Andrea Di Biagio 9da4d6db33 [MC][Tablegen] Allow the definition of processor register files in the scheduling model for llvm-mca
This patch allows the description of register files in processor scheduling
models. This addresses PR36662.

A new tablegen class named 'RegisterFile' has been added to TargetSchedule.td.
Targets can optionally describe register files for their processors using that
class. In particular, class RegisterFile allows to specify:
 - The total number of physical registers.
 - Which target registers are accessible through the register file.
 - The cost of allocating a register at register renaming stage.

Example (from this patch - see file X86/X86ScheduleBtVer2.td)

  def FpuPRF : RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2]>

Here, FpuPRF describes a register file for MMX/XMM/YMM registers. On Jaguar
(btver2), a YMM register definition consumes 2 physical registers, while MMX/XMM
register definitions only cost 1 physical register.

The syntax allows to specify an empty set of register classes.  An empty set of
register classes means: this register file models all the registers specified by
the Target.  For each register class, users can specify an optional register
cost. By default, register costs default to 1.  A value of 0 for the number of
physical registers means: "this register file has an unbounded number of
physical registers".

This patch is structured in two parts.

* Part 1 - MC/Tablegen *

A first part adds the tablegen definition of RegisterFile, and teaches the
SubtargetEmitter how to emit information related to register files.

Information about register files is accessible through an instance of
MCExtraProcessorInfo.
The idea behind this design is to logically partition the processor description
which is only used by external tools (like llvm-mca) from the processor
information used by the llvm machine schedulers.
I think that this design would make easier for targets to get rid of the extra
processor information if they don't want it.

* Part 2 - llvm-mca related *

The second part of this patch is related to changes to llvm-mca.

The main differences are:
 1) class RegisterFile now needs to take into account the "cost of a register"
when allocating physical registers at register renaming stage.
 2) Point 1. triggered a minor refactoring which lef to the removal of the
"maximum 32 register files" restriction.
 3) The BackendStatistics view has been updated so that we can print out extra
details related to each register file implemented by the processor.

The effect of point 3. is also visible in tests register-files-[1..5].s.

Differential Revision: https://reviews.llvm.org/D44980

llvm-svn: 329067
2018-04-03 13:36:24 +00:00

440 lines
16 KiB
C++

//===--------------------- Dispatch.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements methods declared by class RegisterFile, DispatchUnit
/// and RetireControlUnit.
///
//===----------------------------------------------------------------------===//
#include "Dispatch.h"
#include "Backend.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
namespace mca {
void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) {
// Create a default register file that "sees" all the machine registers
// declared by the target. The number of physical registers in the default
// register file is set equal to `NumRegs`. A value of zero for `NumRegs`
// means: this register file has an unbounded number of physical registers.
addRegisterFile({} /* all registers */, NumRegs);
if (!SM.hasExtraProcessorInfo())
return;
// For each user defined register file, allocate a RegisterMappingTracker
// object. The size of every register file, as well as the mapping between
// register files and register classes is specified via tablegen.
const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo();
for (unsigned I = 0, E = Info.NumRegisterFiles; I < E; ++I) {
const MCRegisterFileDesc &RF = Info.RegisterFiles[I];
// Skip invalid register files with zero physical registers.
unsigned Length = RF.NumRegisterCostEntries;
if (!RF.NumPhysRegs)
continue;
// The cost of a register definition is equivalent to the number of
// physical registers that are allocated at register renaming stage.
const MCRegisterCostEntry *FirstElt =
&Info.RegisterCostTable[RF.RegisterCostEntryIdx];
addRegisterFile(ArrayRef<MCRegisterCostEntry>(FirstElt, Length),
RF.NumPhysRegs);
}
}
void RegisterFile::addRegisterFile(ArrayRef<MCRegisterCostEntry> Entries,
unsigned NumPhysRegs) {
// A default register file is always allocated at index #0. That register file
// is mainly used to count the total number of mappings created by all
// register files at runtime. Users can limit the number of available physical
// registers in register file #0 through the command line flag
// `-register-file-size`.
unsigned RegisterFileIndex = RegisterFiles.size();
RegisterFiles.emplace_back(NumPhysRegs);
// Special case where there is no register class identifier in the set.
// An empty set of register classes means: this register file contains all
// the physical registers specified by the target.
if (Entries.empty()) {
for (std::pair<WriteState *, IndexPlusCostPairTy> &Mapping : RegisterMappings)
Mapping.second = std::make_pair(RegisterFileIndex, 1U);
return;
}
// Now update the cost of individual registers.
for (const MCRegisterCostEntry &RCE : Entries) {
const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID);
for (const MCPhysReg Reg : RC) {
IndexPlusCostPairTy &Entry = RegisterMappings[Reg].second;
if (Entry.first) {
// The only register file that is allowed to overlap is the default
// register file at index #0. The analysis is inaccurate if register
// files overlap.
errs() << "warning: register " << MRI.getName(Reg)
<< " defined in multiple register files.";
}
Entry.first = RegisterFileIndex;
Entry.second = RCE.Cost;
}
}
}
void RegisterFile::createNewMappings(IndexPlusCostPairTy Entry,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegisterFileIndex = Entry.first;
unsigned Cost = Entry.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedMappings += Cost;
UsedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedMappings += Cost;
UsedPhysRegs[0] += Cost;
}
void RegisterFile::removeMappings(IndexPlusCostPairTy Entry,
MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegisterFileIndex = Entry.first;
unsigned Cost = Entry.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedMappings -= Cost;
FreedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedMappings -= Cost;
FreedPhysRegs[0] += Cost;
}
void RegisterFile::addRegisterMapping(WriteState &WS,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegID = WS.getRegisterID();
assert(RegID && "Adding an invalid register definition?");
RegisterMapping &Mapping = RegisterMappings[RegID];
Mapping.first = &WS;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I].first = &WS;
createNewMappings(Mapping.second, UsedPhysRegs);
// If this is a partial update, then we are done.
if (!WS.fullyUpdatesSuperRegs())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I].first = &WS;
}
void RegisterFile::invalidateRegisterMapping(
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegID = WS.getRegisterID();
bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs();
assert(RegID != 0 && "Invalidating an already invalid register?");
assert(WS.getCyclesLeft() != -512 &&
"Invalidating a write of unknown cycles!");
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
RegisterMapping &Mapping = RegisterMappings[RegID];
if (!Mapping.first)
return;
removeMappings(Mapping.second, FreedPhysRegs);
if (Mapping.first == &WS)
Mapping.first = nullptr;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I].first == &WS)
RegisterMappings[*I].first = nullptr;
if (!ShouldInvalidateSuperRegs)
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I].first == &WS)
RegisterMappings[*I].first = nullptr;
}
void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes,
unsigned RegID) const {
assert(RegID && RegID < RegisterMappings.size());
WriteState *WS = RegisterMappings[RegID].first;
if (WS) {
DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n');
Writes.push_back(WS);
}
// Handle potential partial register updates.
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WS = RegisterMappings[*I].first;
if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) {
DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of "
<< RegID << ")\n");
Writes.push_back(WS);
}
}
}
unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles());
// Find how many new mappings must be created for each register file.
for (const unsigned RegID : Regs) {
const IndexPlusCostPairTy &Entry = RegisterMappings[RegID].second;
if (Entry.first)
NumPhysRegs[Entry.first] += Entry.second;
NumPhysRegs[0] += Entry.second;
}
unsigned Response = 0;
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
unsigned NumRegs = NumPhysRegs[I];
if (!NumRegs)
continue;
const RegisterMappingTracker &RMT = RegisterFiles[I];
if (!RMT.TotalMappings) {
// The register file has an unbounded number of microarchitectural
// registers.
continue;
}
if (RMT.TotalMappings < NumRegs) {
// The current register file is too small. This may occur if the number of
// microarchitectural registers in register file #0 was changed by the
// users via flag -reg-file-size. Alternatively, the scheduling model
// specified a too small number of registers for this register file.
report_fatal_error(
"Not enough microarchitectural registers in the register file");
}
if (RMT.TotalMappings < (RMT.NumUsedMappings + NumRegs))
Response |= (1U << I);
}
return Response;
}
#ifndef NDEBUG
void RegisterFile::dump() const {
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
const RegisterMapping &RM = RegisterMappings[I];
dbgs() << MRI.getName(I) << ", " << I << ", Map=" << RM.second.first
<< ", ";
if (RM.first)
RM.first->dump();
else
dbgs() << "(null)\n";
}
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
dbgs() << "Register File #" << I;
const RegisterMappingTracker &RMT = RegisterFiles[I];
dbgs() << "\n TotalMappings: " << RMT.TotalMappings
<< "\n NumUsedMappings: " << RMT.NumUsedMappings << '\n';
}
}
#endif
// Reserves a number of slots, and returns a new token.
unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) {
assert(isAvailable(NumMicroOps));
unsigned NormalizedQuantity =
std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
// Zero latency instructions may have zero mOps. Artificially bump this
// value to 1. Although zero latency instructions don't consume scheduler
// resources, they still consume one slot in the retire queue.
NormalizedQuantity = std::max(NormalizedQuantity, 1U);
unsigned TokenID = NextAvailableSlotIdx;
Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false};
NextAvailableSlotIdx += NormalizedQuantity;
NextAvailableSlotIdx %= Queue.size();
AvailableSlots -= NormalizedQuantity;
return TokenID;
}
void DispatchUnit::notifyInstructionDispatched(unsigned Index,
ArrayRef<unsigned> UsedRegs) {
DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n');
Owner->notifyInstructionEvent(HWInstructionDispatchedEvent(Index, UsedRegs));
}
void DispatchUnit::notifyInstructionRetired(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n');
const Instruction &IS = Owner->getInstruction(Index);
SmallVector<unsigned, 4> FreedRegs(RAT->getNumRegisterFiles());
for (const std::unique_ptr<WriteState> &WS : IS.getDefs())
RAT->invalidateRegisterMapping(*WS.get(), FreedRegs);
Owner->notifyInstructionEvent(HWInstructionRetiredEvent(Index, FreedRegs));
Owner->eraseInstruction(Index);
}
void RetireControlUnit::cycleEvent() {
if (isEmpty())
return;
unsigned NumRetired = 0;
while (!isEmpty()) {
if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle)
break;
RUToken &Current = Queue[CurrentInstructionSlotIdx];
assert(Current.NumSlots && "Reserved zero slots?");
if (!Current.Executed)
break;
Owner->notifyInstructionRetired(Current.Index);
CurrentInstructionSlotIdx += Current.NumSlots;
CurrentInstructionSlotIdx %= Queue.size();
AvailableSlots += Current.NumSlots;
NumRetired++;
}
}
void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
assert(Queue.size() > TokenID);
assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U);
Queue[TokenID].Executed = true;
}
#ifndef NDEBUG
void RetireControlUnit::dump() const {
dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
<< ", Available Slots=" << AvailableSlots << " }\n";
}
#endif
bool DispatchUnit::checkRAT(unsigned Index, const Instruction &Instr) {
SmallVector<unsigned, 4> RegDefs;
for (const std::unique_ptr<WriteState> &RegDef : Instr.getDefs())
RegDefs.emplace_back(RegDef->getRegisterID());
unsigned RegisterMask = RAT->isAvailable(RegDefs);
// A mask with all zeroes means: register files are available.
if (RegisterMask) {
Owner->notifyStallEvent(
HWStallEvent(HWStallEvent::RegisterFileStall, Index));
return false;
}
return true;
}
bool DispatchUnit::checkRCU(unsigned Index, const InstrDesc &Desc) {
unsigned NumMicroOps = Desc.NumMicroOps;
if (RCU->isAvailable(NumMicroOps))
return true;
Owner->notifyStallEvent(
HWStallEvent(HWStallEvent::RetireControlUnitStall, Index));
return false;
}
bool DispatchUnit::checkScheduler(unsigned Index, const InstrDesc &Desc) {
// If this is a zero-latency instruction, then it bypasses
// the scheduler.
HWStallEvent::GenericEventType Type = HWStallEvent::Invalid;
switch (SC->canBeDispatched(Desc)) {
case Scheduler::HWS_AVAILABLE:
return true;
case Scheduler::HWS_QUEUE_UNAVAILABLE:
Type = HWStallEvent::SchedulerQueueFull;
break;
case Scheduler::HWS_LD_QUEUE_UNAVAILABLE:
Type = HWStallEvent::LoadQueueFull;
break;
case Scheduler::HWS_ST_QUEUE_UNAVAILABLE:
Type = HWStallEvent::StoreQueueFull;
break;
case Scheduler::HWS_DISPATCH_GROUP_RESTRICTION:
Type = HWStallEvent::DispatchGroupStall;
}
Owner->notifyStallEvent(HWStallEvent(Type, Index));
return false;
}
void DispatchUnit::updateRAWDependencies(ReadState &RS,
const MCSubtargetInfo &STI) {
SmallVector<WriteState *, 4> DependentWrites;
collectWrites(DependentWrites, RS.getRegisterID());
RS.setDependentWrites(DependentWrites.size());
DEBUG(dbgs() << "Found " << DependentWrites.size() << " dependent writes\n");
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
if (!RD.HasReadAdvanceEntries) {
for (WriteState *WS : DependentWrites)
WS->addUser(&RS, /* ReadAdvance */ 0);
return;
}
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteState *WS : DependentWrites) {
unsigned WriteResID = WS->getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS->addUser(&RS, ReadAdvance);
}
// Prepare the set for another round.
DependentWrites.clear();
}
void DispatchUnit::dispatch(unsigned IID, Instruction *NewInst,
const MCSubtargetInfo &STI) {
assert(!CarryOver && "Cannot dispatch another instruction!");
unsigned NumMicroOps = NewInst->getDesc().NumMicroOps;
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// Update RAW dependencies.
for (std::unique_ptr<ReadState> &RS : NewInst->getUses())
updateRAWDependencies(*RS, STI);
// Allocate new mappings.
SmallVector<unsigned, 4> RegisterFiles(RAT->getNumRegisterFiles());
for (std::unique_ptr<WriteState> &WS : NewInst->getDefs())
RAT->addRegisterMapping(*WS, RegisterFiles);
// Reserve slots in the RCU, and notify the instruction that it has been
// dispatched to the schedulers for execution.
NewInst->dispatch(RCU->reserveSlot(IID, NumMicroOps));
// Notify listeners of the "instruction dispatched" event.
notifyInstructionDispatched(IID, RegisterFiles);
// Now move the instruction into the scheduler's queue.
// The scheduler is responsible for checking if this is a zero-latency
// instruction that doesn't consume pipeline/scheduler resources.
SC->scheduleInstruction(IID, *NewInst);
}
#ifndef NDEBUG
void DispatchUnit::dump() const {
RAT->dump();
RCU->dump();
}
#endif
} // namespace mca