mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 13:46:07 +00:00

In accordance with https://github.com/llvm/llvm-project/issues/123569 In order to keep the patch at reasonable size, this PR only covers for the llvm subproject, unittests excluded.
446 lines
17 KiB
C++
446 lines
17 KiB
C++
//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Assembler.h"
|
|
|
|
#include "SnippetRepetitor.h"
|
|
#include "SubprocessMemory.h"
|
|
#include "Target.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/Object/SymbolSize.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#ifdef HAVE_LIBPFM
|
|
#include "perfmon/perf_event.h"
|
|
#endif // HAVE_LIBPFM
|
|
|
|
#ifdef __linux__
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
namespace llvm {
|
|
namespace exegesis {
|
|
|
|
static constexpr const char ModuleID[] = "ExegesisInfoTest";
|
|
static constexpr const char FunctionID[] = "foo";
|
|
static const Align kFunctionAlignment(4096);
|
|
|
|
// Fills the given basic block with register setup code, and returns true if
|
|
// all registers could be setup correctly.
|
|
static bool generateSnippetSetupCode(const ExegesisTarget &ET,
|
|
const MCSubtargetInfo *const MSI,
|
|
BasicBlockFiller &BBF,
|
|
const BenchmarkKey &Key,
|
|
bool GenerateMemoryInstructions) {
|
|
bool IsSnippetSetupComplete = true;
|
|
if (GenerateMemoryInstructions) {
|
|
BBF.addInstructions(ET.generateMemoryInitialSetup());
|
|
for (const MemoryMapping &MM : Key.MemoryMappings) {
|
|
#ifdef __linux__
|
|
// The frontend that generates that parses the memory mapping information
|
|
// from the user should validate that the requested address is a multiple
|
|
// of the page size. Assert that this is true here.
|
|
assert(MM.Address % getpagesize() == 0 &&
|
|
"Memory mappings need to be aligned to page boundaries.");
|
|
#endif
|
|
BBF.addInstructions(ET.generateMmap(
|
|
MM.Address, Key.MemoryValues.at(MM.MemoryValueName).SizeBytes,
|
|
ET.getAuxiliaryMemoryStartAddress() +
|
|
sizeof(int) * (Key.MemoryValues.at(MM.MemoryValueName).Index +
|
|
SubprocessMemory::AuxiliaryMemoryOffset)));
|
|
}
|
|
BBF.addInstructions(ET.setStackRegisterToAuxMem());
|
|
}
|
|
Register StackPointerRegister = BBF.MF.getSubtarget()
|
|
.getTargetLowering()
|
|
->getStackPointerRegisterToSaveRestore();
|
|
for (const RegisterValue &RV : Key.RegisterInitialValues) {
|
|
if (GenerateMemoryInstructions) {
|
|
// If we're generating memory instructions, don't load in the value for
|
|
// the register with the stack pointer as it will be used later to finish
|
|
// the setup.
|
|
if (Register(RV.Register) == StackPointerRegister)
|
|
continue;
|
|
}
|
|
// Load a constant in the register.
|
|
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
|
|
if (SetRegisterCode.empty())
|
|
IsSnippetSetupComplete = false;
|
|
BBF.addInstructions(SetRegisterCode);
|
|
}
|
|
if (GenerateMemoryInstructions) {
|
|
#ifdef HAVE_LIBPFM
|
|
BBF.addInstructions(ET.configurePerfCounter(PERF_EVENT_IOC_RESET, true));
|
|
#endif // HAVE_LIBPFM
|
|
for (const RegisterValue &RV : Key.RegisterInitialValues) {
|
|
// Load in the stack register now as we're done using it elsewhere
|
|
// and need to set the value in preparation for executing the
|
|
// snippet.
|
|
if (Register(RV.Register) != StackPointerRegister)
|
|
continue;
|
|
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
|
|
if (SetRegisterCode.empty())
|
|
IsSnippetSetupComplete = false;
|
|
BBF.addInstructions(SetRegisterCode);
|
|
break;
|
|
}
|
|
}
|
|
return IsSnippetSetupComplete;
|
|
}
|
|
|
|
// Small utility function to add named passes.
|
|
static bool addPass(PassManagerBase &PM, StringRef PassName,
|
|
TargetPassConfig &TPC) {
|
|
const PassRegistry *PR = PassRegistry::getPassRegistry();
|
|
const PassInfo *PI = PR->getPassInfo(PassName);
|
|
if (!PI) {
|
|
errs() << " run-pass " << PassName << " is not registered.\n";
|
|
return true;
|
|
}
|
|
|
|
if (!PI->getNormalCtor()) {
|
|
errs() << " cannot create pass: " << PI->getPassName() << "\n";
|
|
return true;
|
|
}
|
|
Pass *P = PI->getNormalCtor()();
|
|
std::string Banner = std::string("After ") + std::string(P->getPassName());
|
|
PM.add(P);
|
|
TPC.printAndVerify(Banner);
|
|
|
|
return false;
|
|
}
|
|
|
|
MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionName,
|
|
Module *Module,
|
|
MachineModuleInfo *MMI) {
|
|
Type *const ReturnType = Type::getInt32Ty(Module->getContext());
|
|
Type *const MemParamType =
|
|
PointerType::get(Module->getContext(), 0 /*default address space*/);
|
|
FunctionType *FunctionType =
|
|
FunctionType::get(ReturnType, {MemParamType}, false);
|
|
Function *const F = Function::Create(
|
|
FunctionType, GlobalValue::ExternalLinkage, FunctionName, Module);
|
|
BasicBlock *BB = BasicBlock::Create(Module->getContext(), "", F);
|
|
new UnreachableInst(Module->getContext(), BB);
|
|
return MMI->getOrCreateMachineFunction(*F);
|
|
}
|
|
|
|
BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
|
|
const MCInstrInfo *MCII)
|
|
: MF(MF), MBB(MBB), MCII(MCII) {}
|
|
|
|
void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
|
|
const unsigned Opcode = Inst.getOpcode();
|
|
const MCInstrDesc &MCID = MCII->get(Opcode);
|
|
MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
|
|
for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
|
|
++OpIndex) {
|
|
const MCOperand &Op = Inst.getOperand(OpIndex);
|
|
if (Op.isReg()) {
|
|
const bool IsDef = OpIndex < MCID.getNumDefs();
|
|
unsigned Flags = 0;
|
|
const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
|
|
if (IsDef && !OpInfo.isOptionalDef())
|
|
Flags |= RegState::Define;
|
|
Builder.addReg(Op.getReg(), Flags);
|
|
} else if (Op.isImm()) {
|
|
Builder.addImm(Op.getImm());
|
|
} else if (!Op.isValid()) {
|
|
llvm_unreachable("Operand is not set");
|
|
} else {
|
|
llvm_unreachable("Not yet implemented");
|
|
}
|
|
}
|
|
}
|
|
|
|
void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
|
|
const DebugLoc &DL) {
|
|
for (const MCInst &Inst : Insts)
|
|
addInstruction(Inst, DL);
|
|
}
|
|
|
|
void BasicBlockFiller::addReturn(const ExegesisTarget &ET,
|
|
bool SubprocessCleanup, const DebugLoc &DL) {
|
|
// Insert cleanup code
|
|
if (SubprocessCleanup) {
|
|
#ifdef HAVE_LIBPFM
|
|
addInstructions(ET.configurePerfCounter(PERF_EVENT_IOC_DISABLE, false));
|
|
#endif // HAVE_LIBPFM
|
|
#ifdef __linux__
|
|
addInstructions(ET.generateExitSyscall(0));
|
|
#endif // __linux__
|
|
}
|
|
// Insert the return code.
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
|
|
BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
|
|
} else {
|
|
MachineIRBuilder MIB(MF);
|
|
MIB.setMBB(*MBB);
|
|
|
|
FunctionLoweringInfo FuncInfo;
|
|
FuncInfo.CanLowerReturn = true;
|
|
MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {}, FuncInfo,
|
|
0);
|
|
}
|
|
}
|
|
|
|
FunctionFiller::FunctionFiller(MachineFunction &MF,
|
|
std::vector<MCRegister> RegistersSetUp)
|
|
: MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
|
|
RegistersSetUp(std::move(RegistersSetUp)) {}
|
|
|
|
BasicBlockFiller FunctionFiller::addBasicBlock() {
|
|
MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
|
|
MF.push_back(MBB);
|
|
return BasicBlockFiller(MF, MBB, MCII);
|
|
}
|
|
|
|
ArrayRef<MCRegister> FunctionFiller::getRegistersSetUp() const {
|
|
return RegistersSetUp;
|
|
}
|
|
|
|
static std::unique_ptr<Module>
|
|
createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout &DL) {
|
|
auto Mod = std::make_unique<Module>(ModuleID, *Context);
|
|
Mod->setDataLayout(DL);
|
|
return Mod;
|
|
}
|
|
|
|
BitVector getFunctionReservedRegs(const TargetMachine &TM) {
|
|
std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
|
|
std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
|
|
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(&TM);
|
|
MachineFunction &MF = createVoidVoidPtrMachineFunction(
|
|
FunctionID, Module.get(), &MMIWP->getMMI());
|
|
// Saving reserved registers for client.
|
|
return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
|
|
}
|
|
|
|
Error assembleToStream(const ExegesisTarget &ET,
|
|
std::unique_ptr<TargetMachine> TM,
|
|
ArrayRef<MCRegister> LiveIns, const FillFunction &Fill,
|
|
raw_pwrite_stream &AsmStream, const BenchmarkKey &Key,
|
|
bool GenerateMemoryInstructions) {
|
|
auto Context = std::make_unique<LLVMContext>();
|
|
std::unique_ptr<Module> Module =
|
|
createModule(Context, TM->createDataLayout());
|
|
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
|
|
MachineFunction &MF = createVoidVoidPtrMachineFunction(
|
|
FunctionID, Module.get(), &MMIWP.get()->getMMI());
|
|
MF.ensureAlignment(kFunctionAlignment);
|
|
|
|
// We need to instruct the passes that we're done with SSA and virtual
|
|
// registers.
|
|
auto &Properties = MF.getProperties();
|
|
Properties.set(MachineFunctionProperties::Property::NoVRegs);
|
|
Properties.reset(MachineFunctionProperties::Property::IsSSA);
|
|
Properties.set(MachineFunctionProperties::Property::NoPHIs);
|
|
|
|
for (const MCRegister Reg : LiveIns)
|
|
MF.getRegInfo().addLiveIn(Reg);
|
|
|
|
if (GenerateMemoryInstructions) {
|
|
for (const MCRegister Reg : ET.getArgumentRegisters())
|
|
MF.getRegInfo().addLiveIn(Reg);
|
|
// Add a live in for registers that need saving so that the machine verifier
|
|
// doesn't fail if the register is never defined.
|
|
for (const MCRegister Reg : ET.getRegistersNeedSaving())
|
|
MF.getRegInfo().addLiveIn(Reg);
|
|
}
|
|
|
|
std::vector<MCRegister> RegistersSetUp;
|
|
RegistersSetUp.reserve(Key.RegisterInitialValues.size());
|
|
for (const auto &InitValue : Key.RegisterInitialValues) {
|
|
RegistersSetUp.push_back(InitValue.Register);
|
|
}
|
|
FunctionFiller Sink(MF, std::move(RegistersSetUp));
|
|
auto Entry = Sink.getEntry();
|
|
|
|
for (const MCRegister Reg : LiveIns)
|
|
Entry.MBB->addLiveIn(Reg);
|
|
|
|
if (GenerateMemoryInstructions) {
|
|
for (const MCRegister Reg : ET.getArgumentRegisters())
|
|
Entry.MBB->addLiveIn(Reg);
|
|
// Add a live in for registers that need saving so that the machine verifier
|
|
// doesn't fail if the register is never defined.
|
|
for (const MCRegister Reg : ET.getRegistersNeedSaving())
|
|
Entry.MBB->addLiveIn(Reg);
|
|
}
|
|
|
|
const bool IsSnippetSetupComplete = generateSnippetSetupCode(
|
|
ET, TM->getMCSubtargetInfo(), Entry, Key, GenerateMemoryInstructions);
|
|
|
|
// If the snippet setup is not complete, we disable liveliness tracking. This
|
|
// means that we won't know what values are in the registers.
|
|
// FIXME: this should probably be an assertion.
|
|
if (!IsSnippetSetupComplete)
|
|
Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
|
|
|
|
Fill(Sink);
|
|
|
|
// prologue/epilogue pass needs the reserved registers to be frozen, this
|
|
// is usually done by the SelectionDAGISel pass.
|
|
MF.getRegInfo().freezeReservedRegs();
|
|
|
|
// We create the pass manager, run the passes to populate AsmBuffer.
|
|
MCContext &MCContext = MMIWP->getMMI().getContext();
|
|
legacy::PassManager PM;
|
|
|
|
TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
|
|
PM.add(new TargetLibraryInfoWrapperPass(TLII));
|
|
|
|
TargetPassConfig *TPC = TM->createPassConfig(PM);
|
|
PM.add(TPC);
|
|
PM.add(MMIWP.release());
|
|
TPC->printAndVerify("MachineFunctionGenerator::assemble");
|
|
// Add target-specific passes.
|
|
ET.addTargetSpecificPasses(PM);
|
|
TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
|
|
// Adding the following passes:
|
|
// - postrapseudos: expands pseudo return instructions used on some targets.
|
|
// - machineverifier: checks that the MachineFunction is well formed.
|
|
// - prologepilog: saves and restore callee saved registers.
|
|
for (const char *PassName :
|
|
{"postrapseudos", "machineverifier", "prologepilog"})
|
|
if (addPass(PM, PassName, *TPC))
|
|
return make_error<Failure>("Unable to add a mandatory pass");
|
|
TPC->setInitialized();
|
|
|
|
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
|
|
if (TM->addAsmPrinter(PM, AsmStream, nullptr, CodeGenFileType::ObjectFile,
|
|
MCContext))
|
|
return make_error<Failure>("Cannot add AsmPrinter passes");
|
|
|
|
PM.run(*Module); // Run all the passes
|
|
return Error::success();
|
|
}
|
|
|
|
object::OwningBinary<object::ObjectFile>
|
|
getObjectFromBuffer(StringRef InputData) {
|
|
// Storing the generated assembly into a MemoryBuffer that owns the memory.
|
|
std::unique_ptr<MemoryBuffer> Buffer =
|
|
MemoryBuffer::getMemBufferCopy(InputData);
|
|
// Create the ObjectFile from the MemoryBuffer.
|
|
std::unique_ptr<object::ObjectFile> Obj =
|
|
cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
|
|
// Returning both the MemoryBuffer and the ObjectFile.
|
|
return object::OwningBinary<object::ObjectFile>(std::move(Obj),
|
|
std::move(Buffer));
|
|
}
|
|
|
|
object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
|
|
return cantFail(object::ObjectFile::createObjectFile(Filename));
|
|
}
|
|
|
|
Expected<ExecutableFunction> ExecutableFunction::create(
|
|
std::unique_ptr<TargetMachine> TM,
|
|
object::OwningBinary<object::ObjectFile> &&ObjectFileHolder) {
|
|
assert(ObjectFileHolder.getBinary() && "cannot create object file");
|
|
std::unique_ptr<LLVMContext> Ctx = std::make_unique<LLVMContext>();
|
|
|
|
auto SymbolSizes = object::computeSymbolSizes(*ObjectFileHolder.getBinary());
|
|
// Get the size of the function that we want to call into (with the name of
|
|
// FunctionID).
|
|
auto SymbolIt = find_if(SymbolSizes, [&](const auto &Pair) {
|
|
auto SymbolName = Pair.first.getName();
|
|
if (SymbolName)
|
|
return *SymbolName == FunctionID;
|
|
// We should always succeed in finding the FunctionID, hence we suppress
|
|
// the error here and assert later on the search result, rather than
|
|
// propagating the Expected<> error back to the caller.
|
|
consumeError(SymbolName.takeError());
|
|
return false;
|
|
});
|
|
assert(SymbolIt != SymbolSizes.end() &&
|
|
"Cannot find the symbol for FunctionID");
|
|
uintptr_t CodeSize = SymbolIt->second;
|
|
|
|
auto EJITOrErr = orc::LLJITBuilder().create();
|
|
if (!EJITOrErr)
|
|
return EJITOrErr.takeError();
|
|
|
|
auto EJIT = std::move(*EJITOrErr);
|
|
|
|
if (auto ObjErr =
|
|
EJIT->addObjectFile(std::get<1>(ObjectFileHolder.takeBinary())))
|
|
return std::move(ObjErr);
|
|
|
|
auto FunctionAddressOrErr = EJIT->lookup(FunctionID);
|
|
if (!FunctionAddressOrErr)
|
|
return FunctionAddressOrErr.takeError();
|
|
|
|
const uint64_t FunctionAddress = FunctionAddressOrErr->getValue();
|
|
|
|
assert(isAligned(kFunctionAlignment, FunctionAddress) &&
|
|
"function is not properly aligned");
|
|
|
|
StringRef FBytes =
|
|
StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
|
|
return ExecutableFunction(std::move(Ctx), std::move(EJIT), FBytes);
|
|
}
|
|
|
|
ExecutableFunction::ExecutableFunction(std::unique_ptr<LLVMContext> Ctx,
|
|
std::unique_ptr<orc::LLJIT> EJIT,
|
|
StringRef FB)
|
|
: FunctionBytes(FB), Context(std::move(Ctx)), ExecJIT(std::move(EJIT)) {}
|
|
|
|
Error getBenchmarkFunctionBytes(const StringRef InputData,
|
|
std::vector<uint8_t> &Bytes) {
|
|
const auto Holder = getObjectFromBuffer(InputData);
|
|
const auto *Obj = Holder.getBinary();
|
|
// See RuntimeDyldImpl::loadObjectImpl(Obj) for much more complete
|
|
// implementation.
|
|
|
|
// Find the only function in the object file.
|
|
SmallVector<object::SymbolRef, 1> Functions;
|
|
for (auto &Sym : Obj->symbols()) {
|
|
auto SymType = Sym.getType();
|
|
if (SymType && *SymType == object::SymbolRef::Type::ST_Function)
|
|
Functions.push_back(Sym);
|
|
}
|
|
if (Functions.size() != 1)
|
|
return make_error<Failure>("Exactly one function expected");
|
|
|
|
// Find the containing section - it is assumed to contain only this function.
|
|
auto SectionOrErr = Functions.front().getSection();
|
|
if (!SectionOrErr || *SectionOrErr == Obj->section_end())
|
|
return make_error<Failure>("Section not found");
|
|
|
|
auto Address = Functions.front().getAddress();
|
|
if (!Address || *Address != SectionOrErr.get()->getAddress())
|
|
return make_error<Failure>("Unexpected layout");
|
|
|
|
auto ContentsOrErr = SectionOrErr.get()->getContents();
|
|
if (!ContentsOrErr)
|
|
return ContentsOrErr.takeError();
|
|
Bytes.assign(ContentsOrErr->begin(), ContentsOrErr->end());
|
|
return Error::success();
|
|
}
|
|
|
|
} // namespace exegesis
|
|
} // namespace llvm
|