mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-13 20:36:05 +00:00

until I figure out why the build is failing or timing out *************************** Summary: The prior diff had to be reverted because there were two tests that failed. I updated the two tests in this diff clang/test/Misc/pragma-attribute-supported-attributes-list.test clang/test/SemaCXX/attr-speculative-load-hardening.cpp LLVM IR already has an attribute for speculative_load_hardening. Before this commit, when a user passed the -mspeculative-load-hardening flag to Clang, every function would have this attribute added to it. This Clang attribute will allow users to opt into SLH on a function by function basis. This can be applied to functions and Objective C methods. Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D54915 This reverts commit a5b3c232d1e3613f23efbc3960f8e23ea70f2a79. (r347617) llvm-svn: 347628
IRgen optimization opportunities. //===---------------------------------------------------------------------===// The common pattern of -- short x; // or char, etc (x == 10) -- generates an zext/sext of x which can easily be avoided. //===---------------------------------------------------------------------===// Bitfields accesses can be shifted to simplify masking and sign extension. For example, if the bitfield width is 8 and it is appropriately aligned then is is a lot shorter to just load the char directly. //===---------------------------------------------------------------------===// It may be worth avoiding creation of alloca's for formal arguments for the common situation where the argument is never written to or has its address taken. The idea would be to begin generating code by using the argument directly and if its address is taken or it is stored to then generate the alloca and patch up the existing code. In theory, the same optimization could be a win for block local variables as long as the declaration dominates all statements in the block. NOTE: The main case we care about this for is for -O0 -g compile time performance, and in that scenario we will need to emit the alloca anyway currently to emit proper debug info. So this is blocked by being able to emit debug information which refers to an LLVM temporary, not an alloca. //===---------------------------------------------------------------------===// We should try and avoid generating basic blocks which only contain jumps. At -O0, this penalizes us all the way from IRgen (malloc & instruction overhead), all the way down through code generation and assembly time. On 176.gcc:expr.ll, it looks like over 12% of basic blocks are just direct branches! //===---------------------------------------------------------------------===//