedContext(*this, DC);
|
|
if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
|
|
return true;
|
|
}
|
|
|
|
if (TemplateParams && TemplateParams->size() > 0) {
|
|
isPartialSpecialization = true;
|
|
|
|
if (TUK == TagUseKind::Friend) {
|
|
Diag(KWLoc, diag::err_partial_specialization_friend)
|
|
<< SourceRange(LAngleLoc, RAngleLoc);
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.class.spec]p10:
|
|
// The template parameter list of a specialization shall not
|
|
// contain default template argument values.
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
Decl *Param = TemplateParams->getParam(I);
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
|
|
if (TTP->hasDefaultArgument()) {
|
|
Diag(TTP->getDefaultArgumentLoc(),
|
|
diag::err_default_arg_in_partial_spec);
|
|
TTP->removeDefaultArgument();
|
|
}
|
|
} else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
if (NTTP->hasDefaultArgument()) {
|
|
Diag(NTTP->getDefaultArgumentLoc(),
|
|
diag::err_default_arg_in_partial_spec)
|
|
<< NTTP->getDefaultArgument().getSourceRange();
|
|
NTTP->removeDefaultArgument();
|
|
}
|
|
} else {
|
|
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
|
|
if (TTP->hasDefaultArgument()) {
|
|
Diag(TTP->getDefaultArgument().getLocation(),
|
|
diag::err_default_arg_in_partial_spec)
|
|
<< TTP->getDefaultArgument().getSourceRange();
|
|
TTP->removeDefaultArgument();
|
|
}
|
|
}
|
|
}
|
|
} else if (TemplateParams) {
|
|
if (TUK == TagUseKind::Friend)
|
|
Diag(KWLoc, diag::err_template_spec_friend)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getRAngleLoc()))
|
|
<< SourceRange(LAngleLoc, RAngleLoc);
|
|
} else {
|
|
assert(TUK == TagUseKind::Friend &&
|
|
"should have a 'template<>' for this decl");
|
|
}
|
|
|
|
// Check that the specialization uses the same tag kind as the
|
|
// original template.
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
assert(Kind != TagTypeKind::Enum &&
|
|
"Invalid enum tag in class template spec!");
|
|
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), Kind,
|
|
TUK == TagUseKind::Definition, KWLoc,
|
|
ClassTemplate->getIdentifier())) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< ClassTemplate
|
|
<< FixItHint::CreateReplacement(KWLoc,
|
|
ClassTemplate->getTemplatedDecl()->getKindName());
|
|
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
|
|
diag::note_previous_use);
|
|
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
|
|
}
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, TemplateId);
|
|
|
|
// Check for unexpanded parameter packs in any of the template arguments.
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
|
|
isPartialSpecialization
|
|
? UPPC_PartialSpecialization
|
|
: UPPC_ExplicitSpecialization))
|
|
return true;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
|
|
/*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/false, CTAI,
|
|
/*UpdateArgsWithConversions=*/true))
|
|
return true;
|
|
|
|
// Find the class template (partial) specialization declaration that
|
|
// corresponds to these arguments.
|
|
if (isPartialSpecialization) {
|
|
if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
|
|
TemplateArgs.size(),
|
|
CTAI.CanonicalConverted))
|
|
return true;
|
|
|
|
// FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
|
|
// also do it during instantiation.
|
|
if (!Name.isDependent() &&
|
|
!TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs, CTAI.CanonicalConverted)) {
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
|
|
<< ClassTemplate->getDeclName();
|
|
isPartialSpecialization = false;
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *PrevDecl = nullptr;
|
|
|
|
if (isPartialSpecialization)
|
|
PrevDecl = ClassTemplate->findPartialSpecialization(
|
|
CTAI.CanonicalConverted, TemplateParams, InsertPos);
|
|
else
|
|
PrevDecl =
|
|
ClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos);
|
|
|
|
ClassTemplateSpecializationDecl *Specialization = nullptr;
|
|
|
|
// Check whether we can declare a class template specialization in
|
|
// the current scope.
|
|
if (TUK != TagUseKind::Friend &&
|
|
CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
|
|
TemplateNameLoc,
|
|
isPartialSpecialization))
|
|
return true;
|
|
|
|
QualType CanonType;
|
|
if (!isPartialSpecialization) {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization or friend declaration.
|
|
Specialization = ClassTemplateSpecializationDecl::Create(
|
|
Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
|
|
ClassTemplate, CTAI.CanonicalConverted, CTAI.StrictPackMatch, PrevDecl);
|
|
Specialization->setTemplateArgsAsWritten(TemplateArgs);
|
|
SetNestedNameSpecifier(*this, Specialization, SS);
|
|
if (TemplateParameterLists.size() > 0) {
|
|
Specialization->setTemplateParameterListsInfo(Context,
|
|
TemplateParameterLists);
|
|
}
|
|
|
|
if (!PrevDecl)
|
|
ClassTemplate->AddSpecialization(Specialization, InsertPos);
|
|
|
|
if (!CurContext->isDependentContext())
|
|
CanonType = Context.getTypeDeclType(Specialization);
|
|
}
|
|
|
|
TypeSourceInfo *WrittenTy = Context.getTemplateSpecializationTypeInfo(
|
|
Name, TemplateNameLoc, TemplateArgs, CTAI.CanonicalConverted, CanonType);
|
|
|
|
if (isPartialSpecialization) {
|
|
if (Context.hasSameType(
|
|
WrittenTy->getType(),
|
|
ClassTemplate->getInjectedClassNameSpecialization()) &&
|
|
(!Context.getLangOpts().CPlusPlus20 ||
|
|
!TemplateParams->hasAssociatedConstraints())) {
|
|
// C++ [temp.class.spec]p9b3:
|
|
//
|
|
// -- The argument list of the specialization shall not be identical
|
|
// to the implicit argument list of the primary template.
|
|
//
|
|
// This rule has since been removed, because it's redundant given DR1495,
|
|
// but we keep it because it produces better diagnostics and recovery.
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
|
|
<< /*class template*/ 0 << (TUK == TagUseKind::Definition)
|
|
<< FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
|
|
return CheckClassTemplate(
|
|
S, TagSpec, TUK, KWLoc, SS, ClassTemplate->getIdentifier(),
|
|
TemplateNameLoc, Attr, TemplateParams, AS_none,
|
|
/*ModulePrivateLoc=*/SourceLocation(),
|
|
/*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
|
|
TemplateParameterLists.data());
|
|
}
|
|
|
|
// Create a new class template partial specialization declaration node.
|
|
ClassTemplatePartialSpecializationDecl *PrevPartial
|
|
= cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
|
|
ClassTemplatePartialSpecializationDecl *Partial =
|
|
ClassTemplatePartialSpecializationDecl::Create(
|
|
Context, Kind, DC, KWLoc, TemplateNameLoc, TemplateParams,
|
|
ClassTemplate, CTAI.CanonicalConverted, WrittenTy->getType(),
|
|
PrevPartial);
|
|
Partial->setTemplateArgsAsWritten(TemplateArgs);
|
|
SetNestedNameSpecifier(*this, Partial, SS);
|
|
if (TemplateParameterLists.size() > 1 && SS.isSet()) {
|
|
Partial->setTemplateParameterListsInfo(
|
|
Context, TemplateParameterLists.drop_back(1));
|
|
}
|
|
|
|
if (!PrevPartial)
|
|
ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
|
|
Specialization = Partial;
|
|
|
|
// If we are providing an explicit specialization of a member class
|
|
// template specialization, make a note of that.
|
|
if (PrevPartial && PrevPartial->getInstantiatedFromMember())
|
|
PrevPartial->setMemberSpecialization();
|
|
|
|
CheckTemplatePartialSpecialization(Partial);
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
|
|
bool Okay = false;
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
|
|
Okay = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Okay) {
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
|
|
<< Context.getTypeDeclType(Specialization) << Range;
|
|
|
|
Diag(PrevDecl->getPointOfInstantiation(),
|
|
diag::note_instantiation_required_here)
|
|
<< (PrevDecl->getTemplateSpecializationKind()
|
|
!= TSK_ImplicitInstantiation);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If this is not a friend, note that this is an explicit specialization.
|
|
if (TUK != TagUseKind::Friend)
|
|
Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
|
|
|
|
// Check that this isn't a redefinition of this specialization.
|
|
if (TUK == TagUseKind::Definition) {
|
|
RecordDecl *Def = Specialization->getDefinition();
|
|
NamedDecl *Hidden = nullptr;
|
|
if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
|
|
SkipBody->ShouldSkip = true;
|
|
SkipBody->Previous = Def;
|
|
makeMergedDefinitionVisible(Hidden);
|
|
} else if (Def) {
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
Specialization->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
ProcessDeclAttributeList(S, Specialization, Attr);
|
|
ProcessAPINotes(Specialization);
|
|
|
|
// Add alignment attributes if necessary; these attributes are checked when
|
|
// the ASTContext lays out the structure.
|
|
if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
|
|
AddAlignmentAttributesForRecord(Specialization);
|
|
AddMsStructLayoutForRecord(Specialization);
|
|
}
|
|
|
|
if (ModulePrivateLoc.isValid())
|
|
Diag(Specialization->getLocation(), diag::err_module_private_specialization)
|
|
<< (isPartialSpecialization? 1 : 0)
|
|
<< FixItHint::CreateRemoval(ModulePrivateLoc);
|
|
|
|
// C++ [temp.expl.spec]p9:
|
|
// A template explicit specialization is in the scope of the
|
|
// namespace in which the template was defined.
|
|
//
|
|
// We actually implement this paragraph where we set the semantic
|
|
// context (in the creation of the ClassTemplateSpecializationDecl),
|
|
// but we also maintain the lexical context where the actual
|
|
// definition occurs.
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
|
|
// We may be starting the definition of this specialization.
|
|
if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip))
|
|
Specialization->startDefinition();
|
|
|
|
if (TUK == TagUseKind::Friend) {
|
|
// Build the fully-sugared type for this class template
|
|
// specialization as the user wrote in the specialization
|
|
// itself. This means that we'll pretty-print the type retrieved
|
|
// from the specialization's declaration the way that the user
|
|
// actually wrote the specialization, rather than formatting the
|
|
// name based on the "canonical" representation used to store the
|
|
// template arguments in the specialization.
|
|
FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
|
|
TemplateNameLoc,
|
|
WrittenTy,
|
|
/*FIXME:*/KWLoc);
|
|
Friend->setAccess(AS_public);
|
|
CurContext->addDecl(Friend);
|
|
} else {
|
|
// Add the specialization into its lexical context, so that it can
|
|
// be seen when iterating through the list of declarations in that
|
|
// context. However, specializations are not found by name lookup.
|
|
CurContext->addDecl(Specialization);
|
|
}
|
|
|
|
if (SkipBody && SkipBody->ShouldSkip)
|
|
return SkipBody->Previous;
|
|
|
|
Specialization->setInvalidDecl(Invalid);
|
|
inferGslOwnerPointerAttribute(Specialization);
|
|
return Specialization;
|
|
}
|
|
|
|
Decl *Sema::ActOnTemplateDeclarator(Scope *S,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Declarator &D) {
|
|
Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
|
|
ActOnDocumentableDecl(NewDecl);
|
|
return NewDecl;
|
|
}
|
|
|
|
ConceptDecl *Sema::ActOnStartConceptDefinition(
|
|
Scope *S, MultiTemplateParamsArg TemplateParameterLists,
|
|
const IdentifierInfo *Name, SourceLocation NameLoc) {
|
|
DeclContext *DC = CurContext;
|
|
|
|
if (!DC->getRedeclContext()->isFileContext()) {
|
|
Diag(NameLoc,
|
|
diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
|
|
return nullptr;
|
|
}
|
|
|
|
if (TemplateParameterLists.size() > 1) {
|
|
Diag(NameLoc, diag::err_concept_extra_headers);
|
|
return nullptr;
|
|
}
|
|
|
|
TemplateParameterList *Params = TemplateParameterLists.front();
|
|
|
|
if (Params->size() == 0) {
|
|
Diag(NameLoc, diag::err_concept_no_parameters);
|
|
return nullptr;
|
|
}
|
|
|
|
// Ensure that the parameter pack, if present, is the last parameter in the
|
|
// template.
|
|
for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
|
|
ParamEnd = Params->end();
|
|
ParamIt != ParamEnd; ++ParamIt) {
|
|
Decl const *Param = *ParamIt;
|
|
if (Param->isParameterPack()) {
|
|
if (++ParamIt == ParamEnd)
|
|
break;
|
|
Diag(Param->getLocation(),
|
|
diag::err_template_param_pack_must_be_last_template_parameter);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
ConceptDecl *NewDecl =
|
|
ConceptDecl::Create(Context, DC, NameLoc, Name, Params);
|
|
|
|
if (NewDecl->hasAssociatedConstraints()) {
|
|
// C++2a [temp.concept]p4:
|
|
// A concept shall not have associated constraints.
|
|
Diag(NameLoc, diag::err_concept_no_associated_constraints);
|
|
NewDecl->setInvalidDecl();
|
|
}
|
|
|
|
DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NewDecl->getBeginLoc());
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
forRedeclarationInCurContext());
|
|
LookupName(Previous, S);
|
|
FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
|
|
/*AllowInlineNamespace*/ false);
|
|
|
|
// We cannot properly handle redeclarations until we parse the constraint
|
|
// expression, so only inject the name if we are sure we are not redeclaring a
|
|
// symbol
|
|
if (Previous.empty())
|
|
PushOnScopeChains(NewDecl, S, true);
|
|
|
|
return NewDecl;
|
|
}
|
|
|
|
static bool RemoveLookupResult(LookupResult &R, NamedDecl *C) {
|
|
bool Found = false;
|
|
LookupResult::Filter F = R.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (D == C) {
|
|
F.erase();
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
F.done();
|
|
return Found;
|
|
}
|
|
|
|
ConceptDecl *
|
|
Sema::ActOnFinishConceptDefinition(Scope *S, ConceptDecl *C,
|
|
Expr *ConstraintExpr,
|
|
const ParsedAttributesView &Attrs) {
|
|
assert(!C->hasDefinition() && "Concept already defined");
|
|
if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
|
|
return nullptr;
|
|
C->setDefinition(ConstraintExpr);
|
|
ProcessDeclAttributeList(S, C, Attrs);
|
|
|
|
// Check for conflicting previous declaration.
|
|
DeclarationNameInfo NameInfo(C->getDeclName(), C->getBeginLoc());
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
forRedeclarationInCurContext());
|
|
LookupName(Previous, S);
|
|
FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
|
|
/*AllowInlineNamespace*/ false);
|
|
bool WasAlreadyAdded = RemoveLookupResult(Previous, C);
|
|
bool AddToScope = true;
|
|
CheckConceptRedefinition(C, Previous, AddToScope);
|
|
|
|
ActOnDocumentableDecl(C);
|
|
if (!WasAlreadyAdded && AddToScope)
|
|
PushOnScopeChains(C, S);
|
|
|
|
return C;
|
|
}
|
|
|
|
void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
|
|
LookupResult &Previous, bool &AddToScope) {
|
|
AddToScope = true;
|
|
|
|
if (Previous.empty())
|
|
return;
|
|
|
|
auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
|
|
if (!OldConcept) {
|
|
auto *Old = Previous.getRepresentativeDecl();
|
|
Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
|
|
<< NewDecl->getDeclName();
|
|
notePreviousDefinition(Old, NewDecl->getLocation());
|
|
AddToScope = false;
|
|
return;
|
|
}
|
|
// Check if we can merge with a concept declaration.
|
|
bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
|
|
if (!IsSame) {
|
|
Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
|
|
<< NewDecl->getDeclName();
|
|
notePreviousDefinition(OldConcept, NewDecl->getLocation());
|
|
AddToScope = false;
|
|
return;
|
|
}
|
|
if (hasReachableDefinition(OldConcept) &&
|
|
IsRedefinitionInModule(NewDecl, OldConcept)) {
|
|
Diag(NewDecl->getLocation(), diag::err_redefinition)
|
|
<< NewDecl->getDeclName();
|
|
notePreviousDefinition(OldConcept, NewDecl->getLocation());
|
|
AddToScope = false;
|
|
return;
|
|
}
|
|
if (!Previous.isSingleResult()) {
|
|
// FIXME: we should produce an error in case of ambig and failed lookups.
|
|
// Other decls (e.g. namespaces) also have this shortcoming.
|
|
return;
|
|
}
|
|
// We unwrap canonical decl late to check for module visibility.
|
|
Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
|
|
}
|
|
|
|
bool Sema::CheckConceptUseInDefinition(ConceptDecl *Concept,
|
|
SourceLocation Loc) {
|
|
if (!Concept->isInvalidDecl() && !Concept->hasDefinition()) {
|
|
Diag(Loc, diag::err_recursive_concept) << Concept;
|
|
Diag(Concept->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Strips various properties off an implicit instantiation
|
|
/// that has just been explicitly specialized.
|
|
static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
|
|
if (MinGW || (isa<FunctionDecl>(D) &&
|
|
cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()))
|
|
D->dropAttrs<DLLImportAttr, DLLExportAttr>();
|
|
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
FD->setInlineSpecified(false);
|
|
}
|
|
|
|
/// Compute the diagnostic location for an explicit instantiation
|
|
// declaration or definition.
|
|
static SourceLocation DiagLocForExplicitInstantiation(
|
|
NamedDecl* D, SourceLocation PointOfInstantiation) {
|
|
// Explicit instantiations following a specialization have no effect and
|
|
// hence no PointOfInstantiation. In that case, walk decl backwards
|
|
// until a valid name loc is found.
|
|
SourceLocation PrevDiagLoc = PointOfInstantiation;
|
|
for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
|
|
Prev = Prev->getPreviousDecl()) {
|
|
PrevDiagLoc = Prev->getLocation();
|
|
}
|
|
assert(PrevDiagLoc.isValid() &&
|
|
"Explicit instantiation without point of instantiation?");
|
|
return PrevDiagLoc;
|
|
}
|
|
|
|
bool
|
|
Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
|
|
TemplateSpecializationKind NewTSK,
|
|
NamedDecl *PrevDecl,
|
|
TemplateSpecializationKind PrevTSK,
|
|
SourceLocation PrevPointOfInstantiation,
|
|
bool &HasNoEffect) {
|
|
HasNoEffect = false;
|
|
|
|
switch (NewTSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
assert(
|
|
(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
|
|
"previous declaration must be implicit!");
|
|
return false;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
switch (PrevTSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
// Okay, we're just specializing something that is either already
|
|
// explicitly specialized or has merely been mentioned without any
|
|
// instantiation.
|
|
return false;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
if (PrevPointOfInstantiation.isInvalid()) {
|
|
// The declaration itself has not actually been instantiated, so it is
|
|
// still okay to specialize it.
|
|
StripImplicitInstantiation(
|
|
PrevDecl,
|
|
Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
|
|
return false;
|
|
}
|
|
// Fall through
|
|
[[fallthrough]];
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
assert((PrevTSK == TSK_ImplicitInstantiation ||
|
|
PrevPointOfInstantiation.isValid()) &&
|
|
"Explicit instantiation without point of instantiation?");
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template
|
|
// is explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an
|
|
// implicit instantiation to take place, in every translation unit in
|
|
// which such a use occurs; no diagnostic is required.
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
|
|
return false;
|
|
}
|
|
|
|
Diag(NewLoc, diag::err_specialization_after_instantiation)
|
|
<< PrevDecl;
|
|
Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
|
|
<< (PrevTSK != TSK_ImplicitInstantiation);
|
|
|
|
return true;
|
|
}
|
|
llvm_unreachable("The switch over PrevTSK must be exhaustive.");
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
switch (PrevTSK) {
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// This explicit instantiation declaration is redundant (that's okay).
|
|
HasNoEffect = true;
|
|
return false;
|
|
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
// We're explicitly instantiating something that may have already been
|
|
// implicitly instantiated; that's fine.
|
|
return false;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
// C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit instantiation
|
|
// of a template appears after a declaration of an explicit
|
|
// specialization for that template, the explicit instantiation has no
|
|
// effect.
|
|
HasNoEffect = true;
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
// C++0x [temp.explicit]p10:
|
|
// If an entity is the subject of both an explicit instantiation
|
|
// declaration and an explicit instantiation definition in the same
|
|
// translation unit, the definition shall follow the declaration.
|
|
Diag(NewLoc,
|
|
diag::err_explicit_instantiation_declaration_after_definition);
|
|
|
|
// Explicit instantiations following a specialization have no effect and
|
|
// hence no PrevPointOfInstantiation. In that case, walk decl backwards
|
|
// until a valid name loc is found.
|
|
Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
|
|
diag::note_explicit_instantiation_definition_here);
|
|
HasNoEffect = true;
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unexpected TemplateSpecializationKind!");
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
switch (PrevTSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
// We're explicitly instantiating something that may have already been
|
|
// implicitly instantiated; that's fine.
|
|
return false;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
// C++ DR 259, C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit
|
|
// instantiation of a template appears after a declaration of
|
|
// an explicit specialization for that template, the explicit
|
|
// instantiation has no effect.
|
|
Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
|
|
<< PrevDecl;
|
|
Diag(PrevDecl->getLocation(),
|
|
diag::note_previous_template_specialization);
|
|
HasNoEffect = true;
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// We're explicitly instantiating a definition for something for which we
|
|
// were previously asked to suppress instantiations. That's fine.
|
|
|
|
// C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit instantiation
|
|
// of a template appears after a declaration of an explicit
|
|
// specialization for that template, the explicit instantiation has no
|
|
// effect.
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
|
|
HasNoEffect = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
// C++0x [temp.spec]p5:
|
|
// For a given template and a given set of template-arguments,
|
|
// - an explicit instantiation definition shall appear at most once
|
|
// in a program,
|
|
|
|
// MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
|
|
Diag(NewLoc, (getLangOpts().MSVCCompat)
|
|
? diag::ext_explicit_instantiation_duplicate
|
|
: diag::err_explicit_instantiation_duplicate)
|
|
<< PrevDecl;
|
|
Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
|
|
diag::note_previous_explicit_instantiation);
|
|
HasNoEffect = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Missing specialization/instantiation case?");
|
|
}
|
|
|
|
bool Sema::CheckDependentFunctionTemplateSpecialization(
|
|
FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
LookupResult &Previous) {
|
|
// Remove anything from Previous that isn't a function template in
|
|
// the correct context.
|
|
DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
|
|
SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next()->getUnderlyingDecl();
|
|
if (!isa<FunctionTemplateDecl>(D)) {
|
|
F.erase();
|
|
DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
|
|
continue;
|
|
}
|
|
|
|
if (!FDLookupContext->InEnclosingNamespaceSetOf(
|
|
D->getDeclContext()->getRedeclContext())) {
|
|
F.erase();
|
|
DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
|
|
continue;
|
|
}
|
|
}
|
|
F.done();
|
|
|
|
bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
|
|
if (Previous.empty()) {
|
|
Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
|
|
<< IsFriend;
|
|
for (auto &P : DiscardedCandidates)
|
|
Diag(P.second->getLocation(),
|
|
diag::note_dependent_function_template_spec_discard_reason)
|
|
<< P.first << IsFriend;
|
|
return true;
|
|
}
|
|
|
|
FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
|
|
ExplicitTemplateArgs);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckFunctionTemplateSpecialization(
|
|
FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
LookupResult &Previous, bool QualifiedFriend) {
|
|
// The set of function template specializations that could match this
|
|
// explicit function template specialization.
|
|
UnresolvedSet<8> Candidates;
|
|
TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
|
|
/*ForTakingAddress=*/false);
|
|
|
|
llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
|
|
ConvertedTemplateArgs;
|
|
|
|
DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I) {
|
|
NamedDecl *Ovl = (*I)->getUnderlyingDecl();
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
|
|
// Only consider templates found within the same semantic lookup scope as
|
|
// FD.
|
|
if (!FDLookupContext->InEnclosingNamespaceSetOf(
|
|
Ovl->getDeclContext()->getRedeclContext()))
|
|
continue;
|
|
|
|
QualType FT = FD->getType();
|
|
// C++11 [dcl.constexpr]p8:
|
|
// A constexpr specifier for a non-static member function that is not
|
|
// a constructor declares that member function to be const.
|
|
//
|
|
// When matching a constexpr member function template specialization
|
|
// against the primary template, we don't yet know whether the
|
|
// specialization has an implicit 'const' (because we don't know whether
|
|
// it will be a static member function until we know which template it
|
|
// specializes). This rule was removed in C++14.
|
|
if (auto *NewMD = dyn_cast<CXXMethodDecl>(FD);
|
|
!getLangOpts().CPlusPlus14 && NewMD && NewMD->isConstexpr() &&
|
|
!isa<CXXConstructorDecl, CXXDestructorDecl>(NewMD)) {
|
|
auto *OldMD = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
|
|
if (OldMD && OldMD->isConst()) {
|
|
const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.TypeQuals.addConst();
|
|
FT = Context.getFunctionType(FPT->getReturnType(),
|
|
FPT->getParamTypes(), EPI);
|
|
}
|
|
}
|
|
|
|
TemplateArgumentListInfo Args;
|
|
if (ExplicitTemplateArgs)
|
|
Args = *ExplicitTemplateArgs;
|
|
|
|
// C++ [temp.expl.spec]p11:
|
|
// A trailing template-argument can be left unspecified in the
|
|
// template-id naming an explicit function template specialization
|
|
// provided it can be deduced from the function argument type.
|
|
// Perform template argument deduction to determine whether we may be
|
|
// specializing this template.
|
|
// FIXME: It is somewhat wasteful to build
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
FunctionDecl *Specialization = nullptr;
|
|
if (TemplateDeductionResult TDK = DeduceTemplateArguments(
|
|
cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
|
|
ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info);
|
|
TDK != TemplateDeductionResult::Success) {
|
|
// Template argument deduction failed; record why it failed, so
|
|
// that we can provide nifty diagnostics.
|
|
FailedCandidates.addCandidate().set(
|
|
I.getPair(), FunTmpl->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(Context, TDK, Info));
|
|
(void)TDK;
|
|
continue;
|
|
}
|
|
|
|
// Target attributes are part of the cuda function signature, so
|
|
// the deduced template's cuda target must match that of the
|
|
// specialization. Given that C++ template deduction does not
|
|
// take target attributes into account, we reject candidates
|
|
// here that have a different target.
|
|
if (LangOpts.CUDA &&
|
|
CUDA().IdentifyTarget(Specialization,
|
|
/* IgnoreImplicitHDAttr = */ true) !=
|
|
CUDA().IdentifyTarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
|
|
FailedCandidates.addCandidate().set(
|
|
I.getPair(), FunTmpl->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(
|
|
Context, TemplateDeductionResult::CUDATargetMismatch, Info));
|
|
continue;
|
|
}
|
|
|
|
// Record this candidate.
|
|
if (ExplicitTemplateArgs)
|
|
ConvertedTemplateArgs[Specialization] = std::move(Args);
|
|
Candidates.addDecl(Specialization, I.getAccess());
|
|
}
|
|
}
|
|
|
|
// For a qualified friend declaration (with no explicit marker to indicate
|
|
// that a template specialization was intended), note all (template and
|
|
// non-template) candidates.
|
|
if (QualifiedFriend && Candidates.empty()) {
|
|
Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
|
|
<< FD->getDeclName() << FDLookupContext;
|
|
// FIXME: We should form a single candidate list and diagnose all
|
|
// candidates at once, to get proper sorting and limiting.
|
|
for (auto *OldND : Previous) {
|
|
if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
|
|
NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
|
|
}
|
|
FailedCandidates.NoteCandidates(*this, FD->getLocation());
|
|
return true;
|
|
}
|
|
|
|
// Find the most specialized function template.
|
|
UnresolvedSetIterator Result = getMostSpecialized(
|
|
Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
|
|
PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
|
|
PDiag(diag::err_function_template_spec_ambiguous)
|
|
<< FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
|
|
PDiag(diag::note_function_template_spec_matched));
|
|
|
|
if (Result == Candidates.end())
|
|
return true;
|
|
|
|
// Ignore access information; it doesn't figure into redeclaration checking.
|
|
FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
|
|
|
|
if (const auto *PT = Specialization->getPrimaryTemplate();
|
|
const auto *DSA = PT->getAttr<NoSpecializationsAttr>()) {
|
|
auto Message = DSA->getMessage();
|
|
Diag(FD->getLocation(), diag::warn_invalid_specialization)
|
|
<< PT << !Message.empty() << Message;
|
|
Diag(DSA->getLoc(), diag::note_marked_here) << DSA;
|
|
}
|
|
|
|
// C++23 [except.spec]p13:
|
|
// An exception specification is considered to be needed when:
|
|
// - [...]
|
|
// - the exception specification is compared to that of another declaration
|
|
// (e.g., an explicit specialization or an overriding virtual function);
|
|
// - [...]
|
|
//
|
|
// The exception specification of a defaulted function is evaluated as
|
|
// described above only when needed; similarly, the noexcept-specifier of a
|
|
// specialization of a function template or member function of a class
|
|
// template is instantiated only when needed.
|
|
//
|
|
// The standard doesn't specify what the "comparison with another declaration"
|
|
// entails, nor the exact circumstances in which it occurs. Moreover, it does
|
|
// not state which properties of an explicit specialization must match the
|
|
// primary template.
|
|
//
|
|
// We assume that an explicit specialization must correspond with (per
|
|
// [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8)
|
|
// the declaration produced by substitution into the function template.
|
|
//
|
|
// Since the determination whether two function declarations correspond does
|
|
// not consider exception specification, we only need to instantiate it once
|
|
// we determine the primary template when comparing types per
|
|
// [basic.link]p11.1.
|
|
auto *SpecializationFPT =
|
|
Specialization->getType()->castAs<FunctionProtoType>();
|
|
// If the function has a dependent exception specification, resolve it after
|
|
// we have selected the primary template so we can check whether it matches.
|
|
if (getLangOpts().CPlusPlus17 &&
|
|
isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
|
|
!ResolveExceptionSpec(FD->getLocation(), SpecializationFPT))
|
|
return true;
|
|
|
|
FunctionTemplateSpecializationInfo *SpecInfo
|
|
= Specialization->getTemplateSpecializationInfo();
|
|
assert(SpecInfo && "Function template specialization info missing?");
|
|
|
|
// Note: do not overwrite location info if previous template
|
|
// specialization kind was explicit.
|
|
TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
|
|
if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
|
|
Specialization->setLocation(FD->getLocation());
|
|
Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
|
|
// C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
|
|
// function can differ from the template declaration with respect to
|
|
// the constexpr specifier.
|
|
// FIXME: We need an update record for this AST mutation.
|
|
// FIXME: What if there are multiple such prior declarations (for instance,
|
|
// from different modules)?
|
|
Specialization->setConstexprKind(FD->getConstexprKind());
|
|
}
|
|
|
|
// FIXME: Check if the prior specialization has a point of instantiation.
|
|
// If so, we have run afoul of .
|
|
|
|
// If this is a friend declaration, then we're not really declaring
|
|
// an explicit specialization.
|
|
bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
|
|
|
|
// Check the scope of this explicit specialization.
|
|
if (!isFriend &&
|
|
CheckTemplateSpecializationScope(*this,
|
|
Specialization->getPrimaryTemplate(),
|
|
Specialization, FD->getLocation(),
|
|
false))
|
|
return true;
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
bool HasNoEffect = false;
|
|
if (!isFriend &&
|
|
CheckSpecializationInstantiationRedecl(FD->getLocation(),
|
|
TSK_ExplicitSpecialization,
|
|
Specialization,
|
|
SpecInfo->getTemplateSpecializationKind(),
|
|
SpecInfo->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
|
|
// Mark the prior declaration as an explicit specialization, so that later
|
|
// clients know that this is an explicit specialization.
|
|
if (!isFriend) {
|
|
// Since explicit specializations do not inherit '=delete' from their
|
|
// primary function template - check if the 'specialization' that was
|
|
// implicitly generated (during template argument deduction for partial
|
|
// ordering) from the most specialized of all the function templates that
|
|
// 'FD' could have been specializing, has a 'deleted' definition. If so,
|
|
// first check that it was implicitly generated during template argument
|
|
// deduction by making sure it wasn't referenced, and then reset the deleted
|
|
// flag to not-deleted, so that we can inherit that information from 'FD'.
|
|
if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
|
|
!Specialization->getCanonicalDecl()->isReferenced()) {
|
|
// FIXME: This assert will not hold in the presence of modules.
|
|
assert(
|
|
Specialization->getCanonicalDecl() == Specialization &&
|
|
"This must be the only existing declaration of this specialization");
|
|
// FIXME: We need an update record for this AST mutation.
|
|
Specialization->setDeletedAsWritten(false);
|
|
}
|
|
// FIXME: We need an update record for this AST mutation.
|
|
SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
|
|
MarkUnusedFileScopedDecl(Specialization);
|
|
}
|
|
|
|
// Turn the given function declaration into a function template
|
|
// specialization, with the template arguments from the previous
|
|
// specialization.
|
|
// Take copies of (semantic and syntactic) template argument lists.
|
|
TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy(
|
|
Context, Specialization->getTemplateSpecializationArgs()->asArray());
|
|
FD->setFunctionTemplateSpecialization(
|
|
Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
|
|
SpecInfo->getTemplateSpecializationKind(),
|
|
ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
|
|
|
|
// A function template specialization inherits the target attributes
|
|
// of its template. (We require the attributes explicitly in the
|
|
// code to match, but a template may have implicit attributes by
|
|
// virtue e.g. of being constexpr, and it passes these implicit
|
|
// attributes on to its specializations.)
|
|
if (LangOpts.CUDA)
|
|
CUDA().inheritTargetAttrs(FD, *Specialization->getPrimaryTemplate());
|
|
|
|
// The "previous declaration" for this function template specialization is
|
|
// the prior function template specialization.
|
|
Previous.clear();
|
|
Previous.addDecl(Specialization);
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
|
|
assert(!Member->isTemplateDecl() && !Member->getDescribedTemplate() &&
|
|
"Only for non-template members");
|
|
|
|
// Try to find the member we are instantiating.
|
|
NamedDecl *FoundInstantiation = nullptr;
|
|
NamedDecl *Instantiation = nullptr;
|
|
NamedDecl *InstantiatedFrom = nullptr;
|
|
MemberSpecializationInfo *MSInfo = nullptr;
|
|
|
|
if (Previous.empty()) {
|
|
// Nowhere to look anyway.
|
|
} else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
|
|
UnresolvedSet<8> Candidates;
|
|
for (NamedDecl *Candidate : Previous) {
|
|
auto *Method = dyn_cast<CXXMethodDecl>(Candidate->getUnderlyingDecl());
|
|
// Ignore any candidates that aren't member functions.
|
|
if (!Method)
|
|
continue;
|
|
|
|
QualType Adjusted = Function->getType();
|
|
if (!hasExplicitCallingConv(Adjusted))
|
|
Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
|
|
// Ignore any candidates with the wrong type.
|
|
// This doesn't handle deduced return types, but both function
|
|
// declarations should be undeduced at this point.
|
|
// FIXME: The exception specification should probably be ignored when
|
|
// comparing the types.
|
|
if (!Context.hasSameType(Adjusted, Method->getType()))
|
|
continue;
|
|
|
|
// Ignore any candidates with unsatisfied constraints.
|
|
if (ConstraintSatisfaction Satisfaction;
|
|
Method->getTrailingRequiresClause() &&
|
|
(CheckFunctionConstraints(Method, Satisfaction,
|
|
/*UsageLoc=*/Member->getLocation(),
|
|
/*ForOverloadResolution=*/true) ||
|
|
!Satisfaction.IsSatisfied))
|
|
continue;
|
|
|
|
Candidates.addDecl(Candidate);
|
|
}
|
|
|
|
// If we have no viable candidates left after filtering, we are done.
|
|
if (Candidates.empty())
|
|
return false;
|
|
|
|
// Find the function that is more constrained than every other function it
|
|
// has been compared to.
|
|
UnresolvedSetIterator Best = Candidates.begin();
|
|
CXXMethodDecl *BestMethod = nullptr;
|
|
for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end();
|
|
I != E; ++I) {
|
|
auto *Method = cast<CXXMethodDecl>(I->getUnderlyingDecl());
|
|
if (I == Best ||
|
|
getMoreConstrainedFunction(Method, BestMethod) == Method) {
|
|
Best = I;
|
|
BestMethod = Method;
|
|
}
|
|
}
|
|
|
|
FoundInstantiation = *Best;
|
|
Instantiation = BestMethod;
|
|
InstantiatedFrom = BestMethod->getInstantiatedFromMemberFunction();
|
|
MSInfo = BestMethod->getMemberSpecializationInfo();
|
|
|
|
// Make sure the best candidate is more constrained than all of the others.
|
|
bool Ambiguous = false;
|
|
for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end();
|
|
I != E; ++I) {
|
|
auto *Method = cast<CXXMethodDecl>(I->getUnderlyingDecl());
|
|
if (I != Best &&
|
|
getMoreConstrainedFunction(Method, BestMethod) != BestMethod) {
|
|
Ambiguous = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Ambiguous) {
|
|
Diag(Member->getLocation(), diag::err_function_member_spec_ambiguous)
|
|
<< Member << (InstantiatedFrom ? InstantiatedFrom : Instantiation);
|
|
for (NamedDecl *Candidate : Candidates) {
|
|
Candidate = Candidate->getUnderlyingDecl();
|
|
Diag(Candidate->getLocation(), diag::note_function_member_spec_matched)
|
|
<< Candidate;
|
|
}
|
|
return true;
|
|
}
|
|
} else if (isa<VarDecl>(Member)) {
|
|
VarDecl *PrevVar;
|
|
if (Previous.isSingleResult() &&
|
|
(PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
|
|
if (PrevVar->isStaticDataMember()) {
|
|
FoundInstantiation = Previous.getRepresentativeDecl();
|
|
Instantiation = PrevVar;
|
|
InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
|
|
MSInfo = PrevVar->getMemberSpecializationInfo();
|
|
}
|
|
} else if (isa<RecordDecl>(Member)) {
|
|
CXXRecordDecl *PrevRecord;
|
|
if (Previous.isSingleResult() &&
|
|
(PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
|
|
FoundInstantiation = Previous.getRepresentativeDecl();
|
|
Instantiation = PrevRecord;
|
|
InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
|
|
MSInfo = PrevRecord->getMemberSpecializationInfo();
|
|
}
|
|
} else if (isa<EnumDecl>(Member)) {
|
|
EnumDecl *PrevEnum;
|
|
if (Previous.isSingleResult() &&
|
|
(PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
|
|
FoundInstantiation = Previous.getRepresentativeDecl();
|
|
Instantiation = PrevEnum;
|
|
InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
|
|
MSInfo = PrevEnum->getMemberSpecializationInfo();
|
|
}
|
|
}
|
|
|
|
if (!Instantiation) {
|
|
// There is no previous declaration that matches. Since member
|
|
// specializations are always out-of-line, the caller will complain about
|
|
// this mismatch later.
|
|
return false;
|
|
}
|
|
|
|
// A member specialization in a friend declaration isn't really declaring
|
|
// an explicit specialization, just identifying a specific (possibly implicit)
|
|
// specialization. Don't change the template specialization kind.
|
|
//
|
|
// FIXME: Is this really valid? Other compilers reject.
|
|
if (Member->getFriendObjectKind() != Decl::FOK_None) {
|
|
// Preserve instantiation information.
|
|
if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
|
|
cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
|
|
cast<CXXMethodDecl>(InstantiatedFrom),
|
|
cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
|
|
} else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
|
|
cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
|
|
cast<CXXRecordDecl>(InstantiatedFrom),
|
|
cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
|
|
}
|
|
|
|
Previous.clear();
|
|
Previous.addDecl(FoundInstantiation);
|
|
return false;
|
|
}
|
|
|
|
// Make sure that this is a specialization of a member.
|
|
if (!InstantiatedFrom) {
|
|
Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
|
|
<< Member;
|
|
Diag(Instantiation->getLocation(), diag::note_specialized_decl);
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
assert(MSInfo && "Member specialization info missing?");
|
|
|
|
bool HasNoEffect = false;
|
|
if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
|
|
TSK_ExplicitSpecialization,
|
|
Instantiation,
|
|
MSInfo->getTemplateSpecializationKind(),
|
|
MSInfo->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
|
|
// Check the scope of this explicit specialization.
|
|
if (CheckTemplateSpecializationScope(*this,
|
|
InstantiatedFrom,
|
|
Instantiation, Member->getLocation(),
|
|
false))
|
|
return true;
|
|
|
|
// Note that this member specialization is an "instantiation of" the
|
|
// corresponding member of the original template.
|
|
if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
|
|
FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
|
|
if (InstantiationFunction->getTemplateSpecializationKind() ==
|
|
TSK_ImplicitInstantiation) {
|
|
// Explicit specializations of member functions of class templates do not
|
|
// inherit '=delete' from the member function they are specializing.
|
|
if (InstantiationFunction->isDeleted()) {
|
|
// FIXME: This assert will not hold in the presence of modules.
|
|
assert(InstantiationFunction->getCanonicalDecl() ==
|
|
InstantiationFunction);
|
|
// FIXME: We need an update record for this AST mutation.
|
|
InstantiationFunction->setDeletedAsWritten(false);
|
|
}
|
|
}
|
|
|
|
MemberFunction->setInstantiationOfMemberFunction(
|
|
cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
|
|
} else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
|
|
MemberVar->setInstantiationOfStaticDataMember(
|
|
cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
|
|
} else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
|
|
MemberClass->setInstantiationOfMemberClass(
|
|
cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
|
|
} else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
|
|
MemberEnum->setInstantiationOfMemberEnum(
|
|
cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
|
|
} else {
|
|
llvm_unreachable("unknown member specialization kind");
|
|
}
|
|
|
|
// Save the caller the trouble of having to figure out which declaration
|
|
// this specialization matches.
|
|
Previous.clear();
|
|
Previous.addDecl(FoundInstantiation);
|
|
return false;
|
|
}
|
|
|
|
/// Complete the explicit specialization of a member of a class template by
|
|
/// updating the instantiated member to be marked as an explicit specialization.
|
|
///
|
|
/// \param OrigD The member declaration instantiated from the template.
|
|
/// \param Loc The location of the explicit specialization of the member.
|
|
template<typename DeclT>
|
|
static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
|
|
SourceLocation Loc) {
|
|
if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
|
|
return;
|
|
|
|
// FIXME: Inform AST mutation listeners of this AST mutation.
|
|
// FIXME: If there are multiple in-class declarations of the member (from
|
|
// multiple modules, or a declaration and later definition of a member type),
|
|
// should we update all of them?
|
|
OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
|
|
OrigD->setLocation(Loc);
|
|
}
|
|
|
|
void Sema::CompleteMemberSpecialization(NamedDecl *Member,
|
|
LookupResult &Previous) {
|
|
NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
|
|
if (Instantiation == Member)
|
|
return;
|
|
|
|
if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
|
|
completeMemberSpecializationImpl(*this, Function, Member->getLocation());
|
|
else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
|
|
completeMemberSpecializationImpl(*this, Var, Member->getLocation());
|
|
else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
|
|
completeMemberSpecializationImpl(*this, Record, Member->getLocation());
|
|
else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
|
|
completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
|
|
else
|
|
llvm_unreachable("unknown member specialization kind");
|
|
}
|
|
|
|
/// Check the scope of an explicit instantiation.
|
|
///
|
|
/// \returns true if a serious error occurs, false otherwise.
|
|
static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
|
|
SourceLocation InstLoc,
|
|
bool WasQualifiedName) {
|
|
DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
|
|
DeclContext *CurContext = S.CurContext->getRedeclContext();
|
|
|
|
if (CurContext->isRecord()) {
|
|
S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
|
|
<< D;
|
|
return true;
|
|
}
|
|
|
|
// C++11 [temp.explicit]p3:
|
|
// An explicit instantiation shall appear in an enclosing namespace of its
|
|
// template. If the name declared in the explicit instantiation is an
|
|
// unqualified name, the explicit instantiation shall appear in the
|
|
// namespace where its template is declared or, if that namespace is inline
|
|
// (7.3.1), any namespace from its enclosing namespace set.
|
|
//
|
|
// This is DR275, which we do not retroactively apply to C++98/03.
|
|
if (WasQualifiedName) {
|
|
if (CurContext->Encloses(OrigContext))
|
|
return false;
|
|
} else {
|
|
if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
|
|
return false;
|
|
}
|
|
|
|
if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
|
|
if (WasQualifiedName)
|
|
S.Diag(InstLoc,
|
|
S.getLangOpts().CPlusPlus11?
|
|
diag::err_explicit_instantiation_out_of_scope :
|
|
diag::warn_explicit_instantiation_out_of_scope_0x)
|
|
<< D << NS;
|
|
else
|
|
S.Diag(InstLoc,
|
|
S.getLangOpts().CPlusPlus11?
|
|
diag::err_explicit_instantiation_unqualified_wrong_namespace :
|
|
diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
|
|
<< D << NS;
|
|
} else
|
|
S.Diag(InstLoc,
|
|
S.getLangOpts().CPlusPlus11?
|
|
diag::err_explicit_instantiation_must_be_global :
|
|
diag::warn_explicit_instantiation_must_be_global_0x)
|
|
<< D;
|
|
S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
|
|
return false;
|
|
}
|
|
|
|
/// Common checks for whether an explicit instantiation of \p D is valid.
|
|
static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
|
|
SourceLocation InstLoc,
|
|
bool WasQualifiedName,
|
|
TemplateSpecializationKind TSK) {
|
|
// C++ [temp.explicit]p13:
|
|
// An explicit instantiation declaration shall not name a specialization of
|
|
// a template with internal linkage.
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
D->getFormalLinkage() == Linkage::Internal) {
|
|
S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
|
|
return true;
|
|
}
|
|
|
|
// C++11 [temp.explicit]p3: [DR 275]
|
|
// An explicit instantiation shall appear in an enclosing namespace of its
|
|
// template.
|
|
if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the given scope specifier has a template-id in it.
|
|
static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
|
|
if (!SS.isSet())
|
|
return false;
|
|
|
|
// C++11 [temp.explicit]p3:
|
|
// If the explicit instantiation is for a member function, a member class
|
|
// or a static data member of a class template specialization, the name of
|
|
// the class template specialization in the qualified-id for the member
|
|
// name shall be a simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
|
|
NNS = NNS->getPrefix())
|
|
if (const Type *T = NNS->getAsType())
|
|
if (isa<TemplateSpecializationType>(T))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Make a dllexport or dllimport attr on a class template specialization take
|
|
/// effect.
|
|
static void dllExportImportClassTemplateSpecialization(
|
|
Sema &S, ClassTemplateSpecializationDecl *Def) {
|
|
auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
|
|
assert(A && "dllExportImportClassTemplateSpecialization called "
|
|
"on Def without dllexport or dllimport");
|
|
|
|
// We reject explicit instantiations in class scope, so there should
|
|
// never be any delayed exported classes to worry about.
|
|
assert(S.DelayedDllExportClasses.empty() &&
|
|
"delayed exports present at explicit instantiation");
|
|
S.checkClassLevelDLLAttribute(Def);
|
|
|
|
// Propagate attribute to base class templates.
|
|
for (auto &B : Def->bases()) {
|
|
if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
|
|
B.getType()->getAsCXXRecordDecl()))
|
|
S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
|
|
}
|
|
|
|
S.referenceDLLExportedClassMethods();
|
|
}
|
|
|
|
DeclResult Sema::ActOnExplicitInstantiation(
|
|
Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
|
|
unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
|
|
TemplateTy TemplateD, SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
|
|
// Find the class template we're specializing
|
|
TemplateName Name = TemplateD.get();
|
|
TemplateDecl *TD = Name.getAsTemplateDecl();
|
|
// Check that the specialization uses the same tag kind as the
|
|
// original template.
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
assert(Kind != TagTypeKind::Enum &&
|
|
"Invalid enum tag in class template explicit instantiation!");
|
|
|
|
ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
|
|
|
|
if (!ClassTemplate) {
|
|
NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
|
|
Diag(TemplateNameLoc, diag::err_tag_reference_non_tag)
|
|
<< TD << NTK << llvm::to_underlying(Kind);
|
|
Diag(TD->getLocation(), diag::note_previous_use);
|
|
return true;
|
|
}
|
|
|
|
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
|
|
Kind, /*isDefinition*/false, KWLoc,
|
|
ClassTemplate->getIdentifier())) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< ClassTemplate
|
|
<< FixItHint::CreateReplacement(KWLoc,
|
|
ClassTemplate->getTemplatedDecl()->getKindName());
|
|
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
|
|
diag::note_previous_use);
|
|
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// There are two forms of explicit instantiation: an explicit instantiation
|
|
// definition and an explicit instantiation declaration. An explicit
|
|
// instantiation declaration begins with the extern keyword. [...]
|
|
TemplateSpecializationKind TSK = ExternLoc.isInvalid()
|
|
? TSK_ExplicitInstantiationDefinition
|
|
: TSK_ExplicitInstantiationDeclaration;
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
|
|
// Check for dllexport class template instantiation declarations,
|
|
// except for MinGW mode.
|
|
for (const ParsedAttr &AL : Attr) {
|
|
if (AL.getKind() == ParsedAttr::AT_DLLExport) {
|
|
Diag(ExternLoc,
|
|
diag::warn_attribute_dllexport_explicit_instantiation_decl);
|
|
Diag(AL.getLoc(), diag::note_attribute);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
|
|
Diag(ExternLoc,
|
|
diag::warn_attribute_dllexport_explicit_instantiation_decl);
|
|
Diag(A->getLocation(), diag::note_attribute);
|
|
}
|
|
}
|
|
|
|
// In MSVC mode, dllimported explicit instantiation definitions are treated as
|
|
// instantiation declarations for most purposes.
|
|
bool DLLImportExplicitInstantiationDef = false;
|
|
if (TSK == TSK_ExplicitInstantiationDefinition &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
// Check for dllimport class template instantiation definitions.
|
|
bool DLLImport =
|
|
ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
|
|
for (const ParsedAttr &AL : Attr) {
|
|
if (AL.getKind() == ParsedAttr::AT_DLLImport)
|
|
DLLImport = true;
|
|
if (AL.getKind() == ParsedAttr::AT_DLLExport) {
|
|
// dllexport trumps dllimport here.
|
|
DLLImport = false;
|
|
break;
|
|
}
|
|
}
|
|
if (DLLImport) {
|
|
TSK = TSK_ExplicitInstantiationDeclaration;
|
|
DLLImportExplicitInstantiationDef = true;
|
|
}
|
|
}
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
|
|
/*DefaultArgs=*/{}, false, CTAI,
|
|
/*UpdateArgsWithConversions=*/true,
|
|
/*ConstraintsNotSatisfied=*/nullptr))
|
|
return true;
|
|
|
|
// Find the class template specialization declaration that
|
|
// corresponds to these arguments.
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *PrevDecl =
|
|
ClassTemplate->findSpecialization(CTAI.CanonicalConverted, InsertPos);
|
|
|
|
TemplateSpecializationKind PrevDecl_TSK
|
|
= PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
|
|
Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
|
|
// Check for dllexport class template instantiation definitions in MinGW
|
|
// mode, if a previous declaration of the instantiation was seen.
|
|
for (const ParsedAttr &AL : Attr) {
|
|
if (AL.getKind() == ParsedAttr::AT_DLLExport) {
|
|
Diag(AL.getLoc(),
|
|
diag::warn_attribute_dllexport_explicit_instantiation_def);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
|
|
SS.isSet(), TSK))
|
|
return true;
|
|
|
|
ClassTemplateSpecializationDecl *Specialization = nullptr;
|
|
|
|
bool HasNoEffect = false;
|
|
if (PrevDecl) {
|
|
if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
|
|
PrevDecl, PrevDecl_TSK,
|
|
PrevDecl->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return PrevDecl;
|
|
|
|
// Even though HasNoEffect == true means that this explicit instantiation
|
|
// has no effect on semantics, we go on to put its syntax in the AST.
|
|
|
|
if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
|
|
PrevDecl_TSK == TSK_Undeclared) {
|
|
// Since the only prior class template specialization with these
|
|
// arguments was referenced but not declared, reuse that
|
|
// declaration node as our own, updating the source location
|
|
// for the template name to reflect our new declaration.
|
|
// (Other source locations will be updated later.)
|
|
Specialization = PrevDecl;
|
|
Specialization->setLocation(TemplateNameLoc);
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
DLLImportExplicitInstantiationDef) {
|
|
// The new specialization might add a dllimport attribute.
|
|
HasNoEffect = false;
|
|
}
|
|
}
|
|
|
|
if (!Specialization) {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization.
|
|
Specialization = ClassTemplateSpecializationDecl::Create(
|
|
Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
|
|
ClassTemplate, CTAI.CanonicalConverted, CTAI.StrictPackMatch, PrevDecl);
|
|
SetNestedNameSpecifier(*this, Specialization, SS);
|
|
|
|
// A MSInheritanceAttr attached to the previous declaration must be
|
|
// propagated to the new node prior to instantiation.
|
|
if (PrevDecl) {
|
|
if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
|
|
auto *Clone = A->clone(getASTContext());
|
|
Clone->setInherited(true);
|
|
Specialization->addAttr(Clone);
|
|
Consumer.AssignInheritanceModel(Specialization);
|
|
}
|
|
}
|
|
|
|
if (!HasNoEffect && !PrevDecl) {
|
|
// Insert the new specialization.
|
|
ClassTemplate->AddSpecialization(Specialization, InsertPos);
|
|
}
|
|
}
|
|
|
|
Specialization->setTemplateArgsAsWritten(TemplateArgs);
|
|
|
|
// Set source locations for keywords.
|
|
Specialization->setExternKeywordLoc(ExternLoc);
|
|
Specialization->setTemplateKeywordLoc(TemplateLoc);
|
|
Specialization->setBraceRange(SourceRange());
|
|
|
|
bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
|
|
ProcessDeclAttributeList(S, Specialization, Attr);
|
|
ProcessAPINotes(Specialization);
|
|
|
|
// Add the explicit instantiation into its lexical context. However,
|
|
// since explicit instantiations are never found by name lookup, we
|
|
// just put it into the declaration context directly.
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
CurContext->addDecl(Specialization);
|
|
|
|
// Syntax is now OK, so return if it has no other effect on semantics.
|
|
if (HasNoEffect) {
|
|
// Set the template specialization kind.
|
|
Specialization->setTemplateSpecializationKind(TSK);
|
|
return Specialization;
|
|
}
|
|
|
|
// C++ [temp.explicit]p3:
|
|
// A definition of a class template or class member template
|
|
// shall be in scope at the point of the explicit instantiation of
|
|
// the class template or class member template.
|
|
//
|
|
// This check comes when we actually try to perform the
|
|
// instantiation.
|
|
ClassTemplateSpecializationDecl *Def
|
|
= cast_or_null<ClassTemplateSpecializationDecl>(
|
|
Specialization->getDefinition());
|
|
if (!Def)
|
|
InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK,
|
|
/*Complain=*/true,
|
|
CTAI.StrictPackMatch);
|
|
else if (TSK == TSK_ExplicitInstantiationDefinition) {
|
|
MarkVTableUsed(TemplateNameLoc, Specialization, true);
|
|
Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
|
|
}
|
|
|
|
// Instantiate the members of this class template specialization.
|
|
Def = cast_or_null<ClassTemplateSpecializationDecl>(
|
|
Specialization->getDefinition());
|
|
if (Def) {
|
|
TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
|
|
// Fix a TSK_ExplicitInstantiationDeclaration followed by a
|
|
// TSK_ExplicitInstantiationDefinition
|
|
if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
(TSK == TSK_ExplicitInstantiationDefinition ||
|
|
DLLImportExplicitInstantiationDef)) {
|
|
// FIXME: Need to notify the ASTMutationListener that we did this.
|
|
Def->setTemplateSpecializationKind(TSK);
|
|
|
|
if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
|
|
Context.getTargetInfo().shouldDLLImportComdatSymbols()) {
|
|
// An explicit instantiation definition can add a dll attribute to a
|
|
// template with a previous instantiation declaration. MinGW doesn't
|
|
// allow this.
|
|
auto *A = cast<InheritableAttr>(
|
|
getDLLAttr(Specialization)->clone(getASTContext()));
|
|
A->setInherited(true);
|
|
Def->addAttr(A);
|
|
dllExportImportClassTemplateSpecialization(*this, Def);
|
|
}
|
|
}
|
|
|
|
// Fix a TSK_ImplicitInstantiation followed by a
|
|
// TSK_ExplicitInstantiationDefinition
|
|
bool NewlyDLLExported =
|
|
!PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
|
|
if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
|
|
Context.getTargetInfo().shouldDLLImportComdatSymbols()) {
|
|
// An explicit instantiation definition can add a dll attribute to a
|
|
// template with a previous implicit instantiation. MinGW doesn't allow
|
|
// this. We limit clang to only adding dllexport, to avoid potentially
|
|
// strange codegen behavior. For example, if we extend this conditional
|
|
// to dllimport, and we have a source file calling a method on an
|
|
// implicitly instantiated template class instance and then declaring a
|
|
// dllimport explicit instantiation definition for the same template
|
|
// class, the codegen for the method call will not respect the dllimport,
|
|
// while it will with cl. The Def will already have the DLL attribute,
|
|
// since the Def and Specialization will be the same in the case of
|
|
// Old_TSK == TSK_ImplicitInstantiation, and we already added the
|
|
// attribute to the Specialization; we just need to make it take effect.
|
|
assert(Def == Specialization &&
|
|
"Def and Specialization should match for implicit instantiation");
|
|
dllExportImportClassTemplateSpecialization(*this, Def);
|
|
}
|
|
|
|
// In MinGW mode, export the template instantiation if the declaration
|
|
// was marked dllexport.
|
|
if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
|
|
PrevDecl->hasAttr<DLLExportAttr>()) {
|
|
dllExportImportClassTemplateSpecialization(*this, Def);
|
|
}
|
|
|
|
// Set the template specialization kind. Make sure it is set before
|
|
// instantiating the members which will trigger ASTConsumer callbacks.
|
|
Specialization->setTemplateSpecializationKind(TSK);
|
|
InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
|
|
} else {
|
|
|
|
// Set the template specialization kind.
|
|
Specialization->setTemplateSpecializationKind(TSK);
|
|
}
|
|
|
|
return Specialization;
|
|
}
|
|
|
|
DeclResult
|
|
Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc, unsigned TagSpec,
|
|
SourceLocation KWLoc, CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr) {
|
|
|
|
bool Owned = false;
|
|
bool IsDependent = false;
|
|
Decl *TagD =
|
|
ActOnTag(S, TagSpec, TagUseKind::Reference, KWLoc, SS, Name, NameLoc,
|
|
Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
|
|
MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
|
|
false, TypeResult(), /*IsTypeSpecifier*/ false,
|
|
/*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside)
|
|
.get();
|
|
assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
|
|
|
|
if (!TagD)
|
|
return true;
|
|
|
|
TagDecl *Tag = cast<TagDecl>(TagD);
|
|
assert(!Tag->isEnum() && "shouldn't see enumerations here");
|
|
|
|
if (Tag->isInvalidDecl())
|
|
return true;
|
|
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
|
|
CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
|
|
if (!Pattern) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
|
|
<< Context.getTypeDeclType(Record);
|
|
Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
|
|
return true;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// If the explicit instantiation is for a class or member class, the
|
|
// elaborated-type-specifier in the declaration shall include a
|
|
// simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
if (!ScopeSpecifierHasTemplateId(SS))
|
|
Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
|
|
<< Record << SS.getRange();
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// There are two forms of explicit instantiation: an explicit instantiation
|
|
// definition and an explicit instantiation declaration. An explicit
|
|
// instantiation declaration begins with the extern keyword. [...]
|
|
TemplateSpecializationKind TSK
|
|
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
|
|
: TSK_ExplicitInstantiationDeclaration;
|
|
|
|
CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
|
|
|
|
// Verify that it is okay to explicitly instantiate here.
|
|
CXXRecordDecl *PrevDecl
|
|
= cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
|
|
if (!PrevDecl && Record->getDefinition())
|
|
PrevDecl = Record;
|
|
if (PrevDecl) {
|
|
MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
|
|
bool HasNoEffect = false;
|
|
assert(MSInfo && "No member specialization information?");
|
|
if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
|
|
PrevDecl,
|
|
MSInfo->getTemplateSpecializationKind(),
|
|
MSInfo->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
if (HasNoEffect)
|
|
return TagD;
|
|
}
|
|
|
|
CXXRecordDecl *RecordDef
|
|
= cast_or_null<CXXRecordDecl>(Record->getDefinition());
|
|
if (!RecordDef) {
|
|
// C++ [temp.explicit]p3:
|
|
// A definition of a member class of a class template shall be in scope
|
|
// at the point of an explicit instantiation of the member class.
|
|
CXXRecordDecl *Def
|
|
= cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
|
|
if (!Def) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
|
|
<< 0 << Record->getDeclName() << Record->getDeclContext();
|
|
Diag(Pattern->getLocation(), diag::note_forward_declaration)
|
|
<< Pattern;
|
|
return true;
|
|
} else {
|
|
if (InstantiateClass(NameLoc, Record, Def,
|
|
getTemplateInstantiationArgs(Record),
|
|
TSK))
|
|
return true;
|
|
|
|
RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
|
|
if (!RecordDef)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Instantiate all of the members of the class.
|
|
InstantiateClassMembers(NameLoc, RecordDef,
|
|
getTemplateInstantiationArgs(Record), TSK);
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDefinition)
|
|
MarkVTableUsed(NameLoc, RecordDef, true);
|
|
|
|
// FIXME: We don't have any representation for explicit instantiations of
|
|
// member classes. Such a representation is not needed for compilation, but it
|
|
// should be available for clients that want to see all of the declarations in
|
|
// the source code.
|
|
return TagD;
|
|
}
|
|
|
|
DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
|
|
SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
Declarator &D) {
|
|
// Explicit instantiations always require a name.
|
|
// TODO: check if/when DNInfo should replace Name.
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
if (!Name) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getDeclSpec().getBeginLoc(),
|
|
diag::err_explicit_instantiation_requires_name)
|
|
<< D.getDeclSpec().getSourceRange() << D.getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the innermost enclosing declaration scope.
|
|
S = S->getDeclParent();
|
|
|
|
// Determine the type of the declaration.
|
|
TypeSourceInfo *T = GetTypeForDeclarator(D);
|
|
QualType R = T->getType();
|
|
if (R.isNull())
|
|
return true;
|
|
|
|
// C++ [dcl.stc]p1:
|
|
// A storage-class-specifier shall not be specified in [...] an explicit
|
|
// instantiation (14.7.2) directive.
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
|
|
<< Name;
|
|
return true;
|
|
} else if (D.getDeclSpec().getStorageClassSpec()
|
|
!= DeclSpec::SCS_unspecified) {
|
|
// Complain about then remove the storage class specifier.
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
|
|
// C++0x [temp.explicit]p1:
|
|
// [...] An explicit instantiation of a function template shall not use the
|
|
// inline or constexpr specifiers.
|
|
// Presumably, this also applies to member functions of class templates as
|
|
// well.
|
|
if (D.getDeclSpec().isInlineSpecified())
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::err_explicit_instantiation_inline :
|
|
diag::warn_explicit_instantiation_inline_0x)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
|
|
if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
|
|
// FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
|
|
// not already specified.
|
|
Diag(D.getDeclSpec().getConstexprSpecLoc(),
|
|
diag::err_explicit_instantiation_constexpr);
|
|
|
|
// A deduction guide is not on the list of entities that can be explicitly
|
|
// instantiated.
|
|
if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
|
|
Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
|
|
<< /*explicit instantiation*/ 0;
|
|
return true;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// There are two forms of explicit instantiation: an explicit instantiation
|
|
// definition and an explicit instantiation declaration. An explicit
|
|
// instantiation declaration begins with the extern keyword. [...]
|
|
TemplateSpecializationKind TSK
|
|
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
|
|
: TSK_ExplicitInstantiationDeclaration;
|
|
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
|
|
LookupParsedName(Previous, S, &D.getCXXScopeSpec(),
|
|
/*ObjectType=*/QualType());
|
|
|
|
if (!R->isFunctionType()) {
|
|
// C++ [temp.explicit]p1:
|
|
// A [...] static data member of a class template can be explicitly
|
|
// instantiated from the member definition associated with its class
|
|
// template.
|
|
// C++1y [temp.explicit]p1:
|
|
// A [...] variable [...] template specialization can be explicitly
|
|
// instantiated from its template.
|
|
if (Previous.isAmbiguous())
|
|
return true;
|
|
|
|
VarDecl *Prev = Previous.getAsSingle<VarDecl>();
|
|
VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
|
|
|
|
if (!PrevTemplate) {
|
|
if (!Prev || !Prev->isStaticDataMember()) {
|
|
// We expect to see a static data member here.
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
|
|
<< Name;
|
|
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
|
|
P != PEnd; ++P)
|
|
Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
|
|
return true;
|
|
}
|
|
|
|
if (!Prev->getInstantiatedFromStaticDataMember()) {
|
|
// FIXME: Check for explicit specialization?
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_explicit_instantiation_data_member_not_instantiated)
|
|
<< Prev;
|
|
Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
|
|
// FIXME: Can we provide a note showing where this was declared?
|
|
return true;
|
|
}
|
|
} else {
|
|
// Explicitly instantiate a variable template.
|
|
|
|
// C++1y [dcl.spec.auto]p6:
|
|
// ... A program that uses auto or decltype(auto) in a context not
|
|
// explicitly allowed in this section is ill-formed.
|
|
//
|
|
// This includes auto-typed variable template instantiations.
|
|
if (R->isUndeducedType()) {
|
|
Diag(T->getTypeLoc().getBeginLoc(),
|
|
diag::err_auto_not_allowed_var_inst);
|
|
return true;
|
|
}
|
|
|
|
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
|
|
// C++1y [temp.explicit]p3:
|
|
// If the explicit instantiation is for a variable, the unqualified-id
|
|
// in the declaration shall be a template-id.
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_explicit_instantiation_without_template_id)
|
|
<< PrevTemplate;
|
|
Diag(PrevTemplate->getLocation(),
|
|
diag::note_explicit_instantiation_here);
|
|
return true;
|
|
}
|
|
|
|
// Translate the parser's template argument list into our AST format.
|
|
TemplateArgumentListInfo TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
|
|
|
|
DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
|
|
D.getIdentifierLoc(), TemplateArgs);
|
|
if (Res.isInvalid())
|
|
return true;
|
|
|
|
if (!Res.isUsable()) {
|
|
// We somehow specified dependent template arguments in an explicit
|
|
// instantiation. This should probably only happen during error
|
|
// recovery.
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
|
|
return true;
|
|
}
|
|
|
|
// Ignore access control bits, we don't need them for redeclaration
|
|
// checking.
|
|
Prev = cast<VarDecl>(Res.get());
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// If the explicit instantiation is for a member function, a member class
|
|
// or a static data member of a class template specialization, the name of
|
|
// the class template specialization in the qualified-id for the member
|
|
// name shall be a simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
//
|
|
// This does not apply to variable template specializations, where the
|
|
// template-id is in the unqualified-id instead.
|
|
if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::ext_explicit_instantiation_without_qualified_id)
|
|
<< Prev << D.getCXXScopeSpec().getRange();
|
|
|
|
CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
|
|
|
|
// Verify that it is okay to explicitly instantiate here.
|
|
TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
|
|
SourceLocation POI = Prev->getPointOfInstantiation();
|
|
bool HasNoEffect = false;
|
|
if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
|
|
PrevTSK, POI, HasNoEffect))
|
|
return true;
|
|
|
|
if (!HasNoEffect) {
|
|
// Instantiate static data member or variable template.
|
|
Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
|
|
if (auto *VTSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Prev)) {
|
|
VTSD->setExternKeywordLoc(ExternLoc);
|
|
VTSD->setTemplateKeywordLoc(TemplateLoc);
|
|
}
|
|
|
|
// Merge attributes.
|
|
ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
|
|
if (PrevTemplate)
|
|
ProcessAPINotes(Prev);
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDefinition)
|
|
InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
|
|
}
|
|
|
|
// Check the new variable specialization against the parsed input.
|
|
if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
|
|
Diag(T->getTypeLoc().getBeginLoc(),
|
|
diag::err_invalid_var_template_spec_type)
|
|
<< 0 << PrevTemplate << R << Prev->getType();
|
|
Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
|
|
<< 2 << PrevTemplate->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Create an ExplicitInstantiation node?
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
// If the declarator is a template-id, translate the parser's template
|
|
// argument list into our AST format.
|
|
bool HasExplicitTemplateArgs = false;
|
|
TemplateArgumentListInfo TemplateArgs;
|
|
if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
|
|
TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
|
|
HasExplicitTemplateArgs = true;
|
|
}
|
|
|
|
// C++ [temp.explicit]p1:
|
|
// A [...] function [...] can be explicitly instantiated from its template.
|
|
// A member function [...] of a class template can be explicitly
|
|
// instantiated from the member definition associated with its class
|
|
// template.
|
|
UnresolvedSet<8> TemplateMatches;
|
|
OverloadCandidateSet NonTemplateMatches(D.getBeginLoc(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
TemplateSpecCandidateSet FailedTemplateCandidates(D.getIdentifierLoc());
|
|
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
|
|
P != PEnd; ++P) {
|
|
NamedDecl *Prev = *P;
|
|
if (!HasExplicitTemplateArgs) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
|
|
QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
|
|
/*AdjustExceptionSpec*/true);
|
|
if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
|
|
if (Method->getPrimaryTemplate()) {
|
|
TemplateMatches.addDecl(Method, P.getAccess());
|
|
} else {
|
|
OverloadCandidate &C = NonTemplateMatches.addCandidate();
|
|
C.FoundDecl = P.getPair();
|
|
C.Function = Method;
|
|
C.Viable = true;
|
|
ConstraintSatisfaction S;
|
|
if (Method->getTrailingRequiresClause() &&
|
|
(CheckFunctionConstraints(Method, S, D.getIdentifierLoc(),
|
|
/*ForOverloadResolution=*/true) ||
|
|
!S.IsSatisfied)) {
|
|
C.Viable = false;
|
|
C.FailureKind = ovl_fail_constraints_not_satisfied;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
|
|
if (!FunTmpl)
|
|
continue;
|
|
|
|
TemplateDeductionInfo Info(FailedTemplateCandidates.getLocation());
|
|
FunctionDecl *Specialization = nullptr;
|
|
if (TemplateDeductionResult TDK = DeduceTemplateArguments(
|
|
FunTmpl, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), R,
|
|
Specialization, Info);
|
|
TDK != TemplateDeductionResult::Success) {
|
|
// Keep track of almost-matches.
|
|
FailedTemplateCandidates.addCandidate().set(
|
|
P.getPair(), FunTmpl->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(Context, TDK, Info));
|
|
(void)TDK;
|
|
continue;
|
|
}
|
|
|
|
// Target attributes are part of the cuda function signature, so
|
|
// the cuda target of the instantiated function must match that of its
|
|
// template. Given that C++ template deduction does not take
|
|
// target attributes into account, we reject candidates here that
|
|
// have a different target.
|
|
if (LangOpts.CUDA &&
|
|
CUDA().IdentifyTarget(Specialization,
|
|
/* IgnoreImplicitHDAttr = */ true) !=
|
|
CUDA().IdentifyTarget(D.getDeclSpec().getAttributes())) {
|
|
FailedTemplateCandidates.addCandidate().set(
|
|
P.getPair(), FunTmpl->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(
|
|
Context, TemplateDeductionResult::CUDATargetMismatch, Info));
|
|
continue;
|
|
}
|
|
|
|
TemplateMatches.addDecl(Specialization, P.getAccess());
|
|
}
|
|
|
|
FunctionDecl *Specialization = nullptr;
|
|
if (!NonTemplateMatches.empty()) {
|
|
unsigned Msg = 0;
|
|
OverloadCandidateDisplayKind DisplayKind;
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (NonTemplateMatches.BestViableFunction(*this, D.getIdentifierLoc(),
|
|
Best)) {
|
|
case OR_Success:
|
|
case OR_Deleted:
|
|
Specialization = cast<FunctionDecl>(Best->Function);
|
|
break;
|
|
case OR_Ambiguous:
|
|
Msg = diag::err_explicit_instantiation_ambiguous;
|
|
DisplayKind = OCD_AmbiguousCandidates;
|
|
break;
|
|
case OR_No_Viable_Function:
|
|
Msg = diag::err_explicit_instantiation_no_candidate;
|
|
DisplayKind = OCD_AllCandidates;
|
|
break;
|
|
}
|
|
if (Msg) {
|
|
PartialDiagnostic Diag = PDiag(Msg) << Name;
|
|
NonTemplateMatches.NoteCandidates(
|
|
PartialDiagnosticAt(D.getIdentifierLoc(), Diag), *this, DisplayKind,
|
|
{});
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!Specialization) {
|
|
// Find the most specialized function template specialization.
|
|
UnresolvedSetIterator Result = getMostSpecialized(
|
|
TemplateMatches.begin(), TemplateMatches.end(),
|
|
FailedTemplateCandidates, D.getIdentifierLoc(),
|
|
PDiag(diag::err_explicit_instantiation_not_known) << Name,
|
|
PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
|
|
PDiag(diag::note_explicit_instantiation_candidate));
|
|
|
|
if (Result == TemplateMatches.end())
|
|
return true;
|
|
|
|
// Ignore access control bits, we don't need them for redeclaration checking.
|
|
Specialization = cast<FunctionDecl>(*Result);
|
|
}
|
|
|
|
// C++11 [except.spec]p4
|
|
// In an explicit instantiation an exception-specification may be specified,
|
|
// but is not required.
|
|
// If an exception-specification is specified in an explicit instantiation
|
|
// directive, it shall be compatible with the exception-specifications of
|
|
// other declarations of that function.
|
|
if (auto *FPT = R->getAs<FunctionProtoType>())
|
|
if (FPT->hasExceptionSpec()) {
|
|
unsigned DiagID =
|
|
diag::err_mismatched_exception_spec_explicit_instantiation;
|
|
if (getLangOpts().MicrosoftExt)
|
|
DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
|
|
bool Result = CheckEquivalentExceptionSpec(
|
|
PDiag(DiagID) << Specialization->getType(),
|
|
PDiag(diag::note_explicit_instantiation_here),
|
|
Specialization->getType()->getAs<FunctionProtoType>(),
|
|
Specialization->getLocation(), FPT, D.getBeginLoc());
|
|
// In Microsoft mode, mismatching exception specifications just cause a
|
|
// warning.
|
|
if (!getLangOpts().MicrosoftExt && Result)
|
|
return true;
|
|
}
|
|
|
|
if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_explicit_instantiation_member_function_not_instantiated)
|
|
<< Specialization
|
|
<< (Specialization->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitSpecialization);
|
|
Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
|
|
return true;
|
|
}
|
|
|
|
FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
|
|
if (!PrevDecl && Specialization->isThisDeclarationADefinition())
|
|
PrevDecl = Specialization;
|
|
|
|
if (PrevDecl) {
|
|
bool HasNoEffect = false;
|
|
if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
|
|
PrevDecl,
|
|
PrevDecl->getTemplateSpecializationKind(),
|
|
PrevDecl->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
|
|
// FIXME: We may still want to build some representation of this
|
|
// explicit specialization.
|
|
if (HasNoEffect)
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
// HACK: libc++ has a bug where it attempts to explicitly instantiate the
|
|
// functions
|
|
// valarray<size_t>::valarray(size_t) and
|
|
// valarray<size_t>::~valarray()
|
|
// that it declared to have internal linkage with the internal_linkage
|
|
// attribute. Ignore the explicit instantiation declaration in this case.
|
|
if (Specialization->hasAttr<InternalLinkageAttr>() &&
|
|
TSK == TSK_ExplicitInstantiationDeclaration) {
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
|
|
if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
|
|
RD->isInStdNamespace())
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
|
|
ProcessAPINotes(Specialization);
|
|
|
|
// In MSVC mode, dllimported explicit instantiation definitions are treated as
|
|
// instantiation declarations.
|
|
if (TSK == TSK_ExplicitInstantiationDefinition &&
|
|
Specialization->hasAttr<DLLImportAttr>() &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
TSK = TSK_ExplicitInstantiationDeclaration;
|
|
|
|
Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
|
|
|
|
if (Specialization->isDefined()) {
|
|
// Let the ASTConsumer know that this function has been explicitly
|
|
// instantiated now, and its linkage might have changed.
|
|
Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
|
|
} else if (TSK == TSK_ExplicitInstantiationDefinition)
|
|
InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// If the explicit instantiation is for a member function, a member class
|
|
// or a static data member of a class template specialization, the name of
|
|
// the class template specialization in the qualified-id for the member
|
|
// name shall be a simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
|
|
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
|
|
D.getCXXScopeSpec().isSet() &&
|
|
!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::ext_explicit_instantiation_without_qualified_id)
|
|
<< Specialization << D.getCXXScopeSpec().getRange();
|
|
|
|
CheckExplicitInstantiation(
|
|
*this,
|
|
FunTmpl ? (NamedDecl *)FunTmpl
|
|
: Specialization->getInstantiatedFromMemberFunction(),
|
|
D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
|
|
|
|
// FIXME: Create some kind of ExplicitInstantiationDecl here.
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
const CXXScopeSpec &SS,
|
|
const IdentifierInfo *Name,
|
|
SourceLocation TagLoc,
|
|
SourceLocation NameLoc) {
|
|
// This has to hold, because SS is expected to be defined.
|
|
assert(Name && "Expected a name in a dependent tag");
|
|
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
|
if (!NNS)
|
|
return true;
|
|
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
|
|
if (TUK == TagUseKind::Declaration || TUK == TagUseKind::Definition) {
|
|
Diag(NameLoc, diag::err_dependent_tag_decl)
|
|
<< (TUK == TagUseKind::Definition) << llvm::to_underlying(Kind)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
// Create the resulting type.
|
|
ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
|
|
QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
|
|
|
|
// Create type-source location information for this type.
|
|
TypeLocBuilder TLB;
|
|
DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
|
|
TL.setElaboratedKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(NameLoc);
|
|
return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
|
|
}
|
|
|
|
TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS,
|
|
const IdentifierInfo &II,
|
|
SourceLocation IdLoc,
|
|
ImplicitTypenameContext IsImplicitTypename) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
|
|
DiagCompat(TypenameLoc, diag_compat::typename_outside_of_template)
|
|
<< FixItHint::CreateRemoval(TypenameLoc);
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
TypeSourceInfo *TSI = nullptr;
|
|
QualType T =
|
|
CheckTypenameType((TypenameLoc.isValid() ||
|
|
IsImplicitTypename == ImplicitTypenameContext::Yes)
|
|
? ElaboratedTypeKeyword::Typename
|
|
: ElaboratedTypeKeyword::None,
|
|
TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
|
|
/*DeducedTSTContext=*/true);
|
|
if (T.isNull())
|
|
return true;
|
|
return CreateParsedType(T, TSI);
|
|
}
|
|
|
|
TypeResult
|
|
Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateIn, const IdentifierInfo *TemplateII,
|
|
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc) {
|
|
if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
|
|
Diag(TypenameLoc, getLangOpts().CPlusPlus11
|
|
? diag::compat_cxx11_typename_outside_of_template
|
|
: diag::compat_pre_cxx11_typename_outside_of_template)
|
|
<< FixItHint::CreateRemoval(TypenameLoc);
|
|
|
|
// Strangely, non-type results are not ignored by this lookup, so the
|
|
// program is ill-formed if it finds an injected-class-name.
|
|
if (TypenameLoc.isValid()) {
|
|
auto *LookupRD =
|
|
dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
|
|
if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
|
|
Diag(TemplateIILoc,
|
|
diag::ext_out_of_line_qualified_id_type_names_constructor)
|
|
<< TemplateII << 0 /*injected-class-name used as template name*/
|
|
<< (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
|
|
}
|
|
}
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
TemplateName Template = TemplateIn.get();
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
// Construct a dependent template specialization type.
|
|
assert(DTN && "dependent template has non-dependent name?");
|
|
assert(DTN->getQualifier() == SS.getScopeRep());
|
|
|
|
if (!DTN->getName().getIdentifier()) {
|
|
Diag(TemplateIILoc, diag::err_template_id_not_a_type) << Template;
|
|
NoteAllFoundTemplates(Template);
|
|
return true;
|
|
}
|
|
|
|
QualType T = Context.getDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword::Typename, *DTN, TemplateArgs.arguments());
|
|
|
|
// Create source-location information for this type.
|
|
TypeLocBuilder Builder;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= Builder.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setElaboratedKeywordLoc(TypenameLoc);
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateIILoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
// Provide source-location information for the template specialization type.
|
|
TypeLocBuilder Builder;
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= Builder.push<TemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateIILoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
|
|
T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename,
|
|
SS.getScopeRep(), T);
|
|
ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
|
|
TL.setElaboratedKeywordLoc(TypenameLoc);
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
|
|
TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
|
|
return CreateParsedType(T, TSI);
|
|
}
|
|
|
|
/// Determine whether this failed name lookup should be treated as being
|
|
/// disabled by a usage of std::enable_if.
|
|
static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
|
|
SourceRange &CondRange, Expr *&Cond) {
|
|
// We must be looking for a ::type...
|
|
if (!II.isStr("type"))
|
|
return false;
|
|
|
|
// ... within an explicitly-written template specialization...
|
|
if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
|
|
return false;
|
|
TypeLoc EnableIfTy = NNS.getTypeLoc();
|
|
TemplateSpecializationTypeLoc EnableIfTSTLoc =
|
|
EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
|
|
if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
|
|
return false;
|
|
const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
|
|
|
|
// ... which names a complete class template declaration...
|
|
const TemplateDecl *EnableIfDecl =
|
|
EnableIfTST->getTemplateName().getAsTemplateDecl();
|
|
if (!EnableIfDecl || EnableIfTST->isIncompleteType())
|
|
return false;
|
|
|
|
// ... called "enable_if".
|
|
const IdentifierInfo *EnableIfII =
|
|
EnableIfDecl->getDeclName().getAsIdentifierInfo();
|
|
if (!EnableIfII || !EnableIfII->isStr("enable_if"))
|
|
return false;
|
|
|
|
// Assume the first template argument is the condition.
|
|
CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
|
|
|
|
// Dig out the condition.
|
|
Cond = nullptr;
|
|
if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
|
|
!= TemplateArgument::Expression)
|
|
return true;
|
|
|
|
Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
|
|
|
|
// Ignore Boolean literals; they add no value.
|
|
if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
|
|
Cond = nullptr;
|
|
|
|
return true;
|
|
}
|
|
|
|
QualType
|
|
Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo &II,
|
|
SourceLocation IILoc,
|
|
TypeSourceInfo **TSI,
|
|
bool DeducedTSTContext) {
|
|
QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
|
|
DeducedTSTContext);
|
|
if (T.isNull())
|
|
return QualType();
|
|
|
|
*TSI = Context.CreateTypeSourceInfo(T);
|
|
if (isa<DependentNameType>(T)) {
|
|
DependentNameTypeLoc TL =
|
|
(*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(KeywordLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.setNameLoc(IILoc);
|
|
} else {
|
|
ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(KeywordLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
|
|
}
|
|
return T;
|
|
}
|
|
|
|
/// Build the type that describes a C++ typename specifier,
|
|
/// e.g., "typename T::type".
|
|
QualType
|
|
Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo &II,
|
|
SourceLocation IILoc, bool DeducedTSTContext) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
DeclContext *Ctx = nullptr;
|
|
if (QualifierLoc) {
|
|
Ctx = computeDeclContext(SS);
|
|
if (!Ctx) {
|
|
// If the nested-name-specifier is dependent and couldn't be
|
|
// resolved to a type, build a typename type.
|
|
assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
|
|
return Context.getDependentNameType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
&II);
|
|
}
|
|
|
|
// If the nested-name-specifier refers to the current instantiation,
|
|
// the "typename" keyword itself is superfluous. In C++03, the
|
|
// program is actually ill-formed. However, DR 382 (in C++0x CD1)
|
|
// allows such extraneous "typename" keywords, and we retroactively
|
|
// apply this DR to C++03 code with only a warning. In any case we continue.
|
|
|
|
if (RequireCompleteDeclContext(SS, Ctx))
|
|
return QualType();
|
|
}
|
|
|
|
DeclarationName Name(&II);
|
|
LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
|
|
if (Ctx)
|
|
LookupQualifiedName(Result, Ctx, SS);
|
|
else
|
|
LookupName(Result, CurScope);
|
|
unsigned DiagID = 0;
|
|
Decl *Referenced = nullptr;
|
|
switch (Result.getResultKind()) {
|
|
case LookupResult::NotFound: {
|
|
// If we're looking up 'type' within a template named 'enable_if', produce
|
|
// a more specific diagnostic.
|
|
SourceRange CondRange;
|
|
Expr *Cond = nullptr;
|
|
if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
|
|
// If we have a condition, narrow it down to the specific failed
|
|
// condition.
|
|
if (Cond) {
|
|
Expr *FailedCond;
|
|
std::string FailedDescription;
|
|
std::tie(FailedCond, FailedDescription) =
|
|
findFailedBooleanCondition(Cond);
|
|
|
|
Diag(FailedCond->getExprLoc(),
|
|
diag::err_typename_nested_not_found_requirement)
|
|
<< FailedDescription
|
|
<< FailedCond->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
Diag(CondRange.getBegin(),
|
|
diag::err_typename_nested_not_found_enable_if)
|
|
<< Ctx << CondRange;
|
|
return QualType();
|
|
}
|
|
|
|
DiagID = Ctx ? diag::err_typename_nested_not_found
|
|
: diag::err_unknown_typename;
|
|
break;
|
|
}
|
|
|
|
case LookupResult::FoundUnresolvedValue: {
|
|
// We found a using declaration that is a value. Most likely, the using
|
|
// declaration itself is meant to have the 'typename' keyword.
|
|
SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
|
|
IILoc);
|
|
Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
|
|
<< Name << Ctx << FullRange;
|
|
if (UnresolvedUsingValueDecl *Using
|
|
= dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
|
|
SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
|
|
Diag(Loc, diag::note_using_value_decl_missing_typename)
|
|
<< FixItHint::CreateInsertion(Loc, "typename ");
|
|
}
|
|
}
|
|
// Fall through to create a dependent typename type, from which we can recover
|
|
// better.
|
|
[[fallthrough]];
|
|
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
// Okay, it's a member of an unknown instantiation.
|
|
return Context.getDependentNameType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
&II);
|
|
|
|
case LookupResult::Found:
|
|
if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
|
|
// C++ [class.qual]p2:
|
|
// In a lookup in which function names are not ignored and the
|
|
// nested-name-specifier nominates a class C, if the name specified
|
|
// after the nested-name-specifier, when looked up in C, is the
|
|
// injected-class-name of C [...] then the name is instead considered
|
|
// to name the constructor of class C.
|
|
//
|
|
// Unlike in an elaborated-type-specifier, function names are not ignored
|
|
// in typename-specifier lookup. However, they are ignored in all the
|
|
// contexts where we form a typename type with no keyword (that is, in
|
|
// mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
|
|
//
|
|
// FIXME: That's not strictly true: mem-initializer-id lookup does not
|
|
// ignore functions, but that appears to be an oversight.
|
|
QualType T = getTypeDeclType(Ctx,
|
|
Keyword == ElaboratedTypeKeyword::Typename
|
|
? DiagCtorKind::Typename
|
|
: DiagCtorKind::None,
|
|
Type, IILoc);
|
|
// We found a type. Build an ElaboratedType, since the
|
|
// typename-specifier was just sugar.
|
|
return Context.getElaboratedType(
|
|
Keyword, QualifierLoc.getNestedNameSpecifier(), T);
|
|
}
|
|
|
|
// C++ [dcl.type.simple]p2:
|
|
// A type-specifier of the form
|
|
// typename[opt] nested-name-specifier[opt] template-name
|
|
// is a placeholder for a deduced class type [...].
|
|
if (getLangOpts().CPlusPlus17) {
|
|
if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
|
|
if (!DeducedTSTContext) {
|
|
QualType T(QualifierLoc
|
|
? QualifierLoc.getNestedNameSpecifier()->getAsType()
|
|
: nullptr, 0);
|
|
if (!T.isNull())
|
|
Diag(IILoc, diag::err_dependent_deduced_tst)
|
|
<< (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
|
|
else
|
|
Diag(IILoc, diag::err_deduced_tst)
|
|
<< (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
|
|
NoteTemplateLocation(*TD);
|
|
return QualType();
|
|
}
|
|
return Context.getElaboratedType(
|
|
Keyword, QualifierLoc.getNestedNameSpecifier(),
|
|
Context.getDeducedTemplateSpecializationType(TemplateName(TD),
|
|
QualType(), false));
|
|
}
|
|
}
|
|
|
|
DiagID = Ctx ? diag::err_typename_nested_not_type
|
|
: diag::err_typename_not_type;
|
|
Referenced = Result.getFoundDecl();
|
|
break;
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
DiagID = Ctx ? diag::err_typename_nested_not_type
|
|
: diag::err_typename_not_type;
|
|
Referenced = *Result.begin();
|
|
break;
|
|
|
|
case LookupResult::Ambiguous:
|
|
return QualType();
|
|
}
|
|
|
|
// If we get here, it's because name lookup did not find a
|
|
// type. Emit an appropriate diagnostic and return an error.
|
|
SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
|
|
IILoc);
|
|
if (Ctx)
|
|
Diag(IILoc, DiagID) << FullRange << Name << Ctx;
|
|
else
|
|
Diag(IILoc, DiagID) << FullRange << Name;
|
|
if (Referenced)
|
|
Diag(Referenced->getLocation(),
|
|
Ctx ? diag::note_typename_member_refers_here
|
|
: diag::note_typename_refers_here)
|
|
<< Name;
|
|
return QualType();
|
|
}
|
|
|
|
namespace {
|
|
// See Sema::RebuildTypeInCurrentInstantiation
|
|
class CurrentInstantiationRebuilder
|
|
: public TreeTransform<CurrentInstantiationRebuilder> {
|
|
SourceLocation Loc;
|
|
DeclarationName Entity;
|
|
|
|
public:
|
|
typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
|
|
|
|
CurrentInstantiationRebuilder(Sema &SemaRef,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity)
|
|
: TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
|
|
Loc(Loc), Entity(Entity) { }
|
|
|
|
/// Determine whether the given type \p T has already been
|
|
/// transformed.
|
|
///
|
|
/// For the purposes of type reconstruction, a type has already been
|
|
/// transformed if it is NULL or if it is not dependent.
|
|
bool AlreadyTransformed(QualType T) {
|
|
return T.isNull() || !T->isInstantiationDependentType();
|
|
}
|
|
|
|
/// Returns the location of the entity whose type is being
|
|
/// rebuilt.
|
|
SourceLocation getBaseLocation() { return Loc; }
|
|
|
|
/// Returns the name of the entity whose type is being rebuilt.
|
|
DeclarationName getBaseEntity() { return Entity; }
|
|
|
|
/// Sets the "base" location and entity when that
|
|
/// information is known based on another transformation.
|
|
void setBase(SourceLocation Loc, DeclarationName Entity) {
|
|
this->Loc = Loc;
|
|
this->Entity = Entity;
|
|
}
|
|
|
|
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
|
// Lambdas never need to be transformed.
|
|
return E;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
|
|
SourceLocation Loc,
|
|
DeclarationName Name) {
|
|
if (!T || !T->getType()->isInstantiationDependentType())
|
|
return T;
|
|
|
|
CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
|
|
return Rebuilder.TransformType(T);
|
|
}
|
|
|
|
ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
|
|
CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
|
|
DeclarationName());
|
|
return Rebuilder.TransformExpr(E);
|
|
}
|
|
|
|
bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
|
|
DeclarationName());
|
|
NestedNameSpecifierLoc Rebuilt
|
|
= Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
|
|
if (!Rebuilt)
|
|
return true;
|
|
|
|
SS.Adopt(Rebuilt);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::RebuildTemplateParamsInCurrentInstantiation(
|
|
TemplateParameterList *Params) {
|
|
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
|
|
Decl *Param = Params->getParam(I);
|
|
|
|
// There is nothing to rebuild in a type parameter.
|
|
if (isa<TemplateTypeParmDecl>(Param))
|
|
continue;
|
|
|
|
// Rebuild the template parameter list of a template template parameter.
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Param)) {
|
|
if (RebuildTemplateParamsInCurrentInstantiation(
|
|
TTP->getTemplateParameters()))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Rebuild the type of a non-type template parameter.
|
|
NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
|
|
TypeSourceInfo *NewTSI
|
|
= RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
|
|
NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
if (!NewTSI)
|
|
return true;
|
|
|
|
if (NewTSI->getType()->isUndeducedType()) {
|
|
// C++17 [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains
|
|
// - an identifier associated by name lookup with a non-type
|
|
// template-parameter declared with a type that contains a
|
|
// placeholder type (7.1.7.4),
|
|
NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
|
|
}
|
|
|
|
if (NewTSI != NTTP->getTypeSourceInfo()) {
|
|
NTTP->setTypeSourceInfo(NewTSI);
|
|
NTTP->setType(NewTSI->getType());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::string
|
|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgumentList &Args) {
|
|
return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
|
|
}
|
|
|
|
std::string
|
|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs) {
|
|
SmallString<128> Str;
|
|
llvm::raw_svector_ostream Out(Str);
|
|
|
|
if (!Params || Params->size() == 0 || NumArgs == 0)
|
|
return std::string();
|
|
|
|
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
|
|
if (I >= NumArgs)
|
|
break;
|
|
|
|
if (I == 0)
|
|
Out << "[with ";
|
|
else
|
|
Out << ", ";
|
|
|
|
if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
|
|
Out << Id->getName();
|
|
} else {
|
|
Out << '$' << I;
|
|
}
|
|
|
|
Out << " = ";
|
|
Args[I].print(getPrintingPolicy(), Out,
|
|
TemplateParameterList::shouldIncludeTypeForArgument(
|
|
getPrintingPolicy(), Params, I));
|
|
}
|
|
|
|
Out << ']';
|
|
return std::string(Out.str());
|
|
}
|
|
|
|
void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
|
|
CachedTokens &Toks) {
|
|
if (!FD)
|
|
return;
|
|
|
|
auto LPT = std::make_unique<LateParsedTemplate>();
|
|
|
|
// Take tokens to avoid allocations
|
|
LPT->Toks.swap(Toks);
|
|
LPT->D = FnD;
|
|
LPT->FPO = getCurFPFeatures();
|
|
LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
|
|
|
|
FD->setLateTemplateParsed(true);
|
|
}
|
|
|
|
void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
|
|
if (!FD)
|
|
return;
|
|
FD->setLateTemplateParsed(false);
|
|
}
|
|
|
|
bool Sema::IsInsideALocalClassWithinATemplateFunction() {
|
|
DeclContext *DC = CurContext;
|
|
|
|
while (DC) {
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
|
|
const FunctionDecl *FD = RD->isLocalClass();
|
|
return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
|
|
} else if (DC->isTranslationUnit() || DC->isNamespace())
|
|
return false;
|
|
|
|
DC = DC->getParent();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// Walk the path from which a declaration was instantiated, and check
|
|
/// that every explicit specialization along that path is visible. This enforces
|
|
/// C++ [temp.expl.spec]/6:
|
|
///
|
|
/// If a template, a member template or a member of a class template is
|
|
/// explicitly specialized then that specialization shall be declared before
|
|
/// the first use of that specialization that would cause an implicit
|
|
/// instantiation to take place, in every translation unit in which such a
|
|
/// use occurs; no diagnostic is required.
|
|
///
|
|
/// and also C++ [temp.class.spec]/1:
|
|
///
|
|
/// A partial specialization shall be declared before the first use of a
|
|
/// class template specialization that would make use of the partial
|
|
/// specialization as the result of an implicit or explicit instantiation
|
|
/// in every translation unit in which such a use occurs; no diagnostic is
|
|
/// required.
|
|
class ExplicitSpecializationVisibilityChecker {
|
|
Sema &S;
|
|
SourceLocation Loc;
|
|
llvm::SmallVector<Module *, 8> Modules;
|
|
Sema::AcceptableKind Kind;
|
|
|
|
public:
|
|
ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
|
|
Sema::AcceptableKind Kind)
|
|
: S(S), Loc(Loc), Kind(Kind) {}
|
|
|
|
void check(NamedDecl *ND) {
|
|
if (auto *FD = dyn_cast<FunctionDecl>(ND))
|
|
return checkImpl(FD);
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
|
|
return checkImpl(RD);
|
|
if (auto *VD = dyn_cast<VarDecl>(ND))
|
|
return checkImpl(VD);
|
|
if (auto *ED = dyn_cast<EnumDecl>(ND))
|
|
return checkImpl(ED);
|
|
}
|
|
|
|
private:
|
|
void diagnose(NamedDecl *D, bool IsPartialSpec) {
|
|
auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
|
|
: Sema::MissingImportKind::ExplicitSpecialization;
|
|
const bool Recover = true;
|
|
|
|
// If we got a custom set of modules (because only a subset of the
|
|
// declarations are interesting), use them, otherwise let
|
|
// diagnoseMissingImport intelligently pick some.
|
|
if (Modules.empty())
|
|
S.diagnoseMissingImport(Loc, D, Kind, Recover);
|
|
else
|
|
S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
|
|
}
|
|
|
|
bool CheckMemberSpecialization(const NamedDecl *D) {
|
|
return Kind == Sema::AcceptableKind::Visible
|
|
? S.hasVisibleMemberSpecialization(D)
|
|
: S.hasReachableMemberSpecialization(D);
|
|
}
|
|
|
|
bool CheckExplicitSpecialization(const NamedDecl *D) {
|
|
return Kind == Sema::AcceptableKind::Visible
|
|
? S.hasVisibleExplicitSpecialization(D)
|
|
: S.hasReachableExplicitSpecialization(D);
|
|
}
|
|
|
|
bool CheckDeclaration(const NamedDecl *D) {
|
|
return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
|
|
: S.hasReachableDeclaration(D);
|
|
}
|
|
|
|
// Check a specific declaration. There are three problematic cases:
|
|
//
|
|
// 1) The declaration is an explicit specialization of a template
|
|
// specialization.
|
|
// 2) The declaration is an explicit specialization of a member of an
|
|
// templated class.
|
|
// 3) The declaration is an instantiation of a template, and that template
|
|
// is an explicit specialization of a member of a templated class.
|
|
//
|
|
// We don't need to go any deeper than that, as the instantiation of the
|
|
// surrounding class / etc is not triggered by whatever triggered this
|
|
// instantiation, and thus should be checked elsewhere.
|
|
template<typename SpecDecl>
|
|
void checkImpl(SpecDecl *Spec) {
|
|
bool IsHiddenExplicitSpecialization = false;
|
|
if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
|
|
IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
|
|
? !CheckMemberSpecialization(Spec)
|
|
: !CheckExplicitSpecialization(Spec);
|
|
} else {
|
|
checkInstantiated(Spec);
|
|
}
|
|
|
|
if (IsHiddenExplicitSpecialization)
|
|
diagnose(Spec->getMostRecentDecl(), false);
|
|
}
|
|
|
|
void checkInstantiated(FunctionDecl *FD) {
|
|
if (auto *TD = FD->getPrimaryTemplate())
|
|
checkTemplate(TD);
|
|
}
|
|
|
|
void checkInstantiated(CXXRecordDecl *RD) {
|
|
auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
|
|
if (!SD)
|
|
return;
|
|
|
|
auto From = SD->getSpecializedTemplateOrPartial();
|
|
if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
|
|
checkTemplate(TD);
|
|
else if (auto *TD =
|
|
From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
|
|
if (!CheckDeclaration(TD))
|
|
diagnose(TD, true);
|
|
checkTemplate(TD);
|
|
}
|
|
}
|
|
|
|
void checkInstantiated(VarDecl *RD) {
|
|
auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
|
|
if (!SD)
|
|
return;
|
|
|
|
auto From = SD->getSpecializedTemplateOrPartial();
|
|
if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
|
|
checkTemplate(TD);
|
|
else if (auto *TD =
|
|
From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
|
|
if (!CheckDeclaration(TD))
|
|
diagnose(TD, true);
|
|
checkTemplate(TD);
|
|
}
|
|
}
|
|
|
|
void checkInstantiated(EnumDecl *FD) {}
|
|
|
|
template<typename TemplDecl>
|
|
void checkTemplate(TemplDecl *TD) {
|
|
if (TD->isMemberSpecialization()) {
|
|
if (!CheckMemberSpecialization(TD))
|
|
diagnose(TD->getMostRecentDecl(), false);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
|
|
if (!getLangOpts().Modules)
|
|
return;
|
|
|
|
ExplicitSpecializationVisibilityChecker(*this, Loc,
|
|
Sema::AcceptableKind::Visible)
|
|
.check(Spec);
|
|
}
|
|
|
|
void Sema::checkSpecializationReachability(SourceLocation Loc,
|
|
NamedDecl *Spec) {
|
|
if (!getLangOpts().CPlusPlusModules)
|
|
return checkSpecializationVisibility(Loc, Spec);
|
|
|
|
ExplicitSpecializationVisibilityChecker(*this, Loc,
|
|
Sema::AcceptableKind::Reachable)
|
|
.check(Spec);
|
|
}
|
|
|
|
SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const {
|
|
if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty())
|
|
return N->getLocation();
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(N)) {
|
|
if (!FD->isFunctionTemplateSpecialization())
|
|
return FD->getLocation();
|
|
} else if (!isa<ClassTemplateSpecializationDecl,
|
|
VarTemplateSpecializationDecl>(N)) {
|
|
return N->getLocation();
|
|
}
|
|
for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) {
|
|
if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid())
|
|
continue;
|
|
return CSC.PointOfInstantiation;
|
|
}
|
|
return N->getLocation();
|
|
}
|